
HAL Id: hal-01054440
https://inria.hal.science/hal-01054440

Submitted on 6 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Deterministic Computations in Time-Varying Graphs:
Broadcasting under Unstructured Mobility

Arnaud Casteigts, Paola Flocchini, Bernard Mans, Nicola Santoro

To cite this version:
Arnaud Casteigts, Paola Flocchini, Bernard Mans, Nicola Santoro. Deterministic Computations in
Time-Varying Graphs: Broadcasting under Unstructured Mobility. 6th IFIP TC 1/WG 2.2 Interna-
tional Conference on Theoretical Computer Science (TCS) / Held as Part of World Computer Congress
(WCC), Sep 2010, Brisbane, Australia. pp.111-124, �10.1007/978-3-642-15240-5_9�. �hal-01054440�

https://inria.hal.science/hal-01054440
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Deterministic Computations in Time-Varying Graphs:

Broadcasting under Unstructured Mobility

Arnaud Casteigts1, Paola Flocchini1, Bernard Mans2, and Nicola Santoro3

1 University of Ottawa, Ottawa, Canada,

{casteig,flocchin}@site.uottawa.ca
2 Macquarie University, Sydney, Australia,

bernard.mans@mq.edu.au
3 Carleton University, Ottawa, Canada,

santoro@scs.carleton.ca

Abstract. Most highly dynamic infrastructure-less networks have in common

that the assumption of connectivity does not necessarily hold at a given instant.

Still, communication routes can be available between any pair of nodes over time

and space. These networks (variously called delay-tolerant, disruptive-tolerant,

challenged) are naturally modeled as time-varying graphs (or evolving graphs),

where the existence of an edge is a function of time. In this paper we study deter-

ministic computations under unstructured mobility, that is when the edges of the

graph appear infinitely often but without any (known) pattern. In particular, we

focus on the problem of broadcasting with termination detection. We explore the

problem with respect to three possible metrics: the date of message arrival (fore-

most), the time spent doing the broadcast (fastest), and the number of hops used

by the broadcast (shortest). We prove that the solvability and complexity of this

problem vary with the metric considered, as well as with the type of knowledge a

priori available to the entities. These results draw a complete computability map

for this problem when mobility is unstructured.

1 Introduction

1.1 The Framework

The past few years have seen increasing research efforts devoted to the study

of infrastructure-less highly dynamic networks, whose topologies change as

a function of time. Most of these networks, variously called delay-tolerant,

disruptive-tolerant, challenged, opportunistic, have in common that the assump-

tion of connectivity does not necessarily hold at a given instant. The network

may even be disconnected at every time instant. Still, communication routes

can be available over time and space, and make broadcast and routing feasible.

Indeed an extensive amount of research has been devoted, mostly by the en-

gineering community, to the problems of broadcast and routing in such highly

dynamical environment (e.g. [3,4,14,15,16,20,22,23,24,25]).
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The highly dynamic features of these networks can be described by means of

time-varying graphs (also called evolving graphs), where links exist only at some

times, a priori unknown to the algorithm designer (see [2,8,10,13]). Thus, in

these graphs, the set of edges existing at a given time might not form a connected

graph. Due to the complexity of these systems, it is not surprising that very

few analytical results exist, all obtained under a set of restrictive assumptions

that make the investigated problems amenable to analysis. An example of basic

assumption is that the existence of these graphs is continuous over time; that is,

the network does not suddenly cease forever to exist.

Almost all the work in this area considers these computations in time-varying

graphs from a probabilistic standpoint [7,8,9,17], assuming e.g. that the edge

schedule obeys a Markovian process. The design and analysis of determinis-

tic solutions has been carried out under very strong assumptions. For example,

knowing the complete edge schedule ahead of time in a central entity allows to

compute optimum solutions to the broadcast and routing problems [2]. Interme-

diate assumptions have been investigated, such as the fact that the network is

always connected [21]. A hierarchy of basic assumptions for distributed algo-

rithms in dynamic networks is discussed in [5].

