
HAL Id: hal-01056085
https://inria.hal.science/hal-01056085

Submitted on 14 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Proxy Smart Card Systems
Giuseppe Cattaneo, Pompeo Faruolo, Vincenzo Palazzo, Ivan Visconti

To cite this version:
Giuseppe Cattaneo, Pompeo Faruolo, Vincenzo Palazzo, Ivan Visconti. Proxy Smart Card Systems.
4th IFIP WG 11.2 International Workshop on Information Security Theory and Practices: Security
and Privacy of Pervasive Systems and Smart Devices (WISTP), Apr 2010, Passau, Germany. pp.213-
220, �10.1007/978-3-642-12368-9_15�. �hal-01056085�

https://inria.hal.science/hal-01056085
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Proxy Smart Card Systems⋆

Giuseppe Cattaneo1, Pompeo Faruolo1, Vincenzo Palazzo2, and Ivan Visconti1

1 Università di Salerno, ITALY {cattaneo,pomfar,visconti}@dia.unisa.it
2 Bit4ID s.r.l, via Coroglio, 57 BIC Città della Scienza - 80124 Napoli

vpa@bit4id.com

Abstract. The established legal value of digital signatures and the grow-
ing availability of identity-based digital services are progressively ex-
tending the use of smart cards to all citizens, opening new challenging
scenarios. Among them, motivated by concrete applications, secure and
practical delegation of digital signatures is becoming more and more
critical. Unfortunately, secure delegation systems proposed so far (e.g.,
proxy signatures) include various drawbacks for any practical system.
In this work we put forth the notion of a “Proxy Smart Card System”, a
distributed system that allows a smart card owner to delegate part of its
computations (e.g., signatures of messages) to remote users. We stress
the problematic aspects concerning the use of known proxy-cryptography
schemes in synergy with current standard technologies. This in turn mo-
tivates the need of proxy smart card systems. Then we formalize the
security and functional requirements of a proxy smart card system, iden-
tifying the involved parties, the adversary model and the usability prop-
erties. Finally, we present the design and analysis of a proxy smart card
system which outperforms the current state of the art.

1 Introduction

Proxy cryptography is a widely developed research area that consists in pro-
viding cryptographic primitives that allow a user to safely delegate part of its
tasks (typically signatures of messages) to another user. Concrete applications
of proxy cryptography are becoming more and more critical. For instance digital
signatures are now regulated and accepted by law in almost all countries and
many entities playing crucial roles in both enterprises (e.g., CEOs) and public
institutions (e.g., mayors, rectors), have to sign a large amount of documents per
day. Moreover, it is often the case that documents have to be signed urgently,
even when the signer is out of his office and unreachable. The possibility of dele-
gating signing privileges should therefore be extended also to digital signatures.

Unfortunately we observe a huge gap between the results provided for proxy
cryptography and their use in the real world. Indeed, it is well known that
results produced by cryptographers need several years to be assessed and then

⋆ This work has been supported in part by the joint project “SmartSEC”, with Bit4ID
S.r.l., financed by Italian Ministry of Economic Development in the framework
P.O.N. 2000-2006 - Misura 2.1.



2 Cattaneo et al.

used by practitioners. Moreover cryptography in stand-alone is not usable, it
needs to be integrated in a system with security and privacy mechanisms that
can make robust all the involved components. Proxy cryptography is affected
by such delays, and indeed, while the literature already gives several provably-
secure schemes enjoying many features and reasonable efficiency, almost nothing
of it is actually used in the real world. This is in large part a consequence of
the long distance between the requirements of proxy cryptography (e.g., system
parameters, cryptographic operations) and the currently used technologies (e.g.,
PKIX [1], Smart Cards). It is therefore urgent to provide mechanisms that allow
delegation of signatures using current standard technologies only.

Our contribution. In this work we study the problematic aspects of using proxy
cryptography along with current standard technologies to implement delegation
of signatures. Therefore, motivated by the world-wide spread of smart cards
(SCs, for short), and their cryptographic operations (e.g., signatures) for im-
plementing various cryptographic services, we put forth the notion of a Proxy

Smart Card System (PSCS, for short). We investigate concrete real-world scenar-
ios and according to them we formalize the security and functional requirements
of a PSCS, identifying the involved parties, the adversary model and the critical
usability properties. We finally present the design and analysis of a proxy smart
card system based on the use of a network security appliance that outperforms
the current state of the art. The development of our system required the com-
bined use of several techniques and technologies in a novel way, which in some
case could be also of independent interest.

