
HAL Id: hal-01056667
https://inria.hal.science/hal-01056667

Submitted on 20 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On the Identification of Property Based Generalizations
in Microdata Anonymization

Rinku Dewri, Indrajit Ray, Indrakshi Ray, Darrell Whitley

To cite this version:
Rinku Dewri, Indrajit Ray, Indrakshi Ray, Darrell Whitley. On the Identification of Property Based
Generalizations in Microdata Anonymization. 24th Annual IFIP WG 11.3 Working Conference on
Data and Applications Security and Privacy (DBSEC), Jun 2010, Rome, Italy. pp.81-96, �10.1007/978-
3-642-13739-6_6�. �hal-01056667�

https://inria.hal.science/hal-01056667
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On the Identification of Property Based

Generalizations in Microdata Anonymization

Rinku Dewri, Indrajit Ray, Indrakshi Ray, and Darrell Whitley

Colorado State University, Fort Collins, CO, USA
{rinku, indrajit, iray, whitley}@cs.colostate.edu

Abstract. Majority of the search algorithms in microdata anonymiza-
tion restrict themselves to a single privacy property and a single criteria
to optimize. The solutions obtained are therefore of limited application
since adherence to multiple privacy models is required to impede differ-
ent forms of privacy attacks. Towards this end, we propose the concept
of a property based generalization (PBG) to capture the non-dominance
relationships that appear when multiple objectives are to be met in an
anonymization process. We propose an evolutionary algorithm that can
identify a representative subset of the set of PBGs for the purpose of
decision making.

1 Introduction

Anonymizing data is challenging because re-identifying the values in sanitized
attributes is not impossible when other publicly available information or an ad-
versary’s background knowledge can be linked with the shared data. Matching
shared attributes between different data sources can be made ambiguous by
altering the released information to map to more number of individuals rep-
resented in the data set. Samarati and Sweeney enforce such mappings in the
k–anonymity model using generalization and suppression schemes [1–3].

An unavoidable consequence of performing data anonymization is the loss in
information content of the data set. Researchers have therefore looked at different
methods to obtain an optimal generalization [1, 3–6] that maximizes the utility
of the anonymized data while satisfying a pre-specified privacy property. The
adoption of such an optimization framework brings forth pertinent practical
issues that have been ignored for long.

First, data utility and respondent privacy are two equally important facets
of data publishing. Proper anonymization thus involves weighing the risk of
publicly disseminated information against the statistical utility of the content.
In such a situation, it is imperative that the data publisher understands the
implications of setting a parameter in a privacy model to a particular value.
Second, the k–anonymity model is prone to other forms of attacks on privacy. As
a result, a multitude of other privacy models have been proposed over time [7–9],
quite often followed by newer forms of privacy attacks. The inclusion of multiple
models in the anonymization process is desirable since a single comprehensive

2 Rinku Dewri et al.

model is yet to be developed. The third issue centers around the notion of biased
privacy [10]. Consider the k−anonymity model where the measure of privacy
(the value of k) is given by the minimum size of an equivalence class. Thus, two
anonymizations inducing the same value of k will be considered equally good with
respect to privacy protection. However, it is quite possible that for one of the
anonymizations, a majority of the individual tuples have lesser probabilities of
privacy breaches than their counterparts in the other anonymization. Individual
privacy levels as depicted by such a model can therefore be misleading – higher
for some, minimalistic for others.

In this paper, we propose resolutions to these issues using the notion of prop-
erty based generalizations. First, inclusion of multiple objectives in the anonymiza-
tion process is captured using properties as anonymization objectives. Second,
evaluation of a generalization with respect to a privacy property is performed
using both worst case and vector based measurements. The overall effectiveness
of a generalization is then measured in terms of its achievement and trade-offs
in the different properties. The concept of a single optimal solution is therefore
discarded and a representative subset of the minimal solution set is sought. To-
wards this end, our third contribution is in terms of an evolutionary algorithm
that can be used to efficiently search the domain generalization lattice to identify
such representative solutions.

The remainder of the paper is organized as follows. Section 2 describes some
of the related work in k-anonymization. Section 3 presents the preliminary con-
cepts. Property based generalizations are introduced in section 4, followed by a
description of the modified dominance operator in section 5. The evolutionary
algorithm is presented in section 6. Section 7 discusses some empirical results.
Finally, section 8 concludes the paper.

2 Related Work

Several algorithms have been proposed to find effective k-anonymization. The
µ-argus algorithm is based on the greedy generalization of infrequently occurring
combination of quasi-identifiers and suppresses outliers to meet the k-anonymity
requirement [5]. The Datafly approach uses a heuristic method to first generalize
the quasi-identifier containing the most number of distinct values [3]. Sequences
of quasi-identifier values occurring less than k times are suppressed.

On the more theoretical side, Sweeney proposes the MinGen algorithm [3]
that exhaustively examines all potential generalizations to identify the optimal
generalization that minimally satisfies the anonymity requirement. However, the
approach is impractical even on modest sized data sets. Meyerson and Williams
have proposed an approximation algorithm that achieves an anonymization with
O(k log k) of the optimal solution [11].

Samarati proposes an algorithm [1] that identifies all generalizations satisfy-
ing k-anonymity. The approach in Incognito [12] is also aimed towards finding
all generalizations that satisfy k-anonymity for a given value of k.

