
HAL Id: hal-01060635
https://inria.hal.science/hal-01060635

Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fuzzy Cognitive Map for Software Testing Using
Artificial Intelligence Techniques

Deane Larkman, Masoud Mohammadian, Bala Balachandran, Ric Jentzsch

To cite this version:
Deane Larkman, Masoud Mohammadian, Bala Balachandran, Ric Jentzsch. Fuzzy Cognitive Map for
Software Testing Using Artificial Intelligence Techniques. 6th IFIP WG 12.5 International Conference
on Artificial Intelligence Applications and Innovations (AIAI), Oct 2010, Larnaca, Cyprus. pp.328-335,
�10.1007/978-3-642-16239-8_43�. �hal-01060635�

https://inria.hal.science/hal-01060635
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Fuzzy Cognitive Map for Software Testing

Using Artificial Intelligence Techniques

Deane Larkman
1
, Masoud Mohammadian

1
, Bala Balachandran

1
,

Ric Jentzsch
2

1 Faculty of Information Science and Engineering, University of Canberra, ACT,

Australia,

u950777@uni.canberra.edu.au, Masoud.Mohammadian@canberra.edu.au,
2 Business Planning Associates Pty Ltd, ACT, Australia

Bus.Planning.Assoc@gmail.com

Abstract - This paper discusses a framework to assist test managers to evaluate the use of

AI techniques as a potential tool in software testing. Fuzzy Cognitive Maps (FCMs) are

employed to evaluate the framework and make decision analysis easier. A what-if analysis

is presented that explores the general application of the framework. Simulations are per-

formed to show the effectiveness of the proposed method. The framework proposed is in-
novative and it assists managers in making efficient decisions.

Key words: Software testing, Fuzzy Cognitive Maps (FCMs), What-if Analysis

1. Introduction

Software is a key element of systems and devices that support many of the activi-

ties that are an accepted part of our modern lifestyle. There is a consequent reli-

ance on the correct behaviour of software, and an expectation that the software

will not fail. However, software is an increasingly complex product that requires

more and more testing a labour intensive and error prone activity [1]. The conse-

quences of software failure range from the trivial (such as the need to restart a

computer program), through the very inconvenient (such as the malfunction of

traffic signals), to the catastrophic, where life and property may be affected. To

minimise software failure, and its various impacts, high quality software must be

created. Testing is a major quality assurance technique to evaluate the quality of

software throughout the development cycle [1, 2].

2. Software Testing and Artificial Intelligence

2.1 Research on Software Testing using Artificial Intelligence

The application of AI techniques to testing software has moved beyond the specu-

lative for many techniques, and now receives widespread attention from the re-

search community. AI techniques have been used to explore different characteris-

tics of a range of software, such as system software, real time software, embedded

software, distributed software, and GUI software. The diverse investigations cover

many areas. Various test approaches, at different test levels (such as unit, integra-

tion and system testing), have been used; for example, white box or structural test-

ing, black box or functional testing, grey box testing, GUI testing and non-

functional testing. Different programming paradigms have been examined, includ-

ing procedural programs, object-oriented programs and aspect oriented programs.

Distinct test aspects have been investigated, such as test data generation and test

oracle generation [3, 4, 5, 6]. Software programs have been transformed to facili-

tate the application of AI techniques. AI techniques have been optimised, modi-

fied, hybridized with other AI techniques, and adapted.

2.2 Limitations using Artificial Intelligence in Software Testing

Although AI techniques are grounded in theory, these theoretical foundations have

rarely been developed to address software testing problems. Investigations about

the theoretical basis for using AI techniques to test software are limited. Conse-

quently, AI techniques for testing software lack a firm scientific basis. A recent

paper analysed the theories underpinning genetic algorithms, developed these

theories for structural test data generation, and empirically validated the predic-

tions of the theories against real world programs [3]. The reason for using an AI

technique is commonly analytical. When cited, the reason for using an AI tech-

nique is usually because of the similarities between the characteristics of the AI

technique, and those characteristics of the software testing problems.

Much of the empirical evidence for the use of AI techniques to test software

stems from artificial laboratory programs, which are small and simple programs:

real world programs are often not considered for validation. Real world programs

are not merely scaled up versions of laboratory programs; but present complex test

problems, which frequently require an intensive manual test effort to solve. Many

researchers have voiced concern about the need to validate AI techniques against

real world programs, rather than against simple laboratory programs [3, 5, 6, 7].

The limitations of laboratory programs have been observed, and it has been noted

that toy (simple) programs fail to reveal the limitations of some test data genera-

tion techniques [6].