Our solution is a “ready-to-use” framework that can be easily plugged in
real-life scenarios. It does not resort to currently unadopted features of proxy
cryptography and instead uses the synergy of existing crypto tools and security
technologies to obtain a robust, easy to configure, scalable and cheap system to
delegate, under some access control policies, signature privileges.

2 Proxy Signatures

The concept of proxy signature was introduced respectively by Mambo et al. [2]
and by Mambo and Okamoto [3]. In such schemes a player called owner O dele-
gates to another player, called user U, the power to execute his own cryptographic
tasks. In a proxy signature system, U can sign messages on O’s behalf. In general,
in such systems, O generates some proxy secret keys which Us can use to sign
documents verifiable through O’s public key.

Originally, these building blocks were considered to be used in large enter-
prise scenarios, where a manager would like to delegate signature capabilities.
Subsequently, the use of such schemes has been suggested in numerous other
contexts.

Security requirements. According to the relevant literature [2, 4], and the re-
quirements of real-world applications, a proxy signature schemes should enjoy
the following (informal) properties.



Proxy Smart Card Systems 3

Proxy signature. Verifiability: a verifier always accepts a proxy signature
computed by a delegated honest user U; Strong unforgeability: it must be com-
putationally hard for a player that is not a delegated honest U to compute a new
proxy signature that is accepted by a verifier; Strong identifiability: from a proxy
signature computed by a delegated user U, it must be possible to determine effi-
ciently the identity of U; Strong undeniability: it must be computationally hard
for a player that computed a proxy signature, to subsequently repudiate it.

The above properties have been formally defined along with several variations
and extensions in the related literature. Here, for lack of space and the sake of
focusing the paper on the core of our contribution, we will consider the above
informal security requirements only.

Functional requirements. We notice that currently no proxy-cryptography scheme
seems to be concretely used in practice. Our investigations about the available
schemes, the above security requirements and the available cryptographic tools,
raised the following issues. 1) Proxy-cryptography schemes often use number-
theoretic constructions and procedures that heavily deviate from the currently
available standard technology. Their introduction in real-life scenarios would re-
quire too much effort for users to move to new/different systems. 2) Several
schemes do not combine gracefully security and flexibility, indeed most of the
proposed systems enjoy some given properties and can not be easily adapted to
relax some of them. 3) Several schemes suffer of practical limitations.

The work done so far on proxy cryptography mainly focused on the design
of powerful cryptographic primitives, but unfortunately it substantially ignored
the concrete functional requirements of a practical and easy to use system. In
order to be more concrete about such requirements, we studied different contexts
where proxy signatures are needed and we collected the functional requirements

(beyond the usual security requirements) that we believe any practical proxy
signature system should enjoy. We summarize those requirements in the follow-
ing categories. Compatibility: schemes should use standard technologies only in
order to be compatible with current software applications; Flexibility: schemes
should allow users to configure and select the appropriate features dynamically.
Efficiency: schemes should be reliable and satisfy some critical performance re-
quirements.

Motivated by the above requirements, and the problematic use of proxy cryp-
tography for satisfying them, we investigated the possibility of designing a system
where all those security and functional requirements could be satisfied simulta-
neously. In the next section we show the design of our system that thus gives
a positive answer to the challenging question of having a viable technology for
digital signature delegation.

3 Design of a Proxy Smart Card System

Following the security and functional requirements identified in the previous
section, we designed a PSCS, that is, a proxy smart cards system that can be



4 Cattaneo et al.

used to safely delegate signing capabilities of a personal smart card. In our
system Os can allow authorized Us to remotely access to their SCs in order to
sign messages using their private keys. Notice that smart cards are nowadays
a standard technology deployed to all citizens by means of electronic ID cards.
Moreover, the use of smart cards guarantees a high level of robustness of the
system, thanks to the hardness of extracting private keys (i.e., the device is
ideally considered tamper proof). Here we consider SCs as standard PKCS#11 [5]
compliant smart cards, where the critical operations are protected by PIN (i.e.,
personal identification number).

