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Analysis and Comparison of Probability
Transformations for Fusing Sensors with
Uncertain Detection Performance
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Edinburgh, SA, 5111, Australia
{Edwin.El-Mahassni, Samuel.Davey, Jonathan.Legg}@dsto.defence.gov.au

Abstract. In a recent paper by Davey, Legg and El-Mahassni a way of
fusing sensors with uncertain performance was outlined using the Trans-
ferable Belief Model (TBM) theory. It showed that if the target prior
was uncertain, then the resulting fused mass was also uncertain. That is,
some belief mass was assigned to the case that the presence or absence
of a target was unknown. Various methods have been proposed to trans-
form an uncertain belief function into a probability mass. This paper
analyses the relationship between an important subset of these methods
and compares the resulting probability masses with those obtained via
Bayesian methods using random priors.
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1 Introduction

Sensor fusion is the combination of sensor data obtained from different sources
to obtain more complete or accurate information than that available from any
individual source. Two or more sensors with complementary capabilities may
be used together to achieve a more reliable target state estimate. The scenario
addressed by this paper is that of fusing two similarly performing sensors to
enhance an operator’s confidence in his/her decision making. The most popular
methods for combining information from multiple sensors are Bayesian in nature,
including networks and Kalman filters. Bayesian networks can make predictions
based on a small number of observations [1]. They are models that represent
variables and their probabilistic relationships.

A second method which has also attracted attention in the area of sensor
fusion is that of Dempster-Shafer Theory (DST) [2,3]. DST may be thought
of as a generalisation of probability theory; rather than assigning probability
mass to an exhaustive collection of mutually-exclusive events, DST allows belief
mass to be assigned to sets of events when the evidence or data is not able to
distinguish between these events. Thus the DST is better suited for representing
ambiguity and in particular can represent some measure of total ignorance by
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assigning a non-zero mass to the universal set. An advantage of using DST is
that it allows for random variables with uncertain probability mass, for example
an event that occurs with probability at least p, or a prior between p; and po.

In [4], the Transferable Belief Model (TBM)[6, 7], a variant of DST, was
used to fuse two sensors at the decision level (is there a target or not). It was
found that uncertainty in the prior probability of a target being present lead
to uncertainty in the fused belief mass. In [4] this was resolved by using the
pignistic transform. However, alternative methods for transforming uncertain
belief functions into probabilities have been proposed. Here, we extend the work
of [4] and analyse several probability transformations that satisfy the minimal
criterion of [5].

This paper also presents a Bayesian solution to the fusion problem when the
sensor parameters are uncertain. This is achieved through treating the parame-
ters as random variables with known priors. The Bayesian solution is compared
with the TBM solution. The paper is divided in the following way: in Section 2
we give a short introduction to evidential reasoning and its application to sensor
fusion when uncertainty exists. In Section 3 we describe and analyse some of the
methods that transform belief masses into probabilities. In Section 4, we derive
the Bayesian solution when target, detection and false alarm uncertainty exists.
In Section 5, we provide a graphical example comparing the TBM probabilities
and the Bayesian probabilities. Finally in Section 6, we provide some concluding
remarks.

2 Applying Evidential Reasoning to Sensor Fusion

In DST, the Basic Belief Assignment (BBA) function (which is sometimes re-
ferred to as belief mass), m, defines a mapping of the power set to the unit inter-
val. Note that m(0) = 0 is usually assumed for DST. For a given set A € p(X),
where p(X) is the powerset of a set X, the value m(A) represents the proportion
of all relevant and available evidence that supports the claim that a particular
element of X belongs to the set A, but to no particular subset of A if A is not a
singleton. We remark that conceptually, m can represent, but is not limited to,
probability. The sum of all the masses is always 1.

Under the TBM variant of DST, mass is allowed to be assigned to the empty
set, m(0). One interpretation of the mass assigned to the empty set is that it
is the degree of conflict between combined BBAs. The TBM combination rule
does not contain the normalising term customary for DST and is given by

mi2(C) = Y mi(A) ma(B). (1)

ANB=C

The TBM was used in [4] to fuse detection level data from two sensors and
derive the belief that a target is present or absent given the sensor outputs and
uncertain knowledge of the sensor performance.