Identification of Property Based Generalizations 3

A genetic algorithm based formulation is proposed by Iyengar to perform
k-anonymization [6]. Bayardo and Agrawal propose a complete search method
that iteratively constructs less generalized solutions starting from a completely
generalized data set [4]. The idea of a solution cut is presented by Fung et
al. in their approach to top down specialization [13]. LeFevre et al. extend the
notion of generalization on attributes to generalization on tuples in the data set
[14]. Dewri et al. [15] explore privacy and utility trade-offs using multi-objective
optimization formulations involving an average case privacy measure. Huang
and Du also explore multi-objective optimization in the problem of optimizing
randomized response schemes for privacy protection [16].

3 Data Anonymization

A data set of size N is conceptually arranged as a table of rows (or tuples)
and columns (or attributes). Each attribute denotes a semantic category of in-
formation that is a set of possible values. Attributes are unique within a table.
Each row is a tuple of s values ⟨v1, . . . , vs⟩, s being the number of attributes in
the data set, such that the value vj is in the domain of the jth attribute Aj ,
for j = 1, . . . , s. The domain of attribute Aj is denoted by the singleton sets
Aj = {aj1}, . . . , {aj|Aj |} where |Aj | is the size of the domain of the attribute.

A generalization of attribute Aj is a union of its domain into supersets. Hence
the generalized domain of Aj can be written as H1

j = Aj1, . . . , Ajm such that

∪
i
Aji = ∪Aj and Ajp ∩ Ajq = ϕ for p ̸= q. We then say H1

j is a generalized

domain of Aj , denoted as H1
j <G Aj . The domain H1

j can be further generalized

in a similar manner to the domain H2
j . Generalization of an attribute’s domain

in this manner gives rise to a domain generalization hierarchy (DGH) H
Nj

j <G

. . . <G H1
J <G H0

j , where H0
j = Aj . Nj is called the length of the attribute’s

DGH. The DGH is a specification of how an attribute’s values can be combined
progressively to bigger sets. H0

j is a full specialization of attribute Aj , meaning
that no two values belong to a single set. The other extreme of this is a full

generalization H
Nj

j where all values of the attribute belong to a single set. The
generalization level of the attribute is signified by an integer between 0 and Nj .
A generalization level of 0 signifies that all values are distinguishable from each
other, while a level of Nj signifies that no two values can be distinguished from
each other.

A domain generalization lattice is a graph with
∏

i(Ni+1) nodes. Every node
(n1, . . . , ns); 0 ≤ ni ≤ Ni is a vector of s dimensions where the ith element ni

specifies the generalization level for attribute Ai. An edge exists between two
nodes (n1, . . . , ns) and (m1, . . . ,ms) if and only if

∑

i |ni −mi| = 1.
Given a DGH for each quasi-identifier in the data set, a tuple is said to be

in an anonymized form when a generalization is applied on the attribute values.
The anonymized form is represented as follows. Let us assume a tuple ⟨v1, . . . , vs⟩
in the data set. Let (n1, . . . , ns); 0 ≤ ni ≤ Ni be the vector representing the
generalization level for each attribute; ni is the level to use in the DGH for

4 Rinku Dewri et al.

attribute Ai. To map the value v1 to its generalized form we replace it by the
index of the set to which it belongs in the generalized domain at level n1. For
example, if Hn1

1 = A11, . . . , A1m and v1 ∈ A1p1
, then v1 is replaced by p1.

After performing similar operations for the other attribute values, the tuple is
anonymized to the form ⟨p1, . . . , ps⟩, pi being the set index for value vi in Hni

i .
Transforming all tuples in the data set in this manner results in an anonymized
data set.

The anonymized tuples of a data set can then be grouped together into
equivalence classes. Two anonymized tuples ⟨p1, . . . , ps⟩ and ⟨q1, . . . , qs⟩ belong
to the same equivalence class if pi = qi; 1 ≤ i ≤ s. The k-anonymity property
requires that every such equivalence class should be of size at least k.

Attributes can be further divided into sensitive and non-sensitive ones. For
example, values in the “Disease” attribute of a medical history data set is not
sensitive in itself, but is considered so if a certain disease is linked to a cer-
tain patient. The ℓ-diversity property requires that every equivalence class re-
sulting from anonymizing the quasi-identifiers should contain at least ℓ “well-
represented” values for a sensitive attribute [8]. The property can be instan-
tiated in different forms depending on the meaning of “well-represented”. The
instantiation we use here is called distinct ℓ-diversity. Distinct ℓ-diversity states
that the number of distinct values for a sensitive attribute is at least ℓ in every
equivalence class.

4 Property Based Generalization

Multiple objectives to meet during data anonymization are captured in the form
of properties [10]. Formally, a property is defined as follows.

Definition 1. Property. A property is a function P that maps a table T to a
vector of size equal to the number of tuples in the table. The vector is called a
property vector and denoted by P(T).