A central role in our PSCS is the Proxy Server P, a hardware/software net-
work security appliance equipped with smart card readers. The purpose of P

is to allow Us to use the signing capabilities of SC without compromising any
critical information (e.g., private keys, PIN). O shares his SCs by plugging them
into readers connected to P, while Us remotely interacts with P to use them
according to the role-based access control (in short, RBAC [6]) configured by
O. These interactions are implemented by PSCS through a Remote PKCS#11,
that is, a library that exposes to Us standard PKCS#11 functionalities while the
computations are carried out on SCs plugged in P. Using this approach, Us can
continue to use their standard applications also on O’s SCs to compute proxy
signatures.

Making SCs remotely available introduces the problem of filtering remote
access to the SCs. This requires the assumption that P is a tamper proof/evident
network security appliance designed to provide the same services of a local smart
card reader through the net.

Remote smart card. The smart cards that P makes available to Us do not nec-
essarily correspond to the smart cards plugged in card readers. Indeed, in our
system Os have the possibility to configure SCs in different operating modes giv-
ing to Us a virtual view of the SCs available. In detail, Os can define the Remote

Smart Card (RSC) as Single (SRSC) or Parallel (PRSC). In the former case, a
RSC corresponds exactly to a real SC while in the latter case several SCs, offering
the same objects, will appear to Us as a single RSC. A request on a PRSC can be
executed indifferently by any SC linked to it. Notice that an O can have several
certificates (and thus several public keys) associated to his identity, therefore
PRSC is achievable by using a smart card for each certificate, so that each smart
card stores a different private key. Indeed, a critical feature concerning the use of
smart cards is that the private key should never leave the smart card (and thus
cloning procedures should not be performed). Another important requirement is
that the associated PIN should never be memorized in permanent storage, and
we will deal with this later when we will discuss our PIN management system.

From the above discussion, we have that SCs with different keys can still be
used for signatures delegation. The above mechanism makes signature delegation
more efficient, indeed, a PRSC allows one to parallelize the load of requests across
its SCs.



Proxy Smart Card Systems 5

Set up of the system. All Us and Os must enroll the system by registering their
public keys. O plugs his SCs into the smart card readers connected to P. Through
a remote administration web interface O sets the configuration of his RSCs and
defines the related access policies for the delegated Us. An authorized U for a
given RSC, receives a special PIN that does not correspond to the real SC’s PIN,
but instead is a virtual PIN that allows him to access that RSC. We discuss in
the next section the problematic issues concerning PIN management, and the
technical motivation of our non-trivial solution. Os can revoke the delegated
capabilities to each U in any moment by simply updating the access control
policies. Such updates have immediate effects, indeed a revoked U will not be
able to invoke any further service on P. The past signatures will remain valid.
The system allows Os to authorize the delegation only for a given time interval
and/or on specific documents. Moreover, O can decide if the proxy signatures
will be with or without warranty (in the former case, the signature will contain
also a warning about performed delegation).

Proxy signatures. First of all we remark that U can use his standard applications,
that are PKCS#11 compatible, to sign documents through the O’s SCs. These
applications must only set the client side of Remote PKCS#11 as PKCS#11
layer. This module has the task of interacting with P in order to accomplish
remotely the operation invoked by the application. Obviously, this task is done
transparently to the application. Its first step is to access to P by means of a
strong authorization mechanism (i.e., TLS [7] client authentication through dig-
ital certificates). Once the secure channel has been established, according to U

privileges, it enumerates to the application all the RSCs available as PKCS#11
slots. When an RSC has been selected by U to sign documents, the client com-
ponent of Remote PKCS#11 will sign the request with U’s private key and will
send it to the server component of the library. This signature is required in or-
der to log on P the request, that thus can not be repudiated by U. If the PIN
is correct and U has the required privileges, the operation is executed by the
selected SC and the result is sent back to local component of Remote PKCS#11

that will forward it to the application. More specifically, the system will dispatch
the requests on a PRSC to the first available SC linked to that PRSC through
a Round Robin scheme that therefore will balance the load of requests. Since
the sign functions are slow and long term operations, this mechanism radically
improves system performance linearly scaling with the number of SCs configured
for the PRSC. The system allows obviously Os access (even remotely) to all the
logs, in order to let them monitor completely the activity of their delegates.