In [4], it was assumed that, for sensor ¢, the probability of detection, false
alarm and prior probability of target being present are respectively given and
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bounded by
v < Ph <digax,  fuiw < Pia < fuax  and  tuin < P < tuax.

Letting D = diax d3ax and F = fiax fiax, [4] showed that the nor-
malised belief that a target is present given detections from both sensors is
given by

m(1) = D tyax — D F (tmax — tmin)/C,
m(O) =F (1 — tMIN) —DF (tMAX — tMIN)/C7
m(z) =D F (tmax — tmin) /C, (2)

where C = tyun(1 — D) + (1 = F) + (tmax — tvmin) (1 — D)(1 — F) is the mass
assigned to the empty set and m(z) reflects the uncertainty and is the mass
assigned to the case that we do not know if there is a target.

When a decision is made using TBM, BBAs need to be transformed into
probabilities. In order to do this the uncertain mass, m(x), should be distributed
between the target present and target absent cases. Note that if the target prior
is known, tyiin = P = tmax, and so m(x) = 0. A certain probability of target
presence is obtained by simply normalising m(0) and m(1) even though the
sensor performance is still uncertain. This solution is equivalent to the Bayesian
solution for known sensor priors where these have been replaced with their upper
bound values.

3 Probabilities from Belief Function Models

Different methods have been proposed to transform belief functions into proba-
bility masses, many of which were explored in [5]. Here we consider those which
satisfy the minimal criterion of [5], which states that the result of applying
the transform to the vacuous belief function should be a uniform probability.
The vacuous belief function is one describing complete uncertainty. Three such
transforms were identified in [5]: the Aggregate Uncertainty (AU); the pignistic
transformation; and the Plausibility transformation. Each is described in detail
in [5]. In addition, we will consider the generalized pignistic transformation [8,
9] since it also satisfies the minimal criterion.

We will consider only the case of a binary frame of discernment, X = {A, B},
since this is appropriate for the decision fusion example. Assume that after using
the TBM for sensor fusion, the masses are normalized to force the empty set mass
to be zero. Thus there are three masses, m(A), m(B) and m(AUB). Without loss
of generality, we let m(A) > m(B). The general requirement of the transform is
to map these three masses into binary probabilities, p(4) and p(B).

3.1 Aggregate Uncertainty Approach

The Aggregate Uncertainty method distributes the mass m(A U B) between
m(A) and m(B) and then normalises the two to arrive at a probability mass.
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The AU selects the proportion of m(AUB) distributed to each in such a way as to
maximise the entropy of the resulting probability mass [3]. For a binary frame,
this process is straightforward: if m(A) > 0.5, the transform yields P;(A) =
m(A) and P;(B) = m(B) + m(A U B), otherwise P, (A) = P,(B) =0.5.

3.2 The Plausibility Transformation

Also known as the Bayesian approximation method, it has been argued that
this transformation is the most consistent technique for translating Dempster’s
rule of combination to the Bayesian probability domain. For a binary frame, if
x € X, the probabilities given by this transformation become

m(z) + m(A U B)
1+m(AUB)

PQ(Z’) =

3.3 The Pignistic Transformation

The pignistic transform moves the belief mass from the union elements of the
power set and distributes it equally amongst the singleton members. For a binary
frame, if x € X, the transform gives

Psy(z) =m(z) + 3m(AU B). (3)

For a binary frame, it can be shown that the Baroni-Vicig transformation [10]
is equivalent to the pignistic transformation.

3.4 The Generalised Pignistic Transformation

This transformation aims to maximise the Probabilistic Information Content
(PIC). Here it suffices to say that maximization of the PIC is equivalent to
minimization of Shannon’s entropy [8,9,11]. For a binary frame, if z € X, the
transformation is given by

m(z)(1+ 2¢) + em(AU B)

@) = B 2

for some small arbitrary ¢ > 0.

