N

N

Challenges for Mobile Middleware Platform: Issues for
Embedded Open Source Software Integration
Toshihiko Yamakami

» To cite this version:

Toshihiko Yamakami. Challenges for Mobile Middleware Platform: Issues for Embedded Open Source
Software Integration. 6th International IFIP WG 2.13 Conference on Open Source Systems,(OSS),
May 2010, Notre Dame, United States. pp.401-406, 10.1007/978-3-642-13244-5_ 38 . hal-01056034

HAL Id: hal-01056034
https://inria.hal.science/hal-01056034

Submitted on 14 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01056034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Challenges for Mobile Middleware Platform:
Issues for Embedded Open Source Software Integration

Toshihiko Yamakami

ACCESS
Toshi hi ko. Yanmakanm @ccess- conpany. com

Abstract. Linux is penetrating into mobile software as the basis for the mobile
middleware platform. It accelerates the increasing visibility of open sosoit-
ware (OSS) components in the mobile middleware platform. Despite multiple
challenges in mobile embedded software engineering, it is crucial togteom
open source-aware development of the mobile software platform atitier
presents the challenges to open source software integration in embsaftled
ware development. The author discusses the open source-awarareafevel-
opment and identifies a path to transition for moving toward it.

1 Introduction

Linux has penetrated into a wide range of digital appliances, e.g. mobitk ha
sets, digital TVs, game consoles and HD recorders. It facilitates thee reu
PC-based rich user experience data service software with high speeatke
capabilities in an embedded software environment. As Linux-basedaefie
widely adopted in digital appliances, the original weak points of Linux in an em
bedded environment have been addressed e.g. real time prgcasdibattery
life capabilities. The author presents these challenges, and suggeststa-pa
wards a more open source-aware development model. Then, tloe dedtribes
how open source-aware development can be deployed from theepéves of
organization and design.

2 Purpose and Related Work

The purpose of this research is to identify a path toward open souraeaw
software development evolution and its implications for software devedopm
management.

OSS has been increasing its visibility in embedded softawre [5] [3] [1&r&h
are several examples of emerging foundation engineering utilizing O8&in
mobile platform software [4] [6] [2]. This has caught industry attenticorld-
wide.

The originality of this paper lies in its discussion of impacts from OSS-based
foundation collaboration in the mobile industry.

2

Toshihiko Yamakami

3 Open Source-related Landscape

3.1 Driving Forces for Embedded Open Source and Issues

There are multiple factors that drive embedded software engineering:

— Market pressure to shorten time to market,

— Market pressure to reduce software development and maintecestcand

— Device convergence.

As the many more devices become network-enabled, the size of neawdidp-
plication software grows, which impacts the cost structure of digital apg@®n
Managing the costs of maintaining this large-scale code base is a criticaroon
for embedded software development.

Nowadays, advanced mobile handsets consist of (a) Linux kernahigulle-
ware platform, and (c) application code. Each is 5-10 million lines of code.
This is causing a transition from constraint-based specialized softweetoge
ment to OSS-based large-scale heterogeneous software development.

The amount of OSS code is increasing dramatically. Almost 10 million lines of
code are used for just the middleware of advanced mobile handseisiagc
the kernel itself and higher level applications. The ratio of OSS code iticela

to them is increasing. It is estimated that 80—95 % of the Linux-based mobile
middleware platform is originated from OSS. The ratio is expected to inereas
in the future.

However, there are several constraints in the mobile middleware platform

(a) embedded software, (b) mobile-specific service developmen{ca@SSs-
based software management.

The combination of these issues provides a significant challenge forseaa-
bedded software development.

3.2 Issues from Embedded Software Engineering

Mobile handsets require the inclusion of special hardware managdoneele-

phony, which is device-specific.

— Customization for hardware integration: Embedded software depamds
some hardware components. These components need hardyaraidst
coding.

— Stability for embedded integration: Generally, open source softwasedb
on bazaar-style development. Embedded software has inheritertatotss
on software updates after factory shipment. Since the software is written in
ROM (read-only memory), it cannot be amended. Embedded sa&ttevel-
opment needs to address this challenge.

— Real-time processing requirements: Mobile phone requires real-tooe$s-
ing of incoming calls. OSS generally does not set performance as the top
priority. Device development needs to address device-specific pefare
requirements.

— Battery life duration requirement: Mobile phone and other battery-alickee
vices require special consideration to the duration for battery life.

Challenges for Mobile Middleware Platform
3.3 Issues from Mobile-specific Service Development

Mobile data services are hot issues in mobile business development. ddiés le
to multiple issues that need in mobile middleware platform development.

— Wireless carrier customization: For differentiation, wireless carrierslav
like to deploy carrier-specific services. Embedded software develupme
needs to address this carrier-specific customization.

— Synchronization for handset launch schedule with OSS roadmapsieMob
handsets have some seasonal cycle for shipment depending oocoemtty
for marketing which is irrelevant to OSS roadmaps.

3.4 Issues from OSS Management

There are issues surrounding OSS management in general.

Design and Customization

— Coordination among multiple OSS components: Each OSS component has
a different release cycle, major version updates and roadmapdém tor
facilitate product commercialization, coordination and version selection
are crucial.

— Coordination among multiple dependencies among OSS component sets:
When a large number of OSS components are used, different O§®eom
nents have different dependencies on some common OSS components

— Miscellaneous Non-coding Tasks requiring Resources
— Evaluation to choose components and versions: There are an emerging

number of OSS components with different version releases. Corraherc
ization takes care of evaluation and version selection.