3. Framework Software Testing Evaluating AI Techniques

A framework is at a high level generalised perspective of a domain of interest. It is

a way to provide an initial understanding of some directed environment and its

concepts or constructs. The framework described in this paper is a decision sup-

port framework, and was developed for use at an organisational environment

level. It is aimed at test managers, or their equivalents – those people who,

amongst other things, construct test plans, which encompass or are underpinned

by test strategies.

Test managers are decision makers. The purpose of developing this framework

is to support one aspect of that essential activity. Decision making is an increas-

ingly complex activity with considerable potential for error. Decision makers need

3

to have at their disposal tools to help reduce the risks inherent in their decisions.

The complexity of the real world dictates the requirement to have tools that can be

used to help lower the decision risk by selecting and analysing amongst multiple

alternatives. Test managers need to have a way to help them decide which test

technique will be the most beneficial. The selected technique must be consistent

with the test strategy or with the test approach used to evaluate the software arte-

fact, and must help reduce the risk of software defects, especially the critical ones,

not being found before the software is released to users, customers, clients, or the

public at large.

The components of the AI techniques decision support testing framework are

Test Management, Test Information, Test Environment, and Technical Support

The framework objective is the possible application of AI Techniques to the par-

ticular software to be tested. All the components relate to the objective.

4. Fuzzy Cognitive Maps – Application to the Framework

4.1 Fuzzy Cognitive Maps

Fuzzy Cognitive Maps (FCMs) [9, 10] are graph structures that provide a method

to capture and represent complex relationships within an environment (which de-

fines a boundary), to improve understanding of that environment. FCMs have

been used to model problems with no data [8, 9, 10]. A FCM can be used for

what-if analysis, where several alternative scenarios to a given situation are con-

sidered [9, 10]. Concept nodes represent the environment behaviour within a

FCM. The concepts are connected using arcs (arrows or edges) showing the rela-

tions between concepts. The framework’s arcs are the influences between the con-

cepts. The development of the FCM is based on the utilisation of domain experts’

knowledge, forming a framework within that environment. Expert knowledge is

used to identify concepts and the degree of influence between the concepts.

Use of a FCM to analyse the framework can only demonstrate general applica-

tion of the framework. In contrast, validation of the framework involves specific,

concrete applications of the framework. Concrete applications of the framework

require case studies of different organisations in an industry environment. Valida-

tion of the framework is outside the scope of this paper.

4.2 FCM Construction

The FCM was constructed as follows. The events and the relationships defined by

the proposed framework were used to build the graph structure of the FCM. Thus

the FCM concepts are Test Management (C2) Test Information (C3), Test Envi-

ronment (C4), Technical Support (C5) and the Application of AI Techniques to

Software Testing (C1). Relationship weight values were assigned arbitrarily ac-

cording to the authors’ judgement, underpinned by industry experience in software

testing of one of the authors. The FCM of the software testing framework is

shown in Figure 1.

Software Testing using AI

Techniques

0.8

0.70.75

0.7 Test Information Test Management

Technical Support

0.65

Test Environment

C2 C3 C4

C5

C1

0.7

0.4

20 days
20 days 5 days

10 days

Fig. 1. Fuzzy Cognitive Map with Influences and Temporal

4.3 Static Analysis

If we consider the average effect of the influences from C2 + C3 + C4 (Figure 1)

on C1 occurring, there is an estimated up to 75% chance that the software can be

tested using an AI technique. Thus there is a 25% chance that some external influ-

ence will have an adverse, or even an advantageous effect, on the possibility of us-

ing an AI technique to test that particular software. Remember the 75% is based

on the current knowledge of the domain expert.

From C2 to C1 shows 0.75. This says that at most (upper boundary) if all the

elements that make up Test Management of the software to be tested are positive,

then at most there is a 75% chance that AI Techniques will be selected for testing

the software.

From C3 to C1 shows 0.80. However, C2 influences C3 by 0.70 and C4 influ-

ences C3 by 0.40. If left by itself C3’s upper boundary is 80%, but this could be

diminished or enhanced by the 70% influence from C2 and the 40% influence

from C4.

From C4 to C1 shows 0.70. C4 has two influences on its upper boundary of

0.70: C3 and C5. In this situation C4’s upper boundary of 70% is dependent on

C3’s 70% and C5’s 65%. Therefore the influences from the concepts C3 and C5

can potentially provide C4 with constraints that could either adversely or enhance

the affect of C4 reaching its upper boundary.

The preceding static analysis shows that a decision maker, in this context,

works in a very complex environment. Thus any assistance to reduce the complex-

ity of the environment, or make that complex environment more understandable or

easier to interpret, would be a plus for the decision maker. The decision maker

needs a way to comprehend the consequences of the interacting concepts of the

5

framework. They also need to be provided guidance for a better understanding of

the elements within their decision, and for a better understanding of the conse-

quences of the environment they are working with. The FCM inference mecha-

nism is a technique that can be used to analyse the interacting knowledge captured

by the framework.