Security model. Given the critical use of smart cards in real world scenarios, a
security model is required in order to show that a proposal is resilient to attacks
mounted by malicious players. First of all, we follow the standard approach
that assumes that an adversary has complete control over the communication
channel. This includes the capability of reading and updating all messages that
cross the network, of delaying the delivering of messages, and so on.



6 Cattaneo et al.

We assume that P is a trusted player, this means that when it is active it
follows the prescribed procedures and his behavior can not be compromised.
This assumption is both 1) necessary, and 2) achievable in practice. Indeed,
in case P is under the control of an adversary, since SCs are plugged into its
readers, and remotely accessed through its software, the adversary would obtain
the PINs of the SCs and thus could also ask them non-authorized services (e.g.,
signatures). Notice that while it is known how to design protocols that are secure
even in presence of such adversaries, the known solutions require that honest
players (in this case SCs and honest Us) perform computations that go much
beyond the simple PKCS#11 interface that is currently available for accessing to
standard smart cards. The need of obtaining a proxy system on top of standard
technologies, therefore requires that P behaves honestly. Honest behavior can
moreover be enforced by using some run-time integrity check techniques, as
proposed in [8, 9], and by integrating the support of smart cards directly in the
kernel of the operating system, as proposed in [10].

The above assumption about P is also achievable in practice since the hard-
ware infrastructure of P can be placed into a restricted access area (basically
implementing a tamper evident mechanism) and moreover his software could
be placed in EEROM (i.e., Electrically Erasable Read-Only Memory). Therefore
the software is rewritable only when a special password is known. There must be
instead a read-write (RW, for short) memory that will contain for instance log
files and the RBAC policy files. We do not assume special requirements about
such an RW memory, indeed its content remain valid and used by P as long
as there is a valid message authentication code (MAC, for short) associated to
them. Indeed, this memory could be adversarially corrupted and we require that
the adversary must not be able to produce new valid data. Moreover, erasing
such data or trying to restore previous data will have no (substantial) effect since
P is assumed to periodically send through S/MIME [11] encrypted and signed
backups of such data to the addresses associated to Os.

We assume that qualified Us are honest while other Us can be corrupted. The
distinction between such two categories depends on the RBAC policies configured
for each smart card. Us that can access to services provided by some SCs are
assumed to be honest for those SCs and potentially dishonest for the remaining
services of those SCs and for the other SCs. Notice that since RBAC policies
are dynamic, the set of qualified users is dynamic as well, and thus a user can
be considered honest only temporarily (therefore one can not simply assume
that the owner of a SC gives the PIN to qualified Us). All honestly produced
SCs are assumed to be incorruptible, instead an adversary can produce some
non-legitimate SCs that can be plugged into the readers of P and Us.

Pin management. A major requirement for the design of a proxy smart-card
system is the transparent use of remote smart cards as they were local. Indeed,
clients would like to recycle their applications that access to local smart in order
to also access to the remote smart cards connected to the proxy smart-card
system. Notice that access to a smart card is possible through a log on procedure
where a personal identification number (PIN) has to be provided by the user and



Proxy Smart Card Systems 7

sent to the smart card. The need of recycling standard applications implies that
one can not simply assume that qualified users are identified by the system
through passwords. This restriction is enforced could be enforced by laws that
mandatory require the use of PINs for accessing smart cards. Moreover, after a
prescribed number of PIN log on failures a Personal Unblocking Key (PUK) is
needed to restore access to the smart card.

The above problem could in general be solved by the following trivial solution:
the PIN of the smart card is communicated to all users that have sufficient
privileges to access the smart card. This solution however does not satisfy the
flexibility requirement of a proxy smart-card system since user privileges are in
general dynamic and thus removing a user from the system would require the
generation of new PINs that then should be distributed to all qualified users.
This is clearly unacceptable in systems with many users and dynamic assignment
of privileges. We have therefore developed a more sophisticated system.

