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Abstract. Bubble-sort, macro-star, and transposition graphs are interconnection 

networks with the advantages of star graphs in terms of improving the network 

cost of a hypercube. These graphs contain a star graph as their sub-graph, and 

have node symmetry, maximum fault tolerance, and recursive partition 

properties. This study proposes embedding methods for these graphs based on 

graph definitions, and shows that a bubble-sort graph Bn can be embedded in a 

transposition graph Tn with dilation 1 and expansion 1. In contrast, a macro-star 

graph MS(2, n) can be embedded in a transposition graph with dilation n, but 

with an average dilation of 2 or under. 

Keywords: Interconnection network, Embedding, Dilation 

1 Introduction 

Applications in engineering and scientific fields such as artificial intelligence, 

CAD/CAM (Computer-Aided Design and Computer-Aided Manufacturing), and fluid 

mechanics require hundreds of operations for data processing, which has led to 

increased interest in high-performance computers with a large number of processors. 

Consequently, interest in parallel processing, in which more than one processor 

simultaneously executes multiple tasks or a part of one program, has risen 

dramatically. However, it has proven challenging to design effective parallel 

algorithms. Parallel algorithms are usually designed for a particular parallel computer 

architecture, so to optimize algorithm design it is necessary to understand parallel 

computer architectures. There are a number of major architectures, and several 

methods exist for classifying them. One of the most well-known methods is Flynn’s 

taxonomy, which categorizes architectures into four groups based on the number of 

instruction and data streams available in the architecture. Of the four types, MIMD 
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(Multiple Instruction, Multiple Data streams) is the most common and it can 

simultaneously execute multiple instruction and data streams within one system.  

MIMD parallel computers can be classified into two types based on memory 

architecture: multi-processor systems with shared memory and multi-computer 

systems with distributed memory. In a multi-computer system, each process has its 

own memory and is connected to other processors via an interconnection network. In 

a multi-computer system, each process has its own memory and is connected to other 

processors via an interconnection network. Inter-processor communication is 

achieved by sending messages among computers through the network, and a data-

driven system is used for computations [1], [2]. The performance of the multi-

computer system depends on the performance of each processor as well as the 

structure of the interconnection network and the applied algorithms. The 

characteristics of the interconnection network greatly influence overall performance 

and scalability of a multi-computer system. The most well-known topologies of 

interconnection networks are the mesh, hypercube, and star graph. The commonly 

used parameters for evaluating the performance of interconnection networks are 

degree, diameter, symmetry, scalability, fault tolerance, and embedding.  

The embedding of interconnection networks is intended to analyze the 

interrelationship between graphs to observe whether a certain graph G is included in 

or interrelated with another graph H. The evaluation of embedding is significant: if 

graph G can be efficiently embedded in graph H with less cost, then the method 

developed in the interconnection network with graph G can be used in the 

interconnection network with graph H at less cost [3], [4]. In previous works [5], [6], 

we analyzed embedding methods for some star variations such as star, matrix-star, 

Rotator-Faber-Moore, and pancake graphs. In this paper we analyzed embedding 

methods for bubble-sort, macro-star, and transposition graphs, which are well-known 

as variations of the star graph. This work extended earlier work to develop a method 

for embedding between bubble-sort and transposition graphs [7]. 

2 Related Work 

An interconnection network can be represented as an undirected graph G = (V, E), 

with each processor presented as a node (vertex) v of G, and the communication 

channel between those processors presented as an edge (v, w). V(G) and E(G) 

represent the set of nodes and edges of graph G, respectively. That is, V(G) = {0, 1, 2, 

…, n–1} and E(G) consists of pairs of distinct nodes from V(G). There exists an edge 