A property refers to a privacy, utility or any other measurable feature of a tu-
ple. It signifies the grounds under which a comparison is made between two nodes
in the lattice. For example, applying the generalization levels corresponding to a
node results in multiple equivalence classes. If we pick our property to be the “size
of the equivalence class to which a tuple belongs,” then each tuple will have an
associated integer. This results in a property vector Pequiv(T) = (k1, k2, . . . , kN)
for a data set of size N , where ki is the equivalence class size of the ith tuple.
A property is therefore a vector based measurement. The motivation behind us-
ing such vector based measurements is two fold. First, it fits the conventional
“worst case” method of measuring privacy. Second, it allows us to determine the
efficiency of a node with respect to the distribution of privacy levels across the
data set. These two methods of assessing a node are jointly represented through
the use of quality index functions.

Identification of Property Based Generalizations 5

4.1 Quality Index functions

Comparison between generalizations with respect to a single property can be
done by defining an ordering operation on the co-domain of the property. The
ordering operator is a user-defined method of evaluating the superiority of a
property vector. Typically, such operators are functions defined on the values of
the property vectors.

Definition 2. Quality Index. Let T be the collection of all possible generalized
versions of a table T. Given a property P, a quality index IP is a function
IP : T × T → R which assigns an ordered pair of two tables Tl,Tm ∈ T a real
value IP(Tl,Tm).

Quality index functions map a pair of nodes to the set of real numbers. The
underlying idea is to quantify quality differences between generalizations by ap-
plying common metrics. The value IP(Tl,Tm) signifies the quality of table Tl

relative to table Tm and with respect to the property P. We would therefore
say that Tl is preferable over Tm with respect to P if IP(Tl,Tm) > IP(Tm,Tl),
assuming that a higher value signifies better achievement of the property. Oth-
erwise, the relationship is IP(Tl,Tm) < IP(Tm,Tl).

Worst case measurements A quality index function in the definition re-
quires two tables as input. However, a commonly used method of evaluating a
generalization is through unary quality index functions. Unary quality indices are
functions applied independently on generalizations, i.e. they have a single table as
input. For example, the k-anonymity property is a unary quality index based on
the equivalence class size property Pequiv, given as IPequiv

(T) = min
i
(Pequiv(T)).

Unary indices only allow the measurement of an aggregate property of a gen-
eralization. This prohibits any kind of comparison of individual property values
maintained by tuples in a generalization with that maintained in another. Having
said so, we do not specify any restriction on the formulation of a quality index
function. This is because data utility functions are typically unary in nature, i.e.
they are absolute estimates of the information content of the anonymized data.
We keep the generic binary formulation since unary functions are a special case
of binary functions. In other words, when using worst case privacy models or
information loss measurements, we shall assume IP(Tl,Tm) ≡ IP(Tl).

Measuring quality with spread Privacy of an anonymized table can also
be quantified in terms of the differences in individual privacy levels when com-
pared with another anonymized table. Characterizing privacy in this manner
captures the changes brought forth in individual privacy levels when moving
from one node to another in the generalization lattice. This helps distinguish
the privacy preserving efficiency of the two nodes even when both generate the
same worst case privacy. We use the spread based quality index function in
this context. The function is based on the total amount of variation (or spread)
present between tuples with respect to a property, given as

Ispr
P (Tl,Tm) =

N
∑

i=1

max(pli − pmi , 0)

6 Rinku Dewri et al.

where (px1 , . . . , p
x
N) = P(Tx). Thus, Tl better preserves privacy than Tm if

Ispr
P (Tl,Tm) > Ispr

P (Tm,Tl). This characterization follows from the intuition
that a generalization better than another should be able to retain higher values
of the measured property for more individuals represented in the data set.

The spread quality index function provides a relative characterization of pri-
vacy. The function value is only representative of the quality of a node relative
to another. However, absolute estimates are more preferable since a node then
does not have to be evaluated repeatedly for the same property. Hence, a unary
function that can provide the same information as the binary spread function is
desired. Formulating such a function is not difficult as highlighted in the follow-
ing observation.

Observation: Let SP(Tx) denote the sum of the property values in the prop-
erty vector P(Tx). Then Ispr

P (Tl,Tm) > Ispr
P (Tm,Tl) if and only if SP(Tl) >

SP(Tm).
Comparing nodes under the light of the spread function can therefore be

performed using the sum of the property values, i.e. Ispr
P (Tl,Tm) ≡ IP(Tl) =

SP(Tl). Hence, in the subsequent sections, we shall use the notation IP(Tl) to
denote the quality of Tl with respect to P, keeping in mind that IP is either a
unary function (as used in worst case measurements and loss assessments) or the
sum function SP (sufficient to infer the quality according to the binary spread
function).

4.2 Anonymizing with multiple properties

Ideally, any number of properties can be studied on a generalized table. Let us
consider an anonymization with respect to the set of properties P = {P1, . . . ,Pr}.
Assessing the quality of a generalization Tl with respect to the properties P will
result in a vector of values IP(Tl) = [IP1

(Tl), . . . , IPr
(Tl)] where the ith element

represents the quality of Tl with respect to the property Pi. A dominance rela-
tion ≽ is then specified over the set of such vectors to characterize the efficiency
of a generalization, such that IP(Tl) ≽ IP(Tm) if

1. ∀i = 1 . . . r : IPi
(Tl) ≥ IPi

(Tm), and
2. ∃j ∈ {1, . . . , r} : IPj

(Tl) > IPj
(Tm).