The entropy of Py(x) is minimised if ¢ = 0 [8,9]. However, if m(B) is zero
and m(AU B) is not, then the transform gives p(4) = 1 despite the uncertainty,
which is inappropriate.

3.5 Analysis of Probability Transformations

We now present a relationship between these probability transformations for a
binary frame and m(A) > m(B).

Theorem 1.
If X = {A, B} and m(A) > m(B) then P;(A) < P>(A) < P3(A) < Py(A).
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Proof. For the case when m(A4) > 0.5, then showing Py (A) < P5(A) is equivalent
to proving that

1—m(B)
mA) S T AU B

m(A4) + m(A)m(AU B) + m(B) <1, so that P, (A) < P»(A) when m(4) > 0.5.
If m(A) < 0.5,m(A) > m(B) then P;(A) = P;(B) = 0.5. In such a case we note
that 0.5(1 + m(AU B)) <m(A) + m(AU B) so that P;(A) < P»(A).

Similarly, after some manipulation we can also see that when m(A4) > m(B)

m(A4) + m(AU B) < [m(A) + %m(A UB)|[1+m(AUB)].

This means that P(A) < P3(A4). And lastly, we note that P3(A4) < Py(A)
because it can easily be shown that

m(A) + %m(A U B)] (m(A) + m(B) + 2¢] < m(A)[1 + 2] + em(A U B).

Finally, from above the following lemma can be established. It provides a
lower bound on the probability values for all the transformations.

Lemma 1. For all the probability transformations listed above we have p(A) >
m(A) and p(B) > m(B).

As mentioned in section 2, when the prior probability of a target is known,
then there is no mass assigned to the uncertain event A U B and so all of the
transforms are equivalent.

4 Bayesian Solution

Section 3 establishes a relationship between a number of different transforms,
but it does not provide any advice regarding which, if any, is preferred. One
potential way to discriminate between them is to compare the transforms with
the result of Bayesian analysis. Is it possible, for example, to craft a Bayesian
prior to give the same result as the pignistic transform?

When the parameters of a prior distribution are unknown, the Bayesian ap-
proach is to treat these parameters as random variables. Such random parameters
are referred to as hyperparameters and their distributions as hyperpriors [12].
Within the sensor fusion context, we will now treat the probability of detection,
the probability of false alarm and the probability of target presence as hyperpa-
rameters with known hyperpriors. That is, P} is a random variable with known
distribution (hyperprior) p(Pg).

Let t, st and s? be binary indicator variables that denote the presence (or
absence) of a target and sensor reports respectively.
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The target is present with probability P;. This probability is unknown, but
it has a known hyperprior, p(P;). The mean target prior is E{P;} and the hy-
perprior is zero outside of the region [tnmin, tmax]. Explicitly,

(4)

The sensor output is a function of the sensors’ probability of detection, prob-
ability of false alarm, and the presence of a target, i.e.

1-Pi, tst=00,
Py t st =01,
1-P, tsi=10,
Py tsi=11,

where again the probability of detection, P, and probability of false alarm, Pk, ,
are unknown but have known hyperpriors, p(P§) and p(Pg,).

Theorem 2. Let p(t|st, s?) be the conditional probability of a target being present
(t = 1) or not (t = 0), given two sensor outputs. Then, the Bayesian solution
when target, false alarm and detection priors are unknown is given by

plts! ) o p(1E0P) TLo (1 BB 1P Q

i=1

Proof. The fused output, p(t|s', s?), is derived through the use of Bayes’ Rule,
the law of total probability and conditional independence:

p(t|s', s?) o p(t, st s*

///// (t,s1, 5%, P, PY, P, Py, P2y)

dP,dPLdPEdPL dPE,,
1 1 1 1 1
- / / / / / p(Pp(t|P)
0 0 0 0 0

pr PY)p(Piy)p(si|t, Ph, Piy)AP,dPYdPEd P\ d P2y,

-1 1p<Pt>p<t|Pt>dPt}

2 1 1
<1 { / / p(Pﬁ)p(PﬁA)p(s’lt,P]S,PéA)dP]SdPﬁA} (7)
j=1
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The first term in (7) can be simplified by substituting (4)