(v, w) between two nodes v and w of G if and only if a communication channel 

between v and w exists [8]. If we classify the interconnection networks proposed up to 

now, we can divide them into the mesh variation with n×k nodes [9], the hypercube 

variation with 2n nodes [2], [3], [10], the star graph variation with n! nodes [8], and 

the odd graph variation with combination 2nCn nodes [4]. A variation of the star graph 

represents nodes using n distinct symbols, and the number of nodes is approximately 

n! nodes. Star [8], [11], bubble-sort [12], pancake [11], transposition [13], macro-star 

[14], rotator [15], and Faber-Moore [16] graphs have been proposed as variations of 

the star graph. The graphs have a smaller node degree and diameter than a hypercube 

with a similar number of nodes.  
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A macro-star graph MS [14] is an interconnection network that improves the 

network cost of a star graph by generalizing the star graph. The size and degree of MS 

are determined by parameters l and n. A macro-star graph MS(l, n) has (nl+1)! nodes, 

(n+l-1) degree, and (nl+1)! * (n+l-1) edges. The address of each node is represented 

as a permutation of k (=nl+1) distinct symbols. In other words, a node corresponds to 

a permutation. An edge exists between nodes u and v in MS(l, n) if and only if the 

permutation of node v can be obtained from that of node u by applying each of, as 

defined below, two edge generators Tj and Si where 2 ≤ j ≤ n+1 and 2 ≤ i ≤ l.  A macro-

star graph MS(l, n) can be defined as shown in Eq. (1), where k distinct symbols <K> 

= {1, 2, .., k}, and a permutation of <K>, U = u1:k = u1u2...ui...uk, ui ∈ <K>. 

 

V(MS(l,n))={U=u1:k│ui,uj ∈<K>, ui≠uj, i≠j, 1≤i,j≤k},  

E(MS(l,n))={(U,V)│U,V∈V(MS(l, n)) satisfying U=Tj(V) or U=Si(V), 2≤j≤n+1, 2≤i≤l}.  (1) 

 

Two edge generators T  and Sn,i are defined in the macro-star graph MS(l, n) to 

fo

ile Fig. 1b presents the details of 

the

Fig. 1. Example of a macro-star graph MS(2, 2) 

 

a

j

rmulate a link (edge) from a node to another node. The edge generator Tj is defined 

to create a permutation by interchanging the first symbol u1 with the jth symbol (uj) of 

a given node. With a given node U = u1:k = u1u2...ui...uk, the permutation of the node 

generated by Tj will be Tj(U) = uju2:j-1u1uj+1:k. Another edge generator Sn,i is defined to 

create a permutation by interchanging the sequence of symbols u(i-1)n+2:in+1 with the 

sequence of symbols u2:n+1 in a given node. With a given node U = u1:k, the 

permutation of the node generated by edge Sn,i will be Sn,i(u1:k) = u1u(i-1)n+2:in+1un+2:(i-

1)n+1u2:n+1uin+2:k. The edge generator Sn,i is represented simply as Si. Here, the symbol 

sequence u(i-1)n+2:in+1 is referred to as a cluster [14]. 

Fig. 1a shows a top view of an MS(2, 2) graph, wh

 level 2 cluster ‘23’. Each circle corresponds to a cluster. The smaller circles in the 

internal domain of the inclusive circle in Fig. 1b are nodes whose second clusters 

consist of ‘23’; that is, the full permutation of node 145 is 14523, that of 541 is 54123, 

and so on. The permutation generated by the edge generator T2 is 41523 in node 

14523; that is, T2(14523) = 41523 and T3(14523) = 54123. When the edge generators 

Tj and Si are sequentially applied to the permutation of a certain node U, they are 

represented as Si(Tj(U)), and simply SiTj(U). For example, the sequence of generators 

S2(T2(14523)) will create the permutation 42315 in 14523. First, T2 generates 41523 

and then S2 provides 42315 [5]. 
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An n-dimensional odes and n(n–1)!/2 

dges. The address of each node is represented as a permutation of n symbols {1, 2, 