Clearly any a-priori knowledge about the edge schedule can be employed

in the design and analysis of (possibly deterministic) solutions. This is also

true from a practical point of view, and indeed an intensive investigation exists

on mobility patterns [1,19,18,11]. Some classes of infrastructure-less networks

have indeed specific mobility patterns. For example, in networks such as pub-

lic transports with fixed timetables, low earth orbiting (LEO) satellite systems,

security guards’ tours, etc. the edge-schedule is periodic, and deterministic pro-

tocols for routing and exploration of such networks have been devised (e.g.,

[13,12,20]). Periodicity is interesting not only because it models several classes

of dynamic systems, but also because the infinite mobility pattern defining it is

highly structured. The existing results show that the existence of such a structure

allows the development of deterministic solutions to fundamental problems.

The question immediately arises of what happens when the mobility is un-

structured. More precisely, what happens if encounters between mobile entities

occur infinitely often but without any (known) pattern? what happens if there is

no known pattern but there is a time bound on the re-appearance of edges? What

can be done deterministically in such cases?

In this paper we address these questions and provide some answers on the

computability and complexity aspects with regards to the basic problem of broad-

casting with termination detection.
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1.2 Problems and Contributions

Consider the class R of recurrent time-varying graphs whose edges appear in-

finitely often; that is if an edge (x, y) between nodes x and y exists at time t
(i.e., entities x and y are able to communicate at time t), then there exists a time

t′ > t when (x, y) also exists (let us assume the set of apparition of a given

edge as enumerable). Let B ⊂ R be the class of time-bounded recurrent time-

varying graphs, where two successive appearance of a same edge is bounded

by some duration. We consider the basic problem of broadcasting with termi-

nation detection in R and in B: there is a node (the source, also called emitter)

that has a message that must be distributed to all other nodes; the source must

be notified when the entire process has been completed. This problem is more

difficult than simple broadcast, and is required in more complex operations, e.g.

sequence transmission, where the i-th sequence item must only be transmitted

after the (i − 1)th item has been received by all nodes.

Metric Class Knowledge Feasibility

Foremost R ∅ no

n yes

B ∅ no

n yes

∆ yes

Metric Class Knowledge Feasibility

Shortest R ∅ no

n no

B ∅ no

n no

∆ yes

Fastest R or B n or ∆ no

Table 1. Summary of contributions - Solvability.

Metric Class Knowl. Time Info. msgs Control msgs Info. msgs Control msgs

(1st run) (1st run) (next runs) (next runs)

Foremost R n unbounded O(m) O(n2) O(m) O(n)
B n O(n∆) O(m) O(n2) O(m) O(n)

∆ O(n∆) O(m) O(n) O(m) 0

n&∆ O(n∆) O(m) 0 O(m) 0

Shortest B ∆ O(n∆) O(m) O(n) : 2n− 2 O(n) 0

either of { n&∆ O(n∆) O(m) O(n) : n− 1 O(n) 0

n&∆ O(n∆) O(m) 0 O(m) 0

Table 2. Summary of contributions - Complexity (for solvable cases)

We explore the problem with respect to the three possible metrics discussed

in [2]: the date of message arrival (foremost); the number of hops used (short-

est); and the time spent doing the effective broadcast (fastest). Interestingly, the

solvability and complexity of the problem vary with the type of metric consid-

ered, as well as with the knowledge available to the nodes. Note that broadcast-

ing with termination detection involves two processes: the actual dissemination

of information achieved by exchange of information messages, and termination
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detection achieved by exchange of (typically smaller) control messages. In the

paper we make a distinction between these two types of messages and we an-

alyze them separately. Also notice that a byproduct of a broadcast algorithm

might be the construction of a (delay-tolerant) spanning tree of the underlying

graph, which could possibly be reused for subsequent broadcasts, sometimes

for the dissemination process (thus reducing the information messages), some-

times for termination detection (impacting the number of control messages), or

for both. In each setting we discuss also the consequences on subsequent broad-

casts in order to highlight the variation of benefits in reusability.