4.4 What-If Analysis using the FCM Inference Mechanism

The dynamic dimension of a FCM is suitable for what-if analysis; where alterna-

tive scenarios (which involve what-if questions) are considered for a given situa-

tion. The solutions to the scenarios are obtained by using the FCM inference

mechanism.

The FCM inference mechanism involves standard matrix multiplication. An

initial state vector S0 (a 1×n matrix) is multiplied by the FCM influence matrix,

generating a new state vector S1 as the next step. This process is repeated until the

dynamical system reaches equilibrium. The influence matrix is an n x n matrix and

each of its elements represents the influence values between the concept nodes.

Values of concepts in new state vectors are calculated using the equa-

tion ()tjji

t

i cWfc =+1
. The sigmoid function () ()xexf λ−+= 11 is used as the

activation function. Large values of λ approximate the binary threshold or step

function [9, 10]. In the step function f(x) = 1if x > T and f(x) = 0 if x ≤ T, where T

is the threshold value, taken from somewhere in the fuzzy interval [0,1]. Thus con-

cepts are either on (1) or off (0). An approximate binary threshold was adopted

and the threshold value used was 0.5 [10]. The node to be tested is set to 1 in the

input vector and in all the result vectors because it is a sustained input.

To develop a what-if analysis, scenarios are defined and the following process

will be followed:

1) Create a connection or edge matrix E, which lists the values of the causal

links between the nodes;

2) Define the scenario – select a node to test its effect or influence on the

potential decision;

3) Create the initial state vector S0. Set the node to be tested to1 (on) and set

all other nodes to 0 (off). This ensures independent analysis of the test

node. The node to be tested is modelled as a sustained input, so the test

node is set to1 in all the result vectors;

4) Multiply S0 by E to obtain the result vector S1;

5) Repeat step 4 with each result vector (Sn * E) until equilibrium is reached

– when a vector is repeated, ie the current iteration Sn+1 = Sn;

6) Take the previous result vector Sn for the analysis; and

7) Repeat steps 2 to 6 for each scenario.

The influences among the concepts in Figure 1 can be displayed using the fol-

lowing influence or edge matrix E.

00.065.000.000.000.0

00.000.040.000.070.0

00.070.000.000.080.0

00.000.070.000.075.0

00.000.000.000.000.0

5

4

3

2

1

54321

C

C

CE

C

C

CCCCC

=

The test manager and other domain experts are required to determine the

weights of the different links between the concept nodes, and the initial activation

level of each concept. Later research will identify a set of questions to assist the

test manager to determine weightings. In this test of the framework the authors

have carefully considered the system and provided the weights for the FCM

shown in Figure 1. Now what-if analysis can proceed.

Let us first analyse the influence of C2; so C2 is set to 1. Thus C2 can be exam-

ined independently of the other nodes and their influences. This situation is repre-

sented by S0 = [0, 1, 0, 0, 0].

S0 = [0, 1, 0, 0, 0]

S0 * E = [0.75, 0, 0.70, 0, 0] – this becomes S1 [1, 1, 1, 0, 0]

S1 * E = [1.55, 0, 0.70, 0.70, 0] – this becomes S2 [1, 1, 1, 1, 0]

S2 * E = [2.25, 0, 1.1, 0.70, 0] – this becomes S3 [1, 1, 1, 1, 0]

S3 = S2: equilibrium has been reached.

Let us next set C3 to 1. Thus C3 can be looked at independently of the other

nodes and their influences. This situation is represented by S0 = [0, 0, 1, 0, 0].

S0 = [0, 0, 1, 0, 0]

S0 * E = [0.80, 0, 0, 0.70, 0] – this becomes S1 [1, 0, 1, 1, 0]

S1 * E = [1.5, 0, 0.40, 0.70, 0] – this becomes S2 [1, 0, 1, 1, 0]

S2 = S1: equilibrium has been reached.

Let us next set C4 to 1. Thus C4 can be looked at independently of the other

nodes and their influences. This situation is represented by S0 = [0, 0, 0, 1, 0].

S0 = [0, 0, 0, 1, 0]

S0 * E = [0.70, 0, 0.40, 0, 0] – this becomes S1 [1, 0, 0, 1, 0]

S1 * E = [0.70, 0, 0.40, 0, 0] – this becomes S2 [1, 0, 0, 1, 0]

S2 = S1: equilibrium has been reached.

Let us next set C5 to 1. Thus C5 can be looked at independently of the other

nodes and their influences. This situation is represented by S0 = [0, 0, 0, 0, 1].

S0 = [0, 0, 0, 0, 1].