3, 

 bubble-sort graph Bn [12] consists of n! n

e

..., n}.  An  edge  exists  between  two  arbitrary  nodes  v  and  w  if  and only if the 

corresponding permutation of the node w can be obtained from that of v by 

interchanging two adjacent symbols v and w in the permutation.  The bubble-sort 

graph Bn can thus be defined as shown in Eq. (2), where n distinct symbol sets <N> = 

{1, 2, .., n}, and a permutation of <N>, B = b1b2...bn, bi ∈ <N>. As the number of i- 

dimensional edges adjacent to B is equal to n–1, the bubble-sort graph Bn is a regular 

graph of degree n–1 and has a diameter of n(n–1)/2. It is also a hierarchical 

interconnection network because it can partition the graph with the edge as the center. 

It is node- and edge-symmetric as well as bipartite and includes Hamiltonian cycles. 

 

V(Bn))

E b b .b b . )│(b1b2...bi...bn)∈V(Bn), 1≤i≤n–1}.     (2) 

 

dges. The address of each node is represented as a permutation of n distinct symbols, 

an

)= .. p p p2...pi...pj...pn)∈V(Tn), 1≤i,j≤n, i≠j}.    (3) 

3 Embedding Analysis 

nto another graph H is a mapping mechanism for 

examining whether graph G is included in the structure of graph H, and how they are 

  = {(b1b2...bn)│bi∈<N>, i≠j, bi≠bj} 

(Bn) = {(b1 2...bi i+1.. n)(b1b2...bi+1 i.. bn

An n-dimensional transposition graph Tn [13] consists of n! nodes and n(n-1)n!/4 

e

d an edge exists between two nodes v and w if and only if the corresponding 

permutation of the node w can be obtained from that of v by interchanging the 

positions of any two arbitrary symbols from {1, 2, .., n} in v. A transposition graph Tn 

can be defined by Eq. (3) with n distinct symbols <N> = {1, 2, .., n}, and a 

permutation of <N>, P = p1p2...pn, pi ∈ <N>. The transposition graph Tn is a regular 

node symmetric graph with n(n-1)/2 degree, because an edge exists between the 

permutation that consists of n symbols and that in which two arbitrary different 

symbols are interchanged. It has maximum fault tolerance with a diameter of n–1 and 

a fault diameter of n. It also includes Hamiltonian cycles. 

 

V(Tn)={(p1p2...pi...pn)│pi∈<N>, i≠j, pi≠pj} 

E(Tn {(p1p2...pi...pj .pn)( 1 2...pj...pi...pn)│(p1

The embedding of one graph G i

interrelated. This can be interpreted as simulating one interconnection topology using 

another. The embedding of graph G into a graph H is defined as a function f = (ø, ρ) 
where ø maps the set of vertices in G, V(G) one-to-one into the set of vertices in H, 

V(H), and ρ corresponds  to each edge (v, w) in G to a path in H that connects nodes 

ø(v) and ø(w). Parameters for evaluating the efficiency of an embedding method 

include dilation, congestion, and expansion. The dilation of edge e in G is the length 

of the path ρ(e) in H, and the dilation of embedding f is the maximum value of all 

dilations in G. The congestion of edge e' in H is the number of ρ(e) included in e', and 

the congestion of embedding f is the maximum number of all edge congestions in H. 

The expansion of embedding f is the ratio of the number of vertices in H to the 

number in G [6]. 
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1 

Fig. 2. Mapping example of G1 into G2 

c apped onto the 

number in the set V(G2) in Fig. 4. Then, edge e (3, 6) in G1 

ges (3, 1) and (1, 6) or edges (3, 7) and (7, 6) in G  (i.e., to the 

 

For instance, let ea

corresponding same node 

can be mapped onto ed

pat

ional 

ed

 

f node B' adjacent from node B is b1b2...bi+1bibi-1...bn. 