We first provide some impossibility results showing that broadcasting with

termination detection cannot be solved in R without any knowledge of the un-

derlying graph, nor in B without either the same knowledge or a bound on the

recurrence time. We then analyze solvability and complexity of the problem in

the various settings providing algorithms when it can be solved. The solvability

results are summarized in Table 1 and the complexity results in Table 2, where

n is the number of nodes, and ∆ a bound on the recurrence time. Due to space

limitations some proofs are sketched, some omitted. The interested reader is

refered to [6] for more details.

2 Model and Basic Properties

2.1 Definitions and Terminology

Consider a system composed of a set of entities V that interact with each other

over a (possibly infinite) time interval T, called lifetime of the system (a sub-

set of either Z (discrete time) or R (continuous time); our results hold in either

case). The set of the times when the entities are in contact defines a time-varying

graph (TVG, for short) G = (V,E, ρ), with E ⊆ V × V being the set of inter-

mittently available edges such that (u, v) ∈ E ⇔ u and v have at least one

contact overlapping with T, and ρ : E × T → {0, 1} indicates whether a given

edge is present at a given time. In the following the terms entity and node will

be used interchangeably.

This model is equivalent in substance to that of evolving graphs [10], where

G is represented by the sequence of graphs G1, G2, ..., Gi, ... each providing

a snapshot of the system whenever a change (edge appearance/disappearance)

takes place. In comparison, the definition used in this paper offers an interaction-

centric view of the network evolution (the evolution of each edge can be consid-

ered irrespective of the global time sequence), which proves more convenient to

express several properties.

An edge e ∈ E is said to be recurrent if it appears infinitely often; that is,

for any date t, ρ(e, t) = 0 =⇒ ∃t′ > t | ρ(e, t′) = 1. When all the edges
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of a TVG G are recurrent, we say that G is recurrent. Let R denote the class

of recurrent TVGs. The recurrence of an edge e is said to be time-bounded (or

simply bounded), if there exists a constant ∆(e) such that the time between any

two successive appearances of e is at most ∆(e). When the recurrence of all the

edges of a graph G is time-bounded, we say that G is time-bounded recurrent,

call ∆(G) = max{∆(e) : e ∈ E}, and denote by B ⊂ R the class of time-

bounded recurrent TVGs.

Given a TVG G = (V,E, ρ), the underlying graph G = (V,E) is assumed

simple (no self-loop nor multiple edges) and connected4. Each node v has a

local function λv associating labels (or port numbers), to its incident edges (or

ports). For each edge e there are two labels: λu(e) local to u and λv(e), local

to v. These labels are locally unique and do not change from one appearance

to another. The set of edges being incident to a node u at time t is noted It(u)
(or simply It, when the node is implicit). Finally, we note G[ta,tb) the temporal

subgraph of a TVG G with restricted lifetime [ta, tb).
When an edge e = (x, y) appears, the entities x and y can communicate.

The time ζ necessary to transmit a message on any edge is called crossing delay,

and is known by the nodes. The TVGs in the rest of this paper are assumed to

have recurrent edges with a minimal duration of 2 × ζ for every edge presence

(long enough for a back and forth exchange of message). This last assumption

implies that

Property 1

1. If a message is sent just after an edge has appeared, the message and a po-

tential answer are guaranteeed to be successfully transmitted.

2. If the recurrence of an edge is bounded by some ∆, then this edge cannot

disappear for more than ∆ − 2 × ζ.

The appearances and disappearances of edges are instantaneously detected

by the two adjacent nodes (they are notified of such an event without delay).

If a message is sent less than ζ before the disappearance of an edge, the mes-

sage is lost. However, since the disappearance of an edge is detected instanta-

neously, and the crossing delay ζ is known, the sending node can locally de-

termine whether the message has arrived or not. We thus authorize the special

primitive send retry as a facility to specify that if the message is lost, then it

is automatically re-sent on the next appearance of the edge, and this sending is

necessarily successful (Property 1). Note that nothing precludes this primitive

to be called while the corresponding edge is absent.