This relation states that for a table to be better than another, it must not
have worse quality across all the properties while maintaining better quality with
respect to at least one property. Note that the dominance relation is transitive
in nature, i.e if IP(T1) ≽ IP(T2) and IP(T2) ≽ IP(T3), then IP(T1) ≽ IP(T3).
Using dominance to evaluate a generalization introduces the concept of a property
based generalization (PBG).

Definition 3. Property Based Generalization. Let T be the collection of
all possible generalized versions of a table T of size N . Given the properties
P = {P1, . . . ,Pr} and quality index functions I : IP1

, . . . , IPr
(not necessarily

unique),Tl ∈ T is a property based generalization of Tm ∈ T with respect to P,
denoted as Tl ⊢P Tm, if and only if IP(Tl) ≽ IP(Tm).

Identification of Property Based Generalizations 7

The following observations summarize the literary meaning of property based
generalizations.

– We consider Tl to be better than Tm if and only if Tl ⊢P Tm. Equivalently,
Tm is worse than Tl.

– Tl and Tm are considered incomparable (or mutually non-dominated) if and
only if Tl 0P Tm, Tm 0P Tl and Tl ̸= Tm.

Incomparable generalizations signify trade-offs across certain properties. There-
fore, it is our objective to identify such generalizations for reporting. In addi-
tion, the chosen generalizations must also be minimal. Minimal property based
generalizations are analogous to Pareto-optimal solutions in a multi-objective
optimization problem.

Definition 4. Minimal Property Based Generalization. Given a collec-
tion T of generalized versions of a table T and the properties P = {P1, . . . ,Pr},
Tw ∈ T is a minimal property based generalization of T if ∄Tm ∈ T : Tm ⊢P Tw.

5 Representative PBGs

One drawback of using the dominance relation ≽ is the inability to control the
number of minimal PBGs to report during the search process. We assume here a
search process with a finite memory, called the archive, to store minimal PBGs.
The search process iteratively tries to converge to the set of minimal PBGs. A
generator component is responsible for creating a new candidate generalization,
preferably using the current set of generalizations in the archive. An updator
component performs a comparison of the candidate generalization with those
maintained in the archive and removes all generalizations which cannot be min-
imal PBGs. The purpose behind maintaining such an archive is to guide the
search process towards better regions of the search space, and at the same time
maintain a list of the best solutions found so far.

The issue to address is the size of the archive. With no limitation on the size,
it may become impossible to store additional prospective generalizations owing
to restrictions on physical memory. The primary criteria to fulfill is that the
archive maintain generalizations that are minimal PBGs and at the same time
have enough diversity to represent the trade-off behavior across the multiple
properties.

Let M denote the set of all minimal PBGs corresponding to a given data
set. The objective is to obtain a polynomially bounded sized subset of M. Let
(ϵ1, . . . , ϵr); ϵi > 0 denote a discretization vector, r being the number of prop-
erties considered. The quality index space Rr is then discretized by placing a
hypergrid with the co-ordinates 0, ϵi, 2ϵi, . . . along each of the r dimensions.
This divides the space into boxes with side lengths same as the discretization
vector. Assuming the quality index functions are bounded on both side, i.e.
0 < IPi

(T) ≤ Ki, the box of a generalization Tl is given by the vector

B(Tl) =

[⌊

IP1
(Tl)

ϵ1

⌋

, . . . ,

⌊

IPr
(Tl)

ϵr

⌋]

.

8 Rinku Dewri et al.

Algorithm 1 Updator using ≽box

Input: Archive A, candidate generalization T

Output: Updated archive A

1. If (A = ϕ) then A ← {T}; goto step 7
2. Let Sdominate = {T′ ∈ A|IP(T) ≽box IP(T

′)}
3. A ← A− Sdominate

4. Let Sdominated = {T′ ∈ A|IP(T
′) ≽box IP(T)}

5. Let Sbox = {T′ ∈ A|B(T) = B(T′)}
6. If (Sdominated = ϕ and Sbox = ϕ) then A ← A∪ {T}
7. Return A

A modified dominance relation, called box-dominance and denoted by ≽box, is
then formulated as

IP(Tl) ≽box IP(Tm) ⇐⇒

{

B(Tl) ≽ B(Tm) , if B(Tl) ̸= B(Tm)

IP(Tl) ≽ IP(Tm) , otherwise
.

The box-dominance relation first places the quality index value vectors (IP(Tl)
and IP(Tm)) in their boxes. If the vectors are on different boxes, then Tl cannot
be a PBG of Tm if the box of Tl does not dominate the box of Tm. Otherwise,
for the case when the boxes are same, the dominance is checked on the qual-
ity index values. Further, every box is allowed to hold only one generalization.
Choice between two incomparable generalizations belonging to the same box is
made arbitrarily.

Non-dominated boxes signify regions where a minimal PBG exists. By allow-
ing the existence of a single generalization per non-dominated box, the modified
dominance relationship maintains a representative subset of the minimal PBGs.
The discretization vector determines the size of the boxes and hence impacts the
size of the representative subset. If quality index values are in the integer do-
main, then using a discretization vector of all ones implies using the un-modified
dominance relation.

