
HAL Id: hal-01056034
https://inria.hal.science/hal-01056034

Submitted on 14 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Challenges for Mobile Middleware Platform: Issues for
Embedded Open Source Software Integration

Toshihiko Yamakami

To cite this version:
Toshihiko Yamakami. Challenges for Mobile Middleware Platform: Issues for Embedded Open Source
Software Integration. 6th International IFIP WG 2.13 Conference on Open Source Systems,(OSS),
May 2010, Notre Dame, United States. pp.401-406, �10.1007/978-3-642-13244-5_38�. �hal-01056034�

https://inria.hal.science/hal-01056034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Challenges for Mobile Middleware Platform:
Issues for Embedded Open Source Software Integration

Toshihiko Yamakami

ACCESS
Toshihiko.Yamakami@access-company.com

Abstract. Linux is penetrating into mobile software as the basis for the mobile
middleware platform. It accelerates the increasing visibility of open source soft-
ware (OSS) components in the mobile middleware platform. Despite multiple
challenges in mobile embedded software engineering, it is crucial to promote
open source-aware development of the mobile software platform. Theauthor
presents the challenges to open source software integration in embeddedsoft-
ware development. The author discusses the open source-aware software devel-
opment and identifies a path to transition for moving toward it.

1 Introduction

Linux has penetrated into a wide range of digital appliances, e.g. mobile hand-
sets, digital TVs, game consoles and HD recorders. It facilitates the reuse of
PC-based rich user experience data service software with high speed network
capabilities in an embedded software environment. As Linux-based software is
widely adopted in digital appliances, the original weak points of Linux in an em-
bedded environment have been addressed e.g. real time processing and battery
life capabilities. The author presents these challenges, and suggests a path to-
wards a more open source-aware development model. Then, the author describes
how open source-aware development can be deployed from the perspectives of
organization and design.

2 Purpose and Related Work

The purpose of this research is to identify a path toward open source-aware
software development evolution and its implications for software development
management.
OSS has been increasing its visibility in embedded softawre [5] [3] [1]. There
are several examples of emerging foundation engineering utilizing OSS inthe
mobile platform software [4] [6] [2]. This has caught industry attention world-
wide.
The originality of this paper lies in its discussion of impacts from OSS-based
foundation collaboration in the mobile industry.



2 Toshihiko Yamakami

3 Open Source-related Landscape

3.1 Driving Forces for Embedded Open Source and Issues

There are multiple factors that drive embedded software engineering:
– Market pressure to shorten time to market,
– Market pressure to reduce software development and maintenancecost, and
– Device convergence.
As the many more devices become network-enabled, the size of networkand ap-
plication software grows, which impacts the cost structure of digital appliances.
Managing the costs of maintaining this large-scale code base is a critical concern
for embedded software development.
Nowadays, advanced mobile handsets consist of (a) Linux kernel, (b) middle-
ware platform, and (c) application code. Each is 5–10 million lines of code.
This is causing a transition from constraint-based specialized software develop-
ment to OSS-based large-scale heterogeneous software development.
The amount of OSS code is increasing dramatically. Almost 10 million lines of
code are used for just the middleware of advanced mobile handsets, excluding
the kernel itself and higher level applications. The ratio of OSS code in relation
to them is increasing. It is estimated that 80–95 % of the Linux-based mobile
middleware platform is originated from OSS. The ratio is expected to increase
in the future.
However, there are several constraints in the mobile middleware platformfrom
(a) embedded software, (b) mobile-specific service development, and(c) OSS-
based software management.
The combination of these issues provides a significant challenge for today’s em-
bedded software development.

3.2 Issues from Embedded Software Engineering

Mobile handsets require the inclusion of special hardware managementfor tele-
phony, which is device-specific.

– Customization for hardware integration: Embedded software dependson
some hardware components. These components need hardware-dependent
coding.

– Stability for embedded integration: Generally, open source software is based
on bazaar-style development. Embedded software has inheritent constraints
on software updates after factory shipment. Since the software is written into
ROM (read-only memory), it cannot be amended. Embedded software devel-
opment needs to address this challenge.

– Real-time processing requirements: Mobile phone requires real-time process-
ing of incoming calls. OSS generally does not set performance as the top
priority. Device development needs to address device-specific performance
requirements.

– Battery life duration requirement: Mobile phone and other battery-driven de-
vices require special consideration to the duration for battery life.



Challenges for Mobile Middleware Platform 3

3.3 Issues from Mobile-specific Service Development

Mobile data services are hot issues in mobile business development. This leads
to multiple issues that need in mobile middleware platform development.

– Wireless carrier customization: For differentiation, wireless carriers would
like to deploy carrier-specific services. Embedded software development
needs to address this carrier-specific customization.

– Synchronization for handset launch schedule with OSS roadmaps: Mobile
handsets have some seasonal cycle for shipment depending on eachcountry
for marketing which is irrelevant to OSS roadmaps.

3.4 Issues from OSS Management

There are issues surrounding OSS management in general.
– Design and Customization

– Coordination among multiple OSS components: Each OSS component has
a different release cycle, major version updates and roadmap. In order to
facilitate product commercialization, coordination and version selection
are crucial.

– Coordination among multiple dependencies among OSS component sets:
When a large number of OSS components are used, different OSS compo-
nents have different dependencies on some common OSS components.

– Miscellaneous Non-coding Tasks requiring Resources
– Evaluation to choose components and versions: There are an emerging

number of OSS components with different version releases. Commercial-
ization takes care of evaluation and version selection.