/lp(Pt) p(t|P,) AP, = {folp(Pt) (1—P)dP, t=0,
0

o p(P) P, dP, t=1,
_J1-E{R} t=0,
| E{R} t=1.
=p(tE{R}). (8)

Similarly, the second term in (7) is simplified by substituting (5) to get

1— E{Pi,} ts' =00,

1 pl i i
, , o o E{Pi,} t s' =01,

Py)p(Pr ', Ph, Ppp)dPhd P, = . .
/0 /0 P(P)p(Pea)p(s'|t, Pry, Pra)dPpd Py 1-E{P)} ts =10,
E{P}}  ts =11,

= p(s'[t, B{PD}, E{Pi}). (9)

It is very interesting, and perhaps unexpected, that the fused probability of
a target given multi-sensor data depends only on the means of the hyperpriors.
The implication is that we could solve this problem using the Bayesian method
for an unspecified hyperprior constrained only by its mean.

It is intuitive that (6) extends directly to an arbitrary number of sensors
simply by appropriately changing the domain of the product. For the special
case of N identical sensors where M < N sensors report a target, the result
resembles a binomial distribution.

For the example of two sensors reporting a detection, the probability of a
target being present is given by

E{P}E{PS}E{PS}

p(t=11,1) = E{P}E{PLYE{P3} + (1 — E{P.})E{PL }E{P2,} 1o

Let the Bayesian probability distribution be denoted by Ps. An obvious
lemma when all the marginals are known can now be stated.

Lemma 2. If tMIN = tMAde%\/HN = d%\/[AXvi = 172, then
P(jI(1,1)) = P2(1(1,1)) = P3(j](1,1)) = P4(j1(1,1)) = P5(j1(1,1)),

that is, the TBM solution is the same as the Bayesian solution, independent of
the belief to probability transformation method used.

Recall that when the target probability is known then all the probability
transformations are equivalent. For this case, denote the TBM derived proba-
bility value of an event A by P*(A) and establish the following resulting lemma
which indicates when the Bayesian solution will yield a higher or lower value than
the probability transformations when the target prior probability is known.



8 Edwin El-Mahassni, Samuel Davey and Jonathan Legg

Lemma 3. When tyn = tmax, then

D - E{PL}E{P%} .
=2 m = P(t|(1,1)) Z B5(t](1,1))

The dependence between the parameters and the probability values is more
complicated when the target prior is uncertain and depends on the transforma-
tion method. For example, under the pignistic transform, Lemma 3 becomes:

Lemma 4.
tmaxD — % (tmax — tmin) DF > E{P,}E{P\}E{P}}
(1 —tmn)F — 2 (tmax — tmin) DF < (1 — E{P:}) E{P§, } E{P3, }
< P3(t[(1,1)) Z Ps(t|(1,1))

While there is some relationship between the transforms and the Bayesian
solution, it is too complicated to draw any intuitive conclusion.

5 Examples

In this section we provide some graphical examples which help to visualize the
relationships between the different transformations and the Bayesian solution.
In all cases, we assume that the false alarm and detection parameters of both
sensors are the same.

First consider the case of a known target prior, P, = 0.5. Assume that the
hyperpriors for the probability of detection and the probability of false alarm
are both uniform, so

1 i
. _— < Py <
p(PY) F AT A dyn < P < dyaxs
0 otherwise,

with E{P}} = % (dyax + dyiy), and similarly for p(Pi,).

Figure 1 shows the difference between the TBM probability of a target and
the Bayesian probability of a target as dy;, x and fy;,x are varied. Both dy;; and
fyon were also varied to maintain fixed values of E{Pp} = 0.8 and E{Ppa} =
0.25. A white line is plotted showing the values where the two probabilities are
equal, as defined by Lemma 3. For this example, when the uncertainty in the
probability of detection is greater than the uncertainty in the probability of false
alarm, the TBM fused probability of a target is higher than the Bayesian fused
probability and when the probability of false alarm uncertainty is greater, the
TBM fused probability is lower.