The failure of the trivial solution discussed above implies that the PIN on
the client’s side must be different from the real PIN that allows one to succeed
in the log on procedure with the smart card. It is therefore fundamental to
establish a virtual PIN system where users know some virtual PINs that can be
translated into real PINs by the proxy smart-card system. In this direction one
can consider the following simple but conceptually wrong solution. The RBAC
policy is encoded through a table where each U has associated a mapping between
virtual PIN and real PIN. Therefore, upon receiving a remote log on request with
a given virtual PIN, P simply accesses the table and translates the virtual PIN
to a real PIN to be used for the log on procedure with the smart card. This
procedure would match the flexibility requirement of the system. However, it
still includes a security drawback that we want to exclude from our architecture.
Indeed, the above table should be stored somewhere in the permanent memory
of P and would include the real PIN. Storing a real PIN on a permanent memory
is conceptually wrong and in contrast with the common philosophy about the
correct use of smart cards. Taking into account these issues, our solution is more
sophisticated and requires the use of the virtual PIN as a key for the symmetric
encryption of the real PIN. Therefore, when a new virtual PIN is generated and
associated to a real PIN, P will be updated by adding a new entry in an access
control table and it will contain an encryption of the real PIN computed by
means of the virtual PIN as key. When U accesses remotely to a SC, he has to
send the virtual PIN that then will be used by P to decrypt the corresponding
entry in the RBAC table and to perform the log on procedure on the SC. Notice
that using this approach we can still have flexibility and at the same time no
key or PIN is stored unencrypted in the permanent memory of P.

Implementation details. In this section we illustrate the main implementation
details of our PSCS. First of all we implemented our PSCS using a Client/Server
schema, between the PKCS#11 local component (on client side) and the PKCS#11
engine (on server side). The first one exposes a standard PKCS#11 interface to
U’s local application, but when the applications invoke its functions, the module
remotely calls the corresponding engine function on P. Invocations are encap-



8 Cattaneo et al.

sulated in a proprietary format and sent using the HTTP protocol through a
secure channel (HTTPS) with mutual authentication based on the exchange of
X.509 certificates [1]. The server engine forwards the requests to the plugged
SCs and returns to the client the results. In the standard PKCS#11 interface
some functions must be coded by the library and some others must be executed
natively by SC. Some computations (e.g., AES symmetric encryptions, crypto-
graphic hashing), are executed locally by the client module while others (e.g.,
signatures) by SC on P through the engine component. We stress that this mech-
anism is transparent to Us and requires only the availability of U’s authentication
capabilities in the standard PKIX [1] setting.

4 Conclusion

We have conducted several performance measurements with different use cases.
In all of them, our system resulted sufficiently practical, flexible, efficient and
secure as no other currently available proposal in the literature. Our system is
also easy to set up and we expect that our work will also give a chance for further
extensions and improvements, thus generating follow up research on this topic.
Further details about the implementation and the security of our system will be
shown in the full version of this paper.

References

1. Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key Infrastructure
Certificate and CRL Profile (1999)

2. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing op-
eration. In: ACM Conference on Computer and Communications Security. (1996)
48–57

3. Mambo, M., Okamoto, E.: Proxy cryptosystem: delegation of the power to decrypt
ciphertexts. In: IEICE Trans. Fundamentals E80-A(1). (1997) 54–63

4. Lee, B., Kim, H., Kim, K.: Strong proxy signature and its applications. In: SCIS.
(2001) 603–608

5. RSA Laboratories: PKCS #11: Cryptographic Token Interface Standard.
http://www.rsa.com/rsalabs/node.asp?id=2133

6. Ferraiolo, D.F., Kuhn, D.R.: Role based access control. In: 15th National Computer
Security Conference. (1992) 554–563

7. Network Working Group : The Transport Layer Security (TLS) Protocol Version
1.2. http://tools.ietf.org/html/rfc5246 (2008)

8. Catuogno, L., Visconti, I.: A Format-Independent Architecture for Run-Time In-
tegrity Checking of Executable Code. In: SCN 2002, (2003): Vol. 2576 of Lecture
Notes in Comuter Science, 219-233, Springer.

9. Catuogno, L., Visconti, I.: An Architecture for Kernel-Level Verification of Exe-
cutables at Run Time. In: Comput. J. 47(5): 511-526 (2004).

10. Catuogno, L., Gassirà, R., Masullo, M., Visconti, I.: Securing Operating System
Services Based on Smart Cards. In: TrustBus 2005, (2005): Vol. 3592 of Lecture
Notes in Comuter Science, 321–330, Springer.

11. Network Working Group : S/MIME Version 3 Message Specification.
http://tools.ietf.org/html/rfc2633 (1999)