The edge that connects nodes B and B' is called the i-dimensional edge (2 ≤ i ≤ n). 

h node (vertex) in the set V(G1) be m

2

h from 3 to 6 in G2). Let us assume that edge e (3, 6) in G1 is mapped onto edges (3, 

1) and (1, 6) in G2. Here, the dilation of this embedding is 2 because the length of the 

path ρ(e) in G2 is 2. As well, we can see that the congestion is 2 because edge e (1, 3) 

in G2 is routed by two edges (1, 3) and (3, 6) in G1, and the expansion is 8/7 [6]. 

When we assume that R(=r1r2...ri...rj...rn) is a node in an arbitrary graph and V is 

adjacent from R via dimensional edge J in the graph, it is represented as V = J(R). 

And when we assume that node V is reached from node R by applying dimens

ges J and K in sequence, we denote the edge sequence as <J, K> and V = K(J(R)). 

Sequentially applying edge sequence <J, K> to node R means that at the first time unit, 

the permutation of node J(R) is generated from node R via dimensional edge J, and at 

the second time unit, the permutation of K(J(R)) is created from node J(R) via 

dimensional edge K (i.e., V = K(J(R))). The basic principles of embedding applied in 

this study are as follows. Node mapping to bubble-sort, transposition, and macro-star 

graphs is based on one-to-one mapping with identical node numbers. When mapping 

two adjacent nodes (U, V) of a source graph to a target graph, the dimensional edge 

sequence is defined using the edge definition of the target graph. This sequence is 

formulated with dimensional edges of the target graph used for the shortest path from 

ø(U) to ø(V). The dilation of embedding is represented as the number of dimensional 

edges required for the shortest path. 

 

Theorem 1. A bubble-sort graph Bn can be embedded into a transposition graph Tn 

with dilation 1 and expansion 1. 

Proof. In the bubble-sort graph Bn, if the permutation of a node B is b1b2b3...bi-

1bibi+1...bn, then the permutation o

There exist (n-1) edges of dimension i in Bn. When mapping nodes B and 

B'(=b1b2...bi+1bibi-1...bn) in Bn onto nodes T(=t1t2...titi+1...tn) and T'(=t1t2...ti+1ti...tn), 

respectively, in Tn, we analyze the dilation of this mapping by referring to the length 

of the shortest path routing from node T to node T' in Tn. In the transposition graph Tn, 

there exists an edge between nodes V and W if the corresponding permutation to the 

node W can be obtained from that of V by interchanging the positions of any two 

arbitrary symbols from {1, 2, .., n} in V. Here, we can see that the nodes 

T(t1t2...titi+1...tn) and T'(t1t2...ti+1ti...tn) in Tn are adjacent to each other by the edge 

12 3

4 76 5 

2

3 4

5 6 

7

Graph G2Graph G1 

e 

congestion 2

8 

Embedding edge e (3, 6) into G2 

with dilation 2 
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definition of transposition graph Tn. Therefore, a bubble-sort graph Bn can be 

embedded into a transposition graph Tn with dilation 1 and expansion 1. 

 

Corollary 2. A bubble-sort graph Bn is a sub-graph of a transposition graph Tn. 

 

Theorem 3. The dilation cost of embedding a transposition graph T into a bubble-

ransposition graph Tn and the bubble-sort graph Bn, node 

(=t t t ...t ...t ...t ) in T  maps onto node B(=b b b ...b ...b ...b ) in B , and each node T' 

the macro-star graph MS(2, n). 

 node U(=u1u2u3...ui...un+i...u2n+1) 

ia edge Ti is Ti(U)(=uiu u ...u1......un+i...u2n+1) and it is denoted as U'. When we map 

u ) and U'(=u u u ...u ......u ...u ) in MS(2, n) onto 

.

n 

sort graph Bn is O(n). 

 

Proof. The transposition graph Tn and bubble-sort graph Bn are both node-symmetric. 