— Synchronization for software development with upstream OSS project
roadmaps: When there is visibility of an upcoming a major version up of
major OSS component, commercialization needs to synchronize a future
development plans and future major version updates.

— Community Coordination and Management
— Granting back to the OSS community: As a good citizen of the OSS com-

munity, general patches and modifications need to be granted back to the
original OSS community.

— Constraint to disclose handset commercialization schedule: During inter
actions with the OSS community, there are some non-disclosable trade
secrets.

— Legal issues
— GPL contamination: GPL code needs to be carefully managed in orter no

to disclose any proprietary software in wrong use of GPL code.

— Export compliance: Some of encryption modules need to be managed in
compliance to appropriate import/export compliance procedures.

— Patent protection: As well as any proprietary software, OSS modigies a
need to address patent protection.

3

4 Toshihiko Yamakami
4 An Open source-aware Software Development

The management of these issues is leading to a new software designiatel ma
nance paradigm. Open source-oriented embedded software emygmeguires
the following special expertise and coordination:

— Interface design between OSS, customized, and proprietary contpone

— Professional service for code and packaging management, aluon

A three-stage model of software development transition towards apeces
aware development is depicted in Fig. 1. Most of the proprietary softaar
velopment depends on the assumption of in-house development. Theniods
the organization, design process, and source control schemesid€&amgy the
fact that the major part of the software development is shifting towardgpan
source-based one, at least for the middleware level, it is crucial tageatine
transition. The transition starts with proprietary development. In the pitapyie
development, the entire code base is owned by the company. It doesjnot
per-module code and license management.

During OSS penetration, some of the modules may be replaced by OSS code
However, this is a replacement-oriented process, not one that wholgces
the development process.

When OSS penetration reaches a certain point, the whole developmeasgro
needs to be revisited. Code and license management is done on a pge-mod
basis. The OSS professional service needs to be deployed in the deealop
process.

Partial
Open Source
Developmen

Proprietary
Development

Open Source-awaye
Development

Fig. 1. A three-stage model of software development transition towards apenesaware de-
velopment.

The software development team organization with open source avgaranié
lustrated in Fig. 2.

Proprietary
Development Teal

Open Source
Customization Team

Open Source
Service Team

Fig. 2. Open source-aware development organization.

The software design process with open source awareness is depi€tigd &

It is difficult to isolate customized OSS components from proprietary @esmp
nents post-process. Therefore, a clear separation of design ssaeceluring

the software design process.

Multipel OSS components and their customization need to be integrated with
awareness of code control, version control and license control. \tWieea are
conflicting OSS dependencies, it requires minor adjustments, e.g.poatikg

et al. Also, the total code base including proprietary and OSS compamegds

Challenges for Mobile Middleware Platform

to be integrated with awareness of code control, version control ancdéeem-
trol.

Open Source
Territorial
Design

Customization
Design

Open source-awake
Integration

Fig. 3. Open source centric design principle.

5 Transition Management

Software vendors are aware of the importance of OSS. Howeverh#ilernges
posted by less visibility and higher diversity of projects and codes make it d
ficult for software vendors to make a best-fit blending of multiple OSSpmm
nents.

Embedded software needs to cope with the time-dimensional issuesvefsof
management. There is a lot of hardware-dependent code in the eecbsoft-
ware. This makes the transition from one software framework to anotter
difficult.

Also, this hardware-dependency puts an unavoidable portion of O8Ba:z0
nents in need of case-by-case customization. Transition managenagist toe
address this type of customization in the case of embedded softwareengin
ing.

In addition to the requirements to address multiple license terms in diffe@&t O
components, each customization needs to be carefully separatedfrencade
to ensure the proper license management and grant back to the opQ&a
versions.

This puts the fundamental heterogeneity into embedded software engmneer
Transition management needs to give considerations to organizatmesst
architecture, and source code management ahead of any transitiagenaent.

6 Conclusion

Since the major portion of the large-scale software platform consists & OS
components, the software development process needs to revisitdtitisirethe
long run. The mobile industry is one of the areas where this transition isrbeco
ing increasingly visible. The author describes the challenges for laaje-soft-
ware project with a large number of software components. The autbpopes

an open source-aware software development process. This will tiwéngro-
cedural and organizational impacts on embedded software develbpméhe
past, embedded software development focused on code-size-hamware-
specific coding. There is ongoing radical transition of software dewsop to-
wards tens of millions of lines of code in an embedded environment.

6

Toshihiko Yamakami

Increasing involvement of OSS components leads to open source-desel-
opment. In-depth analysis reveals the new heterogeneity caused bylendiftip
ferent OSS components in an integrated embedded software contexhebh
erogeneity needs to be addressed through the advanced designrafrénsaft-
ware development process and its transitions.

References

1. Barr, M., Massa, A.: Programming Embedded Systems: With C axd G
Development Tools (2nd Ed.). O'Reilly Media, Inc. (2006)

2. Google: Android - an open handset alliance project.
http://code.google.com/android/ (2007)

3. Hollabaugh, C.: Embedded Linux: Hardware, Software, and faugy.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2002

4. LiMo Foundation: LiMo Foundation Home page.
http://www.limofoundation.org/ (2007)

5. Massa, A.J.: Embedded software development with eCos. Prétdite
(2002)

6. Symbian Foundation: Symbian foundation web page. available at:
http://www.symbianfoundation.org/ (2008)