Next we change the target prior to be random and uniformly distributed
on [0.3,0.7]. As before, the detection probability hyperprior and false alarm
probability hyperprior were varied but constant means were maintained. Fig-
ure 2 shows the difference between the pignistic transform probabilities and the
Bayesian probabilities. The general shape of the function is the same as for a
fixed P, but it has been shifted to the right. This means that for a particu-
lar false alarm hyperprior, equivalence is achieved for a smaller dy;,x when the
target prior is uncertain.
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Fig. 1. TBM probability - Bayes Probability, P; known
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Fig. 2. TBM probability - Bayes Probability, P; random
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6 Concluding Remarks

In this paper, we investigated several Dempster-Shafer mass probability transfor-
mations and analysed how they related to one another in the context of decision
fusion in a dual sensor example. We showed that if the target prior is fixed, then
an intuitive relationship can be established between the probability transforma-
tions and the Bayesian solution. However, even in this simplified case, the two
are only equivalent in special cases. There is no apparent relationship between
the TBM and the Bayesian solutions or particular form of prior that makes the
two equivalent. This is because the TBM belief depends on the boundary con-
ditions of the parameter hyperpriors, whereas the Bayesian solution presents an
overall average result. Potential work could concentrate on determining in which
situations it would be preferable to use a particular transformation over another.

References

1. Niedermeyer, D.: An Introduction to Bayesian Networks and Their Contempo-
rary Applicationsm, Innovations in Bayesian Networks. Studies in Computational
Intelligence (SCI), Holmes, D. and Jain, L. (eds) 156, 117-130 (2008)

2. Dempster, A. P.: A Generalisation of Bayesian Inference. J. of the Royal Statistical

Society, Series B 30, 205-247 (1968).

Shafer, G. A Mathematical Theory of Evidence, Princeton University Press, 1976.

4. Davey, S., Legg, J. and El-Mahassni.: Fusing Sensors with Uncertain Detection
Performance. Proc. 5th. International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), 267-272 (2009)

5. Oxenham, M., Challa, S. and Morelande, M.:Fusion of Disparate Identity Estimates
for Shared Situation Awareness in a Network-Centric Environment. Information
Fusion, 7, 395417 (2006)

6. Smets, Ph.:The Combination of Evidence in the Transferable Belief Model. IEEE
Trans. PAMI, 12 447-458 (1990)

7. Smets, Ph.:The nature of the unnormalized beliefs encountered in the transfer-
able belief model. Proc. 8th Conf. on Uncertainty in AI, Dubois D., Wellmann
M.P., D’Ambrosio B. and Smets Ph. (eds), Morgan Kaufmann Publ., San Mateo,
California, 292-297 (1992)

8. Dezert, J. and Smarandache,F.: A New Probabilistic Transformation of Belief Mass
Assignment. 11th. International Conference in Information Fusion (2008)

9. Dezert, J. and Smarandache, F.: Advances and Applications of DSmT for Infor-
mation Fusion. Collected Works, 3, Smarandache, F. and Dezert, J. (eds), Perfect
Paperback, (2009)

10. Baroni, P. and Vicig, P.:Transformations from Imprecise to Precise Probabilities,
Proc. of the 7th European Conf. on Symb. and Quant. Approaches to Reasoning
with Uncertainty (ECSQARU 2003), 3749 (2003)

11. Sudano, J.:The System Probability Information Content (PIC) Relationship to
Contributing Components, Combining Independent Multi-Source Beliefs, Hybrid
and Pedigree Pignistic Probabilities. Proc. 5th Conf. in Information Fusion, 2,
1277-1283 (2002).

12. Bernardo, J. M. and Smith, A.F.M.: Bayesian Theory (2000) Wiley.

w