An updator using ≽box: Algorithm 1 outlines an updator algorithm us-
ing box-dominance. The algorithm starts with an empty archive A. The first
candidate generalization from the generator is therefore automatically inserted
into the archive. For subsequent candidates, use of ≽box effectuates a two level
dominance check as explained earlier. First, all generalizations for which the
candidate T is a PBG are removed from the archive (Steps 2 and 3). Next, two
sets are computed – (i) Sdominated as the set of all generalizations which are
PBGs of T, and (ii) Sbox as the set of all generalizations whose boxes are same
as that of T. The candidate T should not be inserted into the archive if the set
Sdominated is non-empty, i.e. there exists a generalization in the archive which
is a PBG of T. Further, if Sbox is not empty then inclusion of T in the archive
will result in the presence of two different generalizations that are positioned in
the same box. Step 6 checks for these two conditions, thereby guaranteeing that
only non-dominated boxes contain a solution and only one solution is contained
in a non-dominated box.

Identification of Property Based Generalizations 9

Theorem 1. Let Mg denote the set of all generalizations produced by a gener-
ator until iteration t and M∗

g denote the set of minimal PBGs of Mg. Then the
archive A as maintained by Algorithm 1 contains only minimal PBGs of Mg,
i.e. A ⊆ M∗

g.

Proof. We assume that Algorithm 1 is incorrect, implying A * M∗
g. Therefore

there exists Ts ∈ A generated at iteration s such that Ts /∈ M∗
g.

If Ts /∈ M∗
g then there exists Tq ∈ Mg discovered at iteration q ̸= s such

that IP(Tq) ≽ IP(Ts). Also, either B(Tq) = B(Ts) or B(Tq) ≽ B(Ts). We can
merge these cases and say IP(Tq) ≽box IP(Ts).

Case (i) q < s : If Tq is present in A at iteration s then Ts will not be included
in the archive since Sdominated for Ts contains at least Tq. If Tq is not present
in A at iteration s then it must have been removed by a generalization Tr in A
such that IP(Tr) ≽box IP(Tq). We therefore have IP(Tr) ≽ IP(Tq) or B(Tr) ≽
B(Tq). Using the transitivity of the ≽ relation, we have IP(Tr) ≽ IP(Ts) or
B(Tr) ≽ B(Ts), which implies IP(Tr) ≽box IP(Ts). Hence in this case as well
Sdominated ̸= ϕ for Ts. Note that Tr itself might have got removed from the
archive between iteration r and iteration s. However, owing to the transitivity,
the generalization which removes it will instead appear in Sdominated for Ts.
Hence Ts will never appear in A, i.e. Ts /∈ A, which is a contradiction.

Case (ii) q > s : In this case, if Ts exists in A at iteration q then it would
be removed from the archive as it belongs to the set Sdominate of Tq. Further,
if Tq gets removed and Ts gets re-generated at a later iteration, the transitivity
property would assure that Ts does not get re-inserted into the archive. Thus,
Ts /∈ A which is again a contradiction.

Therefore, Ts can never be a member of the archive at iteration t if it is not
a minimal PBG. We can therefore say Algorithm 1 is correct and the archive A
contains only minimal PBGs of Mg. ⊓⊔

Theorem 2. The archive A as maintained by Algorithm 1 is of bounded size,
given as |A| ≤

∏r−1

i=1
bi where bi is the ith largest element of the vector (K1

ϵ1
, . . . ,

Kr

ϵr
).

Proof. Recall that K1, . . . ,Kr are the upper bounds of the quality index func-
tions for r properties. These values can very well be equal. By using box co-
ordinates at 0, ϵi, 2ϵi, . . . along each dimension i, we have divided the quality
index value space into

∏r

i=1

Ki

ϵi
boxes and only one node in each box can be

included in A. We now cluster these boxes into groups of br boxes, giving us a
total of

∏r−1

i=1
bi clusters. A cluster is formed by grouping together boxes that

have the same co-ordinates in all but one dimension. Note that choosing br as
the parameter to decide the number of boxes in a cluster gives us the smallest
possible cluster size and hence the largest number of clusters. This is required if
an upper bound on the archive size is to be computed. Next, in a cluster, the box
having the maximum co-ordinate value in the differing dimension will dominate
all other boxes in the cluster. Therefore, only such a box will contain a minimal
PBG. Each cluster can therefore contribute only one minimal PBG, bounding
the archive size to the number of such clusters, i.e. |A| ≤

∏r−1

i=1
bi. ⊓⊔

10 Rinku Dewri et al.

Algorithm 2 PBG-EA

Output: Archive A of representative minimal PBGs

1. A ← ϕ; t← 0
2. Initialize population Pt

3. Evaluate Pt

4. Update A with nodes in Pt

5. Assign fitness to nodes in Pt and A
6. Perform selection in Pt ∪ A
7. Generate Pt+1 by performing recombination on selected nodes
8. Update A with nodes in Pt+1

9. t← t+ 1; Repeat from Step 5 unless t=maximum number of iterations allowed
10. Return A

6 An Evolutionary Generator

An efficient generator is required not only to find new candidate PBGs, but also
to minimize the number of node evaluations performed during the search process.
The generator evaluates each node that it explores and provides it to the updator.
We propose here an evolutionary algorithm for this purpose, henceforth called
PBG-EA. The algorithm follows the structure described in Algorithm 2. The
update method from Algorithm 1 is used iteratively in steps 4 and 8. Specifics
of the other steps are described next.