A sequence of couple J = {(ea, ta), (eb, tb), ...}, with ei ∈ E and ti ∈ T

for all i, is called a journey in G iff {ea, eb, ...} is a walk in G and for all ti,

4 Broadcast, as well as any other global computation, would be impossible otherwise.
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ρ(ei)[ti,ti+ζ) = 1 and ti+1 ≥ ti + ζ, where ζ is the time required to transmit a

message on an edge, called crossing delay. Journeys can be thought of as paths

over time from a source node to a destination node (if the journey is finite).

Let us denote by J ∗
G the set of all possible journeys in a graph G. We will say

that G admits a journey from a node u to a node v, and note ∃J(u,v) ∈ J ∗
G , if

there exists at least one possible journey from u to v in G. Note that the notion

of journey is asymmetrical (∃J(u,v) ∈ J ∗
G ; ∃J(v,u) ∈ J ∗

G ), regardless of

whether edges are directed or undirected.

Because no end-to-end connectivity is assumed, the very notion of distance

must incorporate the time factor. In fact, at least three notions of length can be

defined for journeys (adapted from [2]): the hop-count, the arrival date, and the

duration of a journey. Given a journey J = {(e1, t1), (e2, t2) . . . , (ek, tk)}, its

hop-count |J |h, is the number of couples in J (that is, k). The arrival date of

J , noted |J |a, is tk + ζ. Finally, the duration of J , noted |J |t, is |J |a − t1.

Each of these metrics gives rise to a distinct definition of distance in G.

– The topological distance between a node u and a node v, noted dh(u, v), is

defined as min{|J(u,v)|h : J(u,v) ∈ J ∗
G }. A journey J(u,v) whose length is

dh(u, v) is qualified as shortest ;

– The earliest arrival date between u and v, noted da(u, v) is defined as

min{|J(u,v)|a : J(u,v) ∈ J ∗
G }. A journey J(u,v) whose arrival date is

da(u, v) is qualified as foremost ;

– Finally, the smallest delay between u and v, noted dt(u, v) is min{|J(u,v)|t :
J(u,v) ∈ J ∗

G }, and a journey J(u,v) whose duration is dt(u, v) is qualified

as fastest.

The eccentricity of a node u is defined as max{dx(u, v) : v ∈ V }, where

x is either h, a, or t, depending on the type of distance considered, and noted

εh(u), εa(u), and εt(u), respectively. Similarly, three notions of diameter of a

graph G = (V,E, ρ) can be defined as max(dx(u, v) : u, v ∈ V ), and noted

Dh(G), Da(G), or Dt(G). Notice that Dh is closer to the usual notion of di-

ameter (in hop-count) than Da or Dt, which are both in the temporal domain.

Observe also that all these notions are time-dependent in the sense that they may

vary according to the time when they are considered.

2.2 Problems and Basic Limitations

The problem of broadcast with termination detection, TDBroadcast, requires

all nodes to receive a message with some information initially held by a single

node x, called source or emitter, and the source to enter a terminal state after

all nodes have received the information, within finite time. A protocol solves
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TDBroadcast in G ∈ R if it solves it for any source x ∈ V and time t.
We say that it solves TDBroadcast in R if it solves TDBroadcast for any

G ∈ R.

We are interested in three variations of the TDBroadcast problem, fol-

lowing the notions of distance defined above: TDBroadcast[foremost], where

each node must receive the information at the earliest possible date following

its creation at the emitter; TDBroadcast[shortest], where each node must re-

ceive the information within a minimal number of hops from the emitter, and

TDBroadcast[fastest], where each node must receive the information at the

earliest possible date following the beginning of its emission. For each of these

problems, we require that the emitter detects termination, but this detection is

not subjected to the same foremost, shortest, or fastest constraint.