When mapping the t

T 1 2 3 i j n n 1 2 3 i j n n

of n(n–1)/2 nodes, which are adjacent to node T via edge T(i, j), maps onto B', whose 

address is the same as that of each corresponding node T'(i < j). We prove Theorem 3 

using the mapping case of two nodes T(=t1t2t3...ti...tj...tn) and T'(=tnt2t3...ti...tj...t1), 

adjacent to each other via edge T(1, n), onto a bubble-sort graph. The node T', which 

is adjacent to node T via edge T(1, n), is the permutation tnt2t3...ti...tj...t1 in which the 

first symbol and the nth symbol are interchanged with each other from the permutation 

of node T. Let us map nodes T(=t1t2t3...ti...tj...tn) and T'(=tnt2t3...ti...tj...t1) in Tn onto 

nodes B(=b1b2b3...bi...bj...bn) and B'(=bnb2b3...bi...bj...b1) in Bn.  Here, nodes T and T' 

are adjacent to each other, but nodes B and B' in Bn are not. Thus, we analyze dilation 

based on the length of the shortest path routing from B and B' in Bn. In the bubble-sort 

graph Bn, the dimensional edge sequence required for the shortest path routing from 

node B to node B' is <1,2,3,...,n-1,n-2,n-3,...,3,2,1>.  First, the first symbol b1 of node 

B can be moved to the last position (nth position) using the dimensional edge sequence 

<1,2,3,...,n-1>, since only an edge exists between two nodes in which two adjacent 

symbols are interchanged with each other. That is, by sequentially applying the 

dimensional edge sequence <1,2,3,...,n-1> to node B(=b1b2b3...bi...bj...bn), we can 

obtain the permutation b2b3...bi...bj...bnb1. Next, the permutation bnb2b3...bi...bj...bn-1b1 

(i.e., the permutation of destination node B') is obtained by orderly applying the edge 

sequence <n-2,n-3,...,3,2,1> to the node of the permutation b2b3...bi...bj...bnb1. Here, 

the number of dimensional edges applied for routing from B to B' in Bn is equal to 2n-

3. Therefore, we can say that the dilation cost for this embedding process is O(n).  

 

Theorem 4. A macro-star graph MS(2, n) can be embedded into a transposition graph 

T2n+1 with dilation n.  

 

Proof. We prove Theorem 4 by dividing it into two edges, Ti and Sj, which connect 

two arbitrary nodes in 

 

Case 1. Edge Ti, 2 ≤ i ≤ n+1 

In the macro-star graph MS(2, n), the node adjacent to

v 2 3

nodes U(=u1u2u3...ui......un+i... 2n+1 i 2 3 1 n+i 2n+1

nodes T(=t1t2t3...ti...tn+i...t2n+1) and T'(=tit2t3 ..t1...tn+i...t2n+1) in T2n+1, we can see that the 

nodes T and T' in T2n+1 are adjacent to each other through edge T(1, i) according to the 

edge definition of the transposition graph. Hence, a macro-star graph MS(2, n) can be 

embedded into a transposition graph T2n+1 with dilation 1. 
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Case 2. Edge Sj, j = 2  

Edge Sj, which is incident on node U(=u1u2u3...ui......un+i...u2n+1), can exist only where 

j = 2, because the macro-star graph MS(2, n) consists of two modules. In MS(2, n), the 

ode adjacent from U(u1u2u3...ui......un+i...u2n+1) via edge S2 is 

u ...u u u u ...u ...u ), and it is denoted as U'. When 

roof. In this embedding, we map node T(t t t ...t ...t ...t ) in the transposition graph 

he same permutation with T' among the nodes in MS(2,n). 