Population initialization A population Pt is a collection of Npop nodes
in the lattice and undergoes changes as the algorithm progresses. Recall that
every node is a vector of s dimensions where s is the number of quasi-identifiers.
The population P0 is created by randomly selecting nodes in the lattice. The
fully generalized and fully specialized nodes are always inserted into this initial
population as they are trivially minimal PBGs.

Node evaluation Evaluation of a population means computing the quality
index values for each node in the population. We focus on the strategy to han-
dle outliers at this point. Outliers in a data set are uncommon combination of
attribute values in a tuple. Enforcing a k-anonymity property in the presence
of outliers may lead to excessive generalization in the attributes. The approach
applied here is to use an upper bound on the number of suppressed tuples. Let η
be the maximum number of tuples that is allowed for suppression and N be the
total number of tuples in the data set. Consider the sets E1, . . . , EN where Ei

contains anonymized tuples that are indistinguishable from i − 1 other tuples.
In other words, all tuples in the set Ei are i-anonymous. Note that some Eis
may be empty sets. If the anonymized data set is to be made k-anonymous, then
all tuples in the sets E1, . . . , Ek−1 must be suppressed. Given the hard limit
on suppression, this will be possible only if the number of tuples in the union
of these sets is less than or equal to η. The same strategy can be applied in a
reverse manner. Tuples in all sets E1, . . . , Ej are suppressed such that j is the

smallest integer satisfying
∑j+1

i=1
|Ei| > η. The data set is then k-anonymous

with k = j + 1. The number of tuples suppressed is |E1 ∪ . . . ∪ Ej | and can be
accounted for in the loss measurement.

Identification of Property Based Generalizations 11

Fitness assignment Fitness signifies the potential of a node to be a mini-
mal PBG relative to the current population and archive. The fitness assignment
we use is adapted from the one used in the SPEA2 algorithm [17]. Let domP be
the number of nodes in Pt ∪ A dominated by P ∈ Pt ∪ A. The fitness of a node
P is then computed as the sum of the dominance counts of the nodes which
dominate P , or FitnessP =

∑

P ′∈Pt∪A and P ′≽P domP ′ . All non-dominated gen-
eralizations will therefore have a fitness of zero. Hence, lower fitness implies
better generalizations.

Selection Nodes are selected for recombination by using a binary tourna-
ment strategy in Pt ∪ A. Under this strategy, two nodes are randomly chosen
from Pt∪A and the one with the lower fitness is selected. The process is repeated
for Npop times, giving a selected population of size Npop.

Recombination The process of recombination involves the crossover and
mutation operators, the resulting nodes from which are used as the next pop-
ulation Pt+1. A single point crossover is started by first choosing two nodes
(without replacement) from the selected population. Parts of the vectors repre-
senting the two nodes are then swapped at a randomly chosen crossover point.
The swapping procedure is performed with a probability of pcross; otherwise cho-
sen nodes move unchanged into the next population. Each crossover operation
results in two nodes for the next population. Performing the operation on the
entire selected population creates Npop nodes for inclusion in Pt+1. An inter-
mediate single-step mutation is performed on these nodes — with a probability
pmut, each attribute’s generalization level is either increased or decreased by one
using appropriate rounding so that generalization levels are between zero and
the DGH lengths.

7 Performance Analysis

We applied our methodology to the “adult.data” benchmark data set available
from the UCI machine learning database. The attributes used in this study along
with their DGH lengths are listed in Table 1(a). The total number of nodes in
the lattice is 17920. The suppression limit η is set at 1% of the data set size, i.e.
η = 301.

k-anonymity and ℓ-diversity are used as the privacy objectives for experi-
ments using worst case privacy. For experiments with spread based measure-
ments, we consider the two properties P1 : size of equivalence class of a tuple
and P2 : count of sensitive attribute value of a tuple in its equivalence class. Sum
of the property values in the respective property vectors are denoted by Sk and
Sℓ respectively in the plots. We use the “Occupation” attribute as the sensitive
attribute wherever required.

Information loss estimates are obtained using the general loss metric (GLM)
and classification error (CM) [6]. The attribute “Salary Class” is used as the
class label while performing experiments with the CM metric. The lattice size
in this case is 8960. Solutions reported by PBG-EA are compared with those
obtained by an exhaustive search of the entire generalization lattice. Note that

12 Rinku Dewri et al.

Table 1. (a) Attributes and DGH lengths used from the adult census data set. (b) CE
and RR values in PBG-EA anonymization with different sets of properties. Values are
shown as mean

variance
from the 20 runs.

(a)

Attribute No. of values DGH length

Age 74 6
Work Class 7 3
Education 16 3

Marital Status 7 3
Race 5 1

Gender 2 1
Native Country 41 4

Salary Class 2 1
Occupation 14 sensitive

(b)

Objectives CE RR

k, GLM 3.7×10
−4

6.5×10−9

0.94

8×10−4

k, ℓ, GLM 3.3×10
−4

1.1×10−7

0.93

1.1×10−3

Sk, GLM 5.7×10
−4

2.5×10−7

0.84

1.7×10−3

Sk, Sℓ, GLM 6.6×10
−4

2.0×10−7

0.83

1.4×10−3

the number of nodes evaluated in the exhaustive search is equal to the size of
the lattice, while that used by PBG-EA is much less.