Some knowledge of G, the underlying graph, is necessary even for simple

broadcast in recurrent TVGs. In fact we have:

Theorem 2. Without any knowledge of the underlying graph, TDBroadcast

in R cannot be solved.

Proof. By contradiction, let A be a algorithm that solves TDBroadcast in R.

Consider an arbitrary G = (V,E, ρ) ∈ R and x ∈ V . Execute A in G starting

at time t0 with x as the source. Let tf be the time when the source terminates

(and thus all nodes have received the information). Let G′ = (V ′, E′, ρ′) ∈ R
such that V ′ = V ∪ {u}, E′ = E ∪ {(u, v) : v ∈ V }, ρ′(e, t) = ρ(e, t) for

all e ∈ E, t ∈ T, ρ′((u, v), t) = 0 for all t0 ≤ t < tf , and ρ′((u, v), t) = 1
for t > tf . Consider the execution of A in G′ starting at time t0 with x as the

source. Since (u, v) does not appear from t0 to tf , the execution of A at every

node in G′ will be exactly as at the corresponding node in G. In particular, node

x will have entered a terminal state at time tf with node v not having received

the information, contradicting the correctness of A.

Indeed, as we will discuss later, some metric knowledge such as knowing the

number of nodes n = |V | or, in the case of bounded TVGs (class B), knowing

an upper bound ∆ on the recurrence time ∆(G), can play an important role.

Theorem 3. Without any knowledge of the underlying graph nor of ∆,

TDBroadcast in B cannot be solved.

Finally, let us conclude with a general impossibility result for fastest broad-

cast with termination, which cannot be solved even if both n and ∆ are known.

Theorem 4. TDBroadcast[fastest] is not solvable in R, nor in B, regardless

of the fact that n or ∆ are known.
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Because of the impossibility of fastest broadcast, the rest of the paper fo-

cuses on TDBroadcast[foremost] and TDBroadcast[shortest] only, and on

the impact on solvability and complexity of being in R or B, and knowing n or

∆ (if in B).

3 TDBroadcast[foremost]

The objective is to have all the nodes receive the information at the earliest pos-

sible date following its creation at the emitter (foremost broadcast), then have

the emitter detect termination. Clearly, achieving a foremost broadcast requires

to use a flooding-based mechanism. Indeed, the very fact of probing a neighbor

to determine whether it already has the information compromises the possibility

of sending it in a foremost fashion (in addition to risking the disappearance of

the edge between the probe and the real sending). The problem thus comes to

minimize the number of messages and detect when all the nodes are informed.

As we have seen in Theorem 2, the problem cannot be solved without any met-

ric knowledge. We show that it becomes possible in the general class R if the

number of nodes n = |V | is known. Knowing n is however not required in the

more specific case of B, where the knowledge of an upper bound ∆ on the re-

currence time ∆(G) can also be used to solve the problem. If both n and ∆ are

known in B, the termination detection can even become implicit, thereby saving

a number of control messages.

3.1 TDBroadcast[foremost] in R

In this section we discuss only knowledge of n since ∆ cannot be known being

the recurrent time unbounded by definition.

The problem is solvable when n is known, by using Algorithm 1, informally

described as follows. Every time a new edge appears locally to an informed

node, the node sends the information on this edge and remembers it. The first

time a node receives the information, it chooses the sender as parent, transmits

the information on its available edges, and sends back a notification message

to the parent. Note that these notifications create a parent-relation and thus a

converge-cast tree. The notification messages are sent using the special primi-

tive send retry discussed in Section 2.1, to ensure that the parent eventually

receives it even if the edge disappears during the first attempt. Each notification

is then individually forwarded in the converge-cast tree using the send retry
primitive, and eventually collected by the emitter. When the emitter has received

n−1 notifications, it knows that all the nodes are informed (and the next broad-

cast can start, for example).
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Algorithm 1 Foremost broadcast in R, knowing n.

1: Edge parent← nil // edge the information was received from (for non-emitter nodes).