he permutation of the node adjacent to node T(t t t ...ti...t ...t ) via edge T(i, j) in 

j smaller than (n+2) mean that the two 

mbols can be interchanged only from the first symbol to (n+1)th symbols. The 

hange only from the first symbol to the (n+1)th symbol in node 

n

S2(U)(=u1un+1un+2un+3... n+i 2n+1 2 3 4 i n+1

mapping nodes U and U'(=u1un+1un+2un+3...un+i...u2n+1u2u3u4...ui...un+1) in MS(2, n) onto 

nodes T(=t1t2t3...ti...tn+i...t2n+1) and T'(=t1tn+1tn+2tn+3...tn+i...t2n+1t2t3t4...ti...tn+1) in T2n+1, it 

can be seen that the nodes T and T' in T2n+1 are not adjacent to each other by the edge 

definition of the transposition graph. Thus, we analyze the dilation of this mapping 

using the number of edges used for the shortest path routing from node T to node T' in 

T2n+1. The dimensional edge sequence required for routing from node 

T(t1t2t3...ti...tn+i...t2n+1) to node T'(tit2t3...t1...tn+i...t2n+1) in T2n+1 is <T(2, n+2), T(3, n+3), 

T(4, n+4), ..., T(i, n+i), ..., T(n+1, 2n+1)>. In other words, edge T(i, n+i), which 

interchanges the symbols ti and tn+i, which are in the same position of the first and 

second modules in the permutation of node T(t1t2t3...ti...tn+i...t2n+1), is used n times, so 

the permutation identical to node T'(tit2t3...t1...tn+i...t2n+1) is generated. Therefore, its 

dilation is n.  When we map a macro-star graph MS(2, n) onto a transposition graph 

T2n+1, the worst dilation of this embedding is n, but most edges are mapped by dilation 

1. Accordingly, it may be advisable to prove that the average dilation reaches to the 

smallest constant.  

 

Theorem 5. A transposition graph T2n+1 can be embedded into a macro-star graph 

MS(2, n) with dilation 5.  

 

P 1 2 3 i j 2n+1

T2n+1 onto node U(u1u2u3...ui...uj...u2n+1) in the macro-star graph MS(2, n), and node T' 

onto node U', which has t

T 1 2 3 j 2n+1

T2n+1 is T'=t1t2t3...tj...ti...t2n+1. Here, nodes U(u1u2u3...ui...un+i...u2n+1) and 

U'(u1u2u3...uj...ui...u2n+1) in graph MS(2, n) are not adjacent to each other, thus we 

analyze dilation using the number of edges used for the shortest path routing from 

node U to node U' in MS(2, n). We prove Theorem 6 by dividing it into three cases 

depending on the values of i and j in T(i, j). 

 

Case 1. i, j ≤ n–1, i < j 

In the edge T(i, j), which connects nodes T(t1t2t3...ti...tj...t2n+1) and T' in the 

transposition graph T2n+1, values of i and 

sy

occurrence of the interc

U(u1u2u3... ui... uj... u2n+1) of MS(2,n), in which node T(t1t2t3... ti... tj... t2n+1) of T2n+1 is 

mapped, means that a symbol interchange occurs among the symbols that consist of 

the first cluster of node U. Therefore, the edge sequence required for the shortest path 

routing from node U to node U' is <Ti, Tj, Ti>, because the permutation of node U' is 

u1u2u3...uj...ui...un+2un+3...u2n+1, and nodes U and U' are not adjacent to each other. The 

routing process from U to U' using this edge sequence <Ti, Tj, Ti> is as follows. 
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First, node Ti(U)(=uiu2u3...u1...uj...un+2un+3...u2n+1) is reached from node 

U(u1u2u3...ui...uj...un+2un+3...u2n+1) via edge Ti, which interchanges the first symbol 

with the ith symbol ui in node U; that is, the node Ti(U) is adjacent to node U through 

ed

d T' in T2n+1, i ≤ n+1 

nd j ≥ n+2 mean that two symbols are interchanged with each other, and of these two, 

)th position is positioned before it, and the other locates next 

S T

nd T' of the transposition 

raph T , because the values i and j are larger than (n+1), the two symbols can be 

each other only from the (n+2)th symbol to the (2n+1)th symbols. 