An instance of PBG-EA is run with a population size Npop = 25 and for
100 iterations. Probability of crossover is set at pcross = 0.8 and probability
of mutation at pmut = 1/number of quasi-identifiers = 0.125. Each experiment
is run 20 times to compute the mean and variance of the performance metrics
(discussed below). The discretization vector is set to all ones, unless otherwise
indicated.

We use two metrics to quantify the efficiency of PBG-EA in terms of its ability
to converge to the true minimal PBGs (as found by the exhaustive search) and
how well the solutions represent the set of all minimal PBGs.

Let M be the set of all minimal PBGs for a data set and M′ be the
solutions in the archive at the end of the final iteration. Quality index val-
ues of all nodes in M and M′ are normalized by dividing the values by the
corresponding maximum in M. The convergence error (CE) is then given as
CE =

∑

M ′∈M′ min
M∈M

[dist (IP(M), IP(M
′))] where dist is the euclidean dis-

tance between two vectors. A CE value of zero means all solutions in the archive
have converged to some minimal PBG.

The representation ratio (RR) is the fraction of non-dominated boxes in M
that are occupied by a solution in M′. Given a discretization vector, solutions in
M are assigned their respective boxes and the non-dominated boxes are marked.
RR signifies how many of these marked boxes are occupied by a solution in the
archive. A value of one signifies that a solution in each non-dominated box exists
in the archive.

Figure 1 compares the PBG-EA solutions with those obtained from an ex-
haustive search for worst case privacy measurements as in k-anonymity and
ℓ-diversity. Trade-offs between the k value and the loss are evident from the two
property (k-GLM) solutions. The convergence efficiency of PBG-EA is worth
mentioning as 94% of all minimal PBGs are discovered by the algorithm (Table

Identification of Property Based Generalizations 13

Fig. 1. PBG-EA solutions for the two property (k-GLM) and three property (k-ℓ-GLM)
problems.

Fig. 2. PBG-EA solutions for the two property (Sk-GLM) and three property (Sk-Sℓ-
GLM) problems using spread based quality.

1(b)). Although the algorithm utilizes random numbers in a number of places,
this performance of the algorithm is more or less persistent (low variance across
the 20 runs). The trade-offs in the three property (k-ℓ-GLM) seem to be more
in terms of loss, rather than between k and ℓ.

Figure 2 shows the PBG-EA solutions when the spread function is used to
measure privacy. The RR is slightly lower in this case. Nonetheless, the con-
vergence error is still low. Using the spread function induces a higher number
of minimal PBGs whose discovery typically requires more number of iterations.
We observe that increasing the number of properties from two to three has very
little influence on the RR. A good fitness assignment strategy is required for
early determination of solution efficiency. The dominance count based fitness
assignment is ideally suited here. Typically, a solution is not worth exploring
if it is dominated by a large fraction of the nodes in the lattice. The fitness
scheme takes this a step further to also consider the quality of the solutions that
dominate it.

PBGs can also be used to find generalizations that are acceptable in terms
of more than one loss metric. Figure 3 shows the minimal PBGs obtained when

14 Rinku Dewri et al.

Fig. 3. PBG-EA solutions with a single privacy property (k-anonymity) and two loss
metrics (GLM-CM).

the k-anonymity property is evaluated against two different loss metrics, namely
GLM and CM. The heavily scattered points across the entire space signify the
existence of reciprocal relationships between GLM and CM. Ideally, for a given
k value, the convention is to choose the generalization with the lowest GLM.
However, the multi-loss metric experiment indicates that choosing a generaliza-
tion with a comparatively higher GLM can serve the dual purpose of making
the anonymized data set also suitable for classification tasks.

Although the set of minimal PBGs for the data set used in the study is
not unbounded in size, we experimented with several discretization vectors to
demonstrate the efficiency of PBG-EA in finding a representative subset. Table
2(a) shows the performance measures for some vectors. The high representation
ratio is indicative of the fact that PBG-EA solutions cover most of the non-
dominated boxes generated by the use of the discretization vectors. For two
property (k-GLM) anonymization, as higher ϵ values are used for the objectives,
the efficiency of PBG-EA improves in terms of RR. However, using more number
of properties tend to slightly affect the performance owing mostly to the limited
number of iterations.

Efficiency of PBG-EA in converging quickly to a minimal PBG is evalu-
ated by counting the number of unique nodes that are evaluated by it during
the search process. Although the evolutionary algorithm can potentially explore
2500 (25× 100) distinct nodes in the lattice, a much smaller number is actually
evaluated. Table 2(b) lists the average (out of the 20 runs) number of unique
node evaluations performed for different problem instances. We consider this low
percentage of node evaluations to be a positive indication of the convergence effi-
ciency of PBG-EA. This is particularly promising since the entire set of minimal

Identification of Property Based Generalizations 15

Table 2. (a) CE and RR values in PBG-EA anonymization with different discretiza-
tion vectors. (b) Average number of nodes evaluated in PBG-EA for different sets of
properties. Total number of nodes in the first four sets is 17920 and that in the last set
is 8960.