– Synchronization for software development with upstream OSS project
roadmaps: When there is visibility of an upcoming a major version up of
major OSS component, commercialization needs to synchronize a future
development plans and future major version updates.

– Community Coordination and Management
– Granting back to the OSS community: As a good citizen of the OSS com-

munity, general patches and modifications need to be granted back to the
original OSS community.

– Constraint to disclose handset commercialization schedule: During inter-
actions with the OSS community, there are some non-disclosable trade
secrets.

– Legal issues
– GPL contamination: GPL code needs to be carefully managed in order not

to disclose any proprietary software in wrong use of GPL code.
– Export compliance: Some of encryption modules need to be managed in

compliance to appropriate import/export compliance procedures.
– Patent protection: As well as any proprietary software, OSS modules also

need to address patent protection.



4 Toshihiko Yamakami

4 An Open source-aware Software Development

The management of these issues is leading to a new software design and mainte-
nance paradigm. Open source-oriented embedded software engineering requires
the following special expertise and coordination:
– Interface design between OSS, customized, and proprietary components
– Professional service for code and packaging management, and evaluation
A three-stage model of software development transition towards open source-
aware development is depicted in Fig. 1. Most of the proprietary software de-
velopment depends on the assumption of in-house development. This influences
the organization, design process, and source control schemes. Considering the
fact that the major part of the software development is shifting towards an open
source-based one, at least for the middleware level, it is crucial to manage the
transition. The transition starts with proprietary development. In the proprietary
development, the entire code base is owned by the company. It does notrequire
per-module code and license management.
During OSS penetration, some of the modules may be replaced by OSS codes.
However, this is a replacement-oriented process, not one that wholly replaces
the development process.
When OSS penetration reaches a certain point, the whole development process
needs to be revisited. Code and license management is done on a per-module
basis. The OSS professional service needs to be deployed in the development
process.

Proprietary

Development
✲

Partial
Open Source

Development

✲ Open Source-aware

Development

Fig. 1. A three-stage model of software development transition towards open source-aware de-
velopment.

The software development team organization with open source awareness is il-
lustrated in Fig. 2.

Proprietary

Development Team

Open Source

Customization Team

Open Source

Service Team

Fig. 2. Open source-aware development organization.

The software design process with open source awareness is depicted inFig. 3.
It is difficult to isolate customized OSS components from proprietary compo-
nents post-process. Therefore, a clear separation of design is necessary during
the software design process.
Multipel OSS components and their customization need to be integrated with
awareness of code control, version control and license control. Whenthere are
conflicting OSS dependencies, it requires minor adjustments, e.g. back-porting
et al. Also, the total code base including proprietary and OSS componentsneeds



Challenges for Mobile Middleware Platform 5

to be integrated with awareness of code control, version control and license con-
trol.

Open Source

Territorial
Design

✲
Customization

Design
✲ Open source-aware

Integration

Fig. 3.Open source centric design principle.

5 Transition Management

Software vendors are aware of the importance of OSS. However, the challenges
posted by less visibility and higher diversity of projects and codes make it dif-
ficult for software vendors to make a best-fit blending of multiple OSS compo-
nents.
Embedded software needs to cope with the time-dimensional issues of software
management. There is a lot of hardware-dependent code in the embedded soft-
ware. This makes the transition from one software framework to anotherone
difficult.
Also, this hardware-dependency puts an unavoidable portion of OSS compo-
nents in need of case-by-case customization. Transition management needs to
address this type of customization in the case of embedded software engineer-
ing.
In addition to the requirements to address multiple license terms in different OSS
components, each customization needs to be carefully separated from other code
to ensure the proper license management and grant back to the upstream OSS
versions.
This puts the fundamental heterogeneity into embedded software engineering.
Transition management needs to give considerations to organization, process,
architecture, and source code management ahead of any transition management.

6 Conclusion

Since the major portion of the large-scale software platform consists of OSS
components, the software development process needs to revisit this reality in the
long run. The mobile industry is one of the areas where this transition is becom-
ing increasingly visible. The author describes the challenges for large-scale soft-
ware project with a large number of software components. The author proposes
an open source-aware software development process. This will bringthe pro-
cedural and organizational impacts on embedded software development. In the
past, embedded software development focused on code-size-aware hardware-
specific coding. There is ongoing radical transition of software development to-
wards tens of millions of lines of code in an embedded environment.



6 Toshihiko Yamakami

Increasing involvement of OSS components leads to open source-aware devel-
opment. In-depth analysis reveals the new heterogeneity caused by multiple dif-
ferent OSS components in an integrated embedded software context. This het-
erogeneity needs to be addressed through the advanced design of the entire soft-
ware development process and its transitions.

References

1. Barr, M., Massa, A.: Programming Embedded Systems: With C and GNU
Development Tools (2nd Ed.). O’Reilly Media, Inc. (2006)

2. Google: Android - an open handset alliance project.
http://code.google.com/android/ (2007)

3. Hollabaugh, C.: Embedded Linux: Hardware, Software, and Interfacing.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2002)

4. LiMo Foundation: LiMo Foundation Home page.
http://www.limofoundation.org/ (2007)

5. Massa, A.J.: Embedded software development with eCos. PrenticeHall
(2002)

6. Symbian Foundation: Symbian foundation web page. available at:
http://www.symbianfoundation.org/ (2008)