ge Ti. We then get to node TjTi(U)(=uju2u3...u1...ui...un+2un+3...u2n+1) from node Ti(U) 

via edge Tj, which interchanges the ith and jth symbols in node Ti(U). Next, we reach 

node TiTjTi(U)(=u1u2u3...uj...ui...un+2un+3...u2n+1) from TjTi(U) via edge Ti, which 

interchanges symbols uj and u1 in node TjTi(U). Now, we can see that the permutation 

of node TiTjTi(U), which is obtained by sequentially applying the edge sequence <Ti, 

Tj, Ti> to node U, is the same as the permutation of node U'. Therefore, two nodes 

T(t1t2t3...ti...tj...t2n+1) and T' adjacent via edge T(i, j) in the transposition graph T2n+1 can 

be embedded into a macro-star graph MS(2, n) with dilation 3.  

 

Case 2. i ≤ n+1, j ≥ n+2 

In the edge T(i, j) which connects nodes T(t1t2t3...ti...tj...t2n+1) an

a

the one based on the (n+1

to it. The occurrence of the interchange based on the (n+1)th position of a symbol in 

node U(u1u2u3...ui...uj...u2n+1) of MS(2,n), in which node T(t1t2t3...ti...tj...t2n+1) of T2n+1 

is mapped, means that an interchange occurs between one symbol of the first cluster 

and one symbol of the second cluster in node U. Since the permutation of node U' is 

u1u2u3...ui...un+2un+3...uj...u2n+1, and nodes U and U' are not adjacent to each other, the 

edge sequence required for the shortest path routing from node U to node U' is <Ti, S2, 

Tj, S2, Ti>. The routing process from U(u1u2u3...ui...un+1un+2un+3...uj...u2n+1) to 

U'(u1u2u3...ui...un+1un+2un+3...uj...u2n+1) using this edge sequence <Ti, S2, Tj, S2, Ti> is as 

follows. First, node Ti(U)(=uiu2u3...u1...un+1un+2un+3...uj...u2n+1) is adjacent to node 

U(u1u2u3...ui...un+1un+2un+3...uj...u2n+1) via edge Ti, which interchanges the first with the 

ith symbol ui in node U; then node S2Ti(U)(=uiun+2un+3...uj...u2n+1u2u3...u1...un+1) is 

adjacent to node Ti(U) through edge S2, which swaps the first and the jth cluster uj in 

Ti(U). Next, node TjS2Ti(U)(=ujun+2un+3...ui...u2n+1u2u3...u1...un+1) is adjacent to node 

S2Ti(U) through edge Tj, which interchanges the first symbol ui with the symbol uj in 

the first cluster in S2Ti(U). After that, node S2TjS2Ti(U) 

(=uju2u3...u1...un+1un+2un+3...ui...u2n+1) is reached from TjS2Ti(U) via edge S2, which 

exchanges the first cluster in which the symbol ui exists with the second cluster in 

node TjS2Ti(U). Then, we get to node TiS2TjS2Ti(U) 

(=u1u2u3...uj...un+1un+2un+3...ui...u2n+1) from node S2TjS2Ti(U) via edge Ti, which 

interchanges the symbols uj and u1 in node S2TjS2Ti(U). Because the permutation of 

node Ti 2 jS2Ti(U), which is obtained by sequentially applying the edge sequence <Ti, 

S2, Tj, S2, Ti> to node U, is identical to the permutation of node U', we can see that 

two nodes T and T' adjacent via edge T(i, j) in the transposition graph T2n+1 can be 

embedded into a macro-star graph MS(2, n) with dilation 5. 