(a)

ϵk ϵℓ ϵGLM CE RR

5 - 100 4.3×10
−4

2.6×10−7

0.95

1.6×10−3

10 - 1000 1.6×10
−4

8.0×10−8

0.98

8.2×10−4

50 - 10000 1.7×10
−4

1.1×10−8

1.0

0.0

5 2 100 4.9×10
−3

2.5×10−7

0.92

1.2×10−3

10 4 1000 7.4×10
−3

9.3×10−7

0.92

7.0×10−4

50 6 10000 1.8×10
−2

8.2×10−6

0.88

1.7×10−3

(b)

Objectives Avg. node evaluations

k, GLM 916 (5.1%)
k, ℓ, GLM 946 (5.3%)
Sk, GLM 1136 (6.3%)

Sk, Sℓ, GLM 1197 (6.7%)
k, GLM, CM 1073 (11.9%)

PBGs (all one discretization vector) is found by exploring a small 5% of nodes in
the lattice. The nodes evaluated is slightly higher for three property problems.
This is not surprising since the number of minimal PBGs is also comparatively
higher in such cases.

8 Conclusions

In this paper, we propose identifying the basic properties that provide the requi-
site protection from a privacy breach, and then measuring them for each under-
lying individual. This generates a property vector for every generalization. Com-
parison of generalizations with respect to a single property is performed using
quality index functions that measure privacy using the variations in individual
privacy levels. Optimality in such generalizations is signified by non-dominated
generalizations (minimal PBGs) under a dominance relation. A representative
subset of solutions is maintained by using a box-dominance operator in an evo-
lutionary algorithm. Application on a benchmark data set shows that the algo-
rithm can quickly discover a diverse set of minimal PBGs with a small number
of node evaluations. Observations from our multi-loss experiment suggest that
the problem of microdata anonymization to serve multiple usages needs to be
explored in more details.

Acknowledgment

This work has been supported in part by a grant from the U.S. Air Force Office
of Scientific Research (AFOSR) under contract FA9550-07-1-0042.

References

1. Samarati, P.: Protecting Respondents’ Identities in Microdata Release. IEEE
Transactions on Knowledge and Data Engineering 13(6) (2001) 1010–1027

16 Rinku Dewri et al.

2. Samarati, P., Sweeney, L.: Generalizing Data to Provide Anonymity when Disclos-
ing Information. In: Proceedings of the 17th ACM Symposium on Principles of
Database Systems. (1998) 188

3. Sweeney, L.: Achieving k–Anonymity Privacy Protection Using Generalization and
Suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based
Systems 10(5) (2002) 571–588

4. Bayardo, R.J., Agrawal, R.: Data Privacy Through Optimal k-Anonymization.
In: Proceedings of the 21st International Conference on Data Engineering. (2005)
217–228

5. Hundepool, A., Willenborg, L.: Mu and Tau Argus: Software for Statistical Dis-
closure Control. In: Proceedings of the Third International Seminar on Statistical
Confidentiality. (1996)

6. Iyengar, V.S.: Transforming Data to Satisfy Privacy Constraints. In: Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. (2002) 279–288

7. Li, N., Li, T., Venkatasubramaniam, S.: t–Closeness: Privacy Beyond k–Anonymity
and ℓ–Diversity. In: Proceedings of the 23rd International Conference on Data
Engineering. (2007) 106–115

8. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: ℓ–Diversity:
Privacy Beyond k–Anonymity. In: Proceedings of the 22nd International Confer-
ence on Data Engineering. (2006) 24

9. Truta, T.M., Vinay, B.: Privacy Protection: p-Sensitive k-Anonymity Property. In:
Proceedings of the 22nd International Conference on Data Engineering Workshops.
(2006) 94

10. Dewri, R., Ray, I., Ray, I., Whitley, D.: On the Comparison of Microdata Disclosure
Control Algorithms. In: 12th International Conference on Extending Database
Technology. (2009) 240–251

11. Meyerson, A., Williams, R.: On the Complexity of Optimal k-Anonymity. In:
Proceedings of the 23rd ACM Symposium on the Principles of Database Systems.
(2004) 223–228

12. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient Full-Domain k-
Anonymity. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data. (2005) 49–60

13. Fung, B.C.M., Wang, K., Yu, P.S.: Top-Down Specialization for Information and
Privacy Preservation. In: Proceedings of the 21st International Conference in Data
Engineering. (2005) 205–216

14. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian Multidimensional K-
Anonymity. In: Proceedings of the 22nd International Conference in Data Engi-
neering. (2006) 25

15. Dewri, R., Ray, I., Ray, I., Whitley, D.: On the Optimal Selection of k in the
k-Anonymity Problem. In: Proceedings of the 24th International Conference on
Data Engineering. (2008) 1364–1366

16. Huang, Z., Du, W.: OptRR: Optimizing Randomized Response Schemes for
Privacy-Preserving Data Mining. In: Proceedings of the 24th International Con-
ference on Data Engineering. (2008) 705–714

17. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. In: Evolutionary Methods for Design, Optimization and
Control with Applications to Industrial Problems. (2002) 95–100