2: Integer nbNotifications← 0 // number of notifications received (for the emitter).

3: Set<Edge> informedNeighbors← ∅ // neighbors known to have the information.

4: Status myStatus← ¬informed // status of the node (informed or non-informed).

5: initialization:

6: if isEmitter() then

7: myStatus← informed

8: send(information) on Inow() // sends the information on all its present edges.

9: onAppearance of an edge e:

10: if myStatus == informed and e /∈ informedNeighbors then

11: send(information) on e
12: informedNeighbors← informedNeighbors ∪ {e} // (see Prop. 1).

13: onReception of a message msg from an edge e:

14: if msg.type == Information then

15: informedNeighbors← informedNeighbors ∪ {e}
16: if myStatus == ¬informed then

17: myStatus← informed

18: parent← e
19: send(information) on Inow() r informedNeighbors // propagates.

20: send retry(notification) on e // notifies that a new node got the info.

(this message is to be resent upon the next appearance, in case of failure).

21: else if msg.type == Notification then

22: if isEmitter() then

23: nbNotifications← nbNotifications + 1
24: if nbNotifications == n− 1 then

25: terminate // at this stage, the emitter knows that all nodes are informed.

26: else

27: send retry(notification) on parent

Theorem 5. When n is known, TDBroadcast[foremost] can be solved in R
exchanging O(m) information messages and O(n2) control messages, in un-

bounded time. (We call m the number of edges |E|).

Proof sketch. Since a node sends the information to each new appearing edge, it

is easy to see, by connectivity of the underlying graph, that all nodes will receive

the information. As for termination detection: every node identifies a unique

parent and a converge-cast spanning tree directed towards the source is implic-

itly constructed; since every node notifies the source (through the tree) and the

source knows the total number of nodes, termination is guaranteed. Since in-

formation messages might traverse every edge in both directions, and an edge
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cannot be traversed twice in the same direction, we have that the number of in-

formation messages is in the worst case 2m. Since every node but the emitter

induces a notification that is forwarded up the converge-cast tree to the emitter.

The number of notification messages is the sum of distances in converge-cast

tree between all nodes and the emitter,
∑

v∈V r{emitter} dh tree(v, emitter).

The worst case is when the graph is a line where we have n2−n
2 control mes-

sages. Note that the dissemination of information itself is performed in optimal

time: εa(emitter) in G[t,+∞), because the information is either directly relayed

on edges that are present, or sent as soon as a new edge appears. However, since

the recurrence of the edges is unbounded, this time, as well as the time required

for termination detection, is necessarily unbounded.

Reusability for the subsequent broadcasts. By nature, a foremost tree is tran-

sient and cannot be re-used as such in subsequent broadcasts. However, it can

be re-used by subsequent broadcasts as a converge-cast tree for the notification

process where, instead of sending a notification as soon as a node is informed,

each node notifies its parent in the converge-cast tree if and only if it is itself

informed and has received a notification from each of its children. This would

allow to reduce the number of control messages from O(n2) to O(n), having

only one notification per edge of the converge-cast tree.

3.2 TDBroadcast[foremost] in B

If the recurrence is bounded, then either the knowledge of n or an upper bound

∆ on the recurrence time ∆(G) can be used to detect termination.

3.2.1 Knowledge of n

Using the same algorithm as for class R (Algorithm 1) we can obviously

solve the problem in B with the same message complexity, but bounded time.

Moreover, the same observations regarding reusability for the subsequent broad-

casts apply.

Theorem 6. When n is known, TDBroadcast[foremost] can be solved in

B exchanging O(m) information messages and O(n2) control messages, in

O(n∆) time.

Proof sketch. The arrival-date-based eccentricity of the emitter (εa(emitter)
in G[t,+∞)), which is itself bounded by the arrival-date-based diameter of the

graph (Da(G[t,+∞))), is now clearly bounded by ∆(n − 1) (the worst case is

when the foremost tree is a line). The detection of termination by the emitter

may require an additional ∆(n − 1) for the propagation of the last notification.
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The overall time required for the emitter to detect termination is thus at most

εa(emitter) in G[t,+∞) + ∆(n − 1), bounded by ∆(2n − 2).