S0 * E = [0, 0, 0, 0.65, 0] – this becomes S1 [0, 0, 0, 1, 1]

S1 * E = [0.70, 0, 0.40, 0.65, 0] – this becomes S2 [1, 0, 0, 1, 1]

S2 * E =[0.70, 0, 0.40, 0.65, 0] – this becomes S3 [1, 0, 0, 1, 1]

S3 = S2: equilibrium has been reached.

The framework is flexible and the test manager can modify the concepts and re-

lationships of the framework to match their organisational circumstances, and the

characteristics of the software being tested. As indicated the influence weights are

test manager dependent and may not represent specific organisational settings.

The FCM converges to a fixed point for each scenario – single vectors are the

result when equilibrium is reached. All the equilibrium vectors are not null, so

7

definite answers can be obtained for each scenario. The decision maker needs to

be aware that effort into C4 can provide a more positive use of AI Techniques in

testing of software. C3 and C5 have approximately the same degree of influence

on the potential decision to use or not to use an AI technique on the software being

tested. The influence of the Test Management node (C2) on the AI techniques de-

cision is more difficult to determine, because its effect on the framework objective

is both direct and indirect.

The information provided from what-if analysis of the framework can be used

for decision analysis to support improved decision making by test managers. This

approach provides a valuable tool for test managers to evaluate different scenarios

for individual concepts, or combinations of concepts in the framework, and apply

that evaluation in their organisation.

4.5 Temporal Analysis

FCM has introduced quantitative relationships between concepts to describe the

strength of influence between elements. Miao in 2000 has shown that fuzzy cogni-

tive maps generally do not provide a temporal mechanism to represent both the

strength of influence and the temporal degree of the effect on the overall objective

[11]. The FCM within this framework includes a temporal degree as illustrated in

Figure 1. The days are computed by the test manager based on their best estimates

of the software to be tested and historical data. The temporal aspect conforms to

critical path analysis for the FCM. Combined with strength of influence this pro-

vides a solid basis for compressing a software testing life cycle.

5. Conclusion and Future Work

A limitation of the AI testing framework is a potential inability to capture all the

important concepts from the software testing domain. Therefore the proposed test-

ing framework may be subject to external influences from concepts overlooked in

the software testing domain.

Future work involves:

1) Applying increased granular of the AI testing framework, and analysing

any differences in the results between representations of the framework;

2) Using an FCM inference method that is able to map or transform concept

values of state vectors to any value of the fuzzy interval [0,1], and com-

paring the results with the less discriminating FCM inference method il-

lustrated in this paper;

3) Extended temporal to include degree of dependency states; and

4) Constructing a set of questions to help test managers more easily deter-

mine the weight values for the relationships between the concepts in the

AI testing framework.

6. References

1. Dick, S. & Kandel, A. (2005). Series in machine perception and artificial in-

telligence, Vol. 63. Computational intelligence in software quality assurance.

Hackensack, USA: World Scientific.

2. Hailpern, B. & Santhanam, P. (2002). Software debugging, testing, and veri-

fication. IBM Systems Journal, 41(1), USA, pp 4-12.

3. Harman, M. & McMinn, P. (2007). A theoretical & empirical analysis of evo-

lutionary testing and hill climbing for structural test data generation. Proceed-

ings of the 2007 International Symposium on Software Testing and Analysis,

pp 73-83.

4. Hermadi, I. & Ahmed, M. A. (2003). Genetic algorithm based test data gen-

erator. The 2003 Congress on Evolutionary Computation 1, pp 85-91.

5. Howe, A. E., Von Mayrhauser, A. & Mraz, R. T. (1997). Test case generation

as an AI planning problem. Automated Software Engineering, 4(1), USA, pp

77-106.

6. Michael, C. C., McGraw, G. & Schatz, M. A. (2001). Generating software

test data by evolution. IEEE Transactions on Software Engineering, 27(12),

USA, pp 1085-1110.

7. Kim, J.-M., Porter, A. & Rothermel, G. (2005). An empirical study of regres-

sion test application frequency. Software Testing, Verification and Reliability,

15(4), pp 257–279.

8. Smith, E. and Eloff, J. (2000). Cognitive Fuzzy Modeling for Cognitive

Fuzzy Modeling for a Health Care Institution, IEEE Intelligent Systems

March/April 2000, USA, pp 69-75.

9. Kosko, B. (1997). Fuzzy engineering. Upper Saddle River , USA: Prentice

Hall.

10. Kosko, B. (1991). Neural networks and fuzzy systems: A dynamical systems

approach to machine intelligence. Englewood Ciffs, NJ: Prentice Hall.

11. Miao, Y. Zhi-Qiang, L. (2000). On causal inference in fuzzy cognitive map.

IEEE Trans. Fuzzy Syst., vol 8, pp 107 -119.