 

Case 3. i,  j ≥ n+2 

In edge T(i, j), which connects nodes T(t1t2t3...ti...tj...t2n+1) a

g 2n+1

interchanged with 

The interchanges from the (n+2)th symbol to the (2n+1)th symbols in node U(u1u2u3... 

ui... uj... u2n+1) of MS(2,n), in which node T(t1t2t3... ti... tj... t2n+1) of T2n+1 is mapped, 
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represent the interchanges that occur among the symbols that consist of the second 

cluster of U. Because the permutation of node U' is u1u2u3...un+1un+2...uj...ui...u2n+1, 

and nodes U(u1u2u3...un+1un+2...ui...uj...u2n+1) and U' are not adjacent to each other, the 

edge sequence required for the shortest path routing from node U to node U' is <S2, Ti, 

Tj, Ti, S2>. The routing process from node U and node U' is as follows. 

We first use edge generator S2 to exchange the first and second clusters in which 

symbols ui and uj exist, because the interchange between the symbols in node U 

occurs only between the symbols positioned in the first column and the symbols 

po

nown topology of MIMD multi-computer systems with 

 a small diameter, node-symmetric, hierarchical, and maximum 

fault-tolerant interconnection network. The transposition graph not only improves the 

ased 

on

sitioned in the first cluster. Thus, node S2(U)(=u1un+2...ui...uj...u2n+1u2u3...un+1) is 

adjacent to node U(u1u2u3...un+1un+2...ui...uj...u2n+1) via edge S2, and node 

TiS2(U)(=uiun+2...u1...uj...u2n+1u2u3...un+1) is adjacent to node S2(U) via edge Ti, which 

places symbol ui of S2(U) at the first position. Following this, node 

TjTiS2(U)(=ujun+2...u1...ui...u2n+1u2u3...un+1) is reached from node TiS2(U) via edge Tj, 

which interchanges the first symbol ui with symbol uj in the first cluster in S2Ti(U). 

Next, node TiTjTiS2(U)(=u1un+2...uj...ui...u2n+1u2u3...un+1) is connected to TjTiS2(U) by 

edge Ti, which interchanges the first symbol uj with u1 in node TjTiS2(U). Then, we use 

edge S2 to swap the first and second clusters in node TiTjTiS2(U), and reach node 

S2TiTjTiS2(U)(=u1u2u3...un+1un+2...uj...ui...u2n+1) from node TiTjTiS2(U) through edge S2. 

Here, we can seen that the permutation of node S2TiTjTiS2(U), which is obtained by 

sequentially applying the edge sequence <S2, Ti, Tj, Ti, S2> to node U, is identical to 

the permutation of node U'. Therefore, the edge T(i, j) that connects nodes 

T(t1t2t3...ti...tj...t2n+1) and T' in the transposition graph T2n+1 can be embedded into a 

macro-star graph MS(2, n) with dilation 5. 

Consequently, all nodes in a transposition graph T2n+1 can be mapped one-to-one 

onto a macro-star graph MS(2, n), and an edge in T2n+1 can be embedded into MS(2,n) 

with dilation of 5 or under. 

4 Conclusion 

The star graph, a well-k

distributed memory, is

fault tolerance of multi-computer systems, but also shares the advantages of a star 

graph. It also contains a star graph as its sub-graph. The bubble-sort and macro-star 

graphs also share the advantages of the star graph. In this paper, we proposed 

methods for embedding bubble-sort, transposition, and macro-star graphs into one 

another, which have been introduced as variations of the star graph. These graphs 

have the same number of nodes and also the same number of symbols in a node.  

The proposed embedding methods are based on one-to-one mapping of two 

arbitrary nodes U and U' of a source graph G onto two nodes in a target graph G'. We 

assumed that two mapped nodes in G' are connected with a minimum of edges b

 the edge definition of target graph G'. Then, we analyzed dilation by the number of 

edges used for the shortest path routing between two mapped nodes in G'. Embedding 

analysis using the edge definition of graphs is possible because the bubble-sort, 

transposition, and macro-star graphs are all node-symmetric. The results of this study 

indicate that bubble-sort graph Bn can be embedded into transposition Tn with dilation 
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