3.2.2 Knowledge of ∆

The information dissemination is performed as in Algorithm 1, termination

detection is however achieved differently and is based on knowledge of ∆.

Due to the time-bounded recurrence, no node can discover a new neighbor

after a duration of ∆. Knowing ∆ can thus be used by the nodes to determine

whether they are a leaf in the broadcast tree (if they have not informed any other

node after the date they were informed at, plus ∆). This allows the leaves to

terminate spontaneously while notifying their parent, which recursively termi-

nate as they receive the notifications from all their children. Everytime a new

edge appears locally to an informed node, this node sends the information on

this edge, and remembers it. The first time a node receives the information, it

chooses the sender as parent, memorizes the current time (say, in a variable

firstRD), transmits the information on its available edges, and returns an affil-

iation message to its parent using the send retry primitive (starting to build the

converge-cast tree). This affiliation message is not relayed upward in the tree,

but only intended to inform the direct parent about the existence of a new child

(so that it knows it will have to wait for a notification by this node during the

hierarchical notification). If an informed node has not received any affiliation

message after a duration of ∆ + ζ it sends a notification message to its parent

using the send retry primitive. If a node has one or several children, it waits

until having received a notification message from each of them, then notifies

its parent in the converge-cast tree in turn (using send retry again). When the

emitter has received a notification from each of its children, it knows that all

nodes have received the information.

Theorem 7. When ∆ is known, TDBroadcast[foremost] can be solved in B
exchanging O(m) information messages and O(n) control message, in O(n∆)
time.

Proof sketch. Correctness follows the same lines of the proof of Theorem 5,

where however the correct construction of a converge-cast spanning tree is guar-

anteed by knowledge of ∆ (the leaves of the tree recognize to be so because no

new edges appear within ∆ time) and where notification starts from the leaves

and is aggregated before reaching the source. The number of information mes-

sages is O(m) as the exchange of information messages is the same as in Algo-

rithm 1. However, the number of notification and affiliation messages decrease

to 2(n − 1). Each node but the emitter sends a single affiliation message; as
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for the notification messages, instead of sending a notification as soon as it is

informed, each node notifies its parent in the converge-cast tree if and only if it

has received a notification from each of its children resulting in one notification

message per edge of the tree. The time complexity of the dissemination itself is

the same as for the version where n is known, that is, optimal with εa(emitter)
in G[t,+∞). The time required for the emitter to subsequently detect termination

is an additional ∆ + ζ + ∆(n − 1) (the value ∆ + ζ corresponds to the time

needed by the last informed node to detect that it is a leaf, and ∆(n − 1) corre-

sponds to the worst case of the notification process, chained from that node to

the emitter).

Reusability for the subsequent broadcasts. Clearly, the number of nodes n,

which is not apriori known here, can be obtained through the notification pro-

cess of the first broadcast (by having nodes reporting their number of descen-

dants in the tree, while notifying hierarchically). All subsequent broadcasts can

thus behave as if both n and ∆ were known, which is discussed next and allows

solving the problem with O(m) information messages and no control messages.

3.2.3 Knowledge of both n and ∆

In this case, the emitter knows an upper bound on the broadcast termination

date; in fact, the broadcast cannot last longer than n∆ (the worst case is when

the foremost tree is a line). The termination detection can thus become implicit

after this amount of time, which allows us to do without any control message

(whether of affiliation or notification kinds). Note that subsequent broadcasts

will have the same complexity.

Theorem 8. When ∆ and n are known, TDBroadcast[foremost] can be solved

in B exchanging O(m) info. messages and no control messages, in O(n∆) time.

4 TDBroadcast[shortest]

The objective is to have all nodes receive the information within a minimal num-

ber of hops from the emitter (shortest broadcast), then have the emitter detect

termination. We show below that contrarily to the foremost case, knowing n is

not enough to perform a shortest broadcast (even in B). Considering only the

two kind of knowledge we considered in this paper, it requires ∆ to be known

(and thus also to be in B). In the following we then consider only the case of B.

Note that, contrarily to the foremost case, if a given tree is shortest for some par-

ticular emission date, then it is also shortest for any other emission dates (thanks

to the recurrence of edges). Put it differently, the shortest quality of a tree is not

time-dependent in recurrent TVGs. This allows shortest trees to be reused as is

in subsequent broadcasts.
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4.1 TDBroadcast[shortest] in B

We first show that knowledge of n is not sufficient to perform shortest broadcast

with termination detection in B; and we then describe how to solve the problem

when ∆ is know, and when both n and ∆ are.

4.1.1 Knowledge of n

Theorem 9. If n is the only knowledge available TDBroadcast[shortest]

cannot be solved in B.

Proof. By contradiction, let A be a algorithm that solves TDBroadcast[shortest]

in B with knowledge of n only. Consider an arbitrary G = (V,E, ρ) ∈ R and

x ∈ V . Execute A in G starting at time t0 with x as the source obtaining a

shortest tree T . Let tf be the time when the algorithm terminates and all nodes

have entered the terminal state. Let G′ = (V ′, E′, ρ′) ∈ R such that V ′ = V ,

E′ = E ∪ {(x, v) : v ∈ V, (x, v) /∈ E}, ρ′(e, t) = ρ(e, t) for all e ∈ E, t ∈ T,

ρ′((u, v), t) = 0 for all t0 ≤ t < tf , and ρ′((u, v), t) = 1 for t > tf . Consider

the execution of A in G′ starting at time t0 with x as the source. Since (u, v)
does not appear from t0 to tf , the execution of A at every node in G′ will be

exactly as at the corresponding node in G and terminate with v having received

the information in more than one hop, contradicting the correctness of A.

4.1.2 Knowledge of ∆

The idea is to propagate the message along the edges of a breadth-first span-

ning tree of the underlying graph. Assuming that the message is created at some

date t, the mechanism consists of authorizing nodes at level i in the tree to in-

form new nodes only between time t + i∆ and t + (i + 1)∆ (doing it sooner

would lead to a non-shortest tree, while doing it later is pointless because all

the edges have necessarily appeared within one ∆). So the broadcast is confined

into rounds of duration ∆ as follows: whenever a node sends the information to

another, it sends a time value that indicates the remaining duration of its round,

that is, the starting date of its own round plus ∆ minus the current time minus

the crossing delay, so that the receiving node knows when to start informing new

nodes in turn (if it had not the information yet). If a node has not informed any

other node during its round, it notifies its parent. When a node has been notified

by all its children, it notifies its parent. Note that this requires parents to keep

track of the number of children they have, and thus children need to send affil-

iation messages when they select a parent. Finally, when the emitter has been

notified by all its children, it knows that the broadcast is terminated.

Theorem 10. When ∆ is known, TDBroadcast[shortest] can be solved in B
exchanging O(m) info. messages and O(n) control messages, in O(n∆) time.
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Reusability for subsequent broadcasts. Since shortest trees remain shortest re-

gardless of the emission date, all subsequent broadcasts can be performed within

the tree built during the first broadcast, which reduces the number of informa-

tion message from O(m) to O(n) in these subsequent broadcasts (assuming the

nodes memorized the set of their children during the first broadcast). Moreover,

if the depth d of the tree is reported through the first notification process, then

all subsequent broadcasts can have an implicit termination detection which is

optimal in time (after d∆ time), and no control message is needed.

4.1.3 Knowledge of n and ∆. When both n and ∆ are known the same

dissemination procedure as in the previous section can be applied and, since

n∆ is an upper bound on the termination time, an implicit termination detection

can be used. This allows the nodes to exchange no control messages at all.

Theorem 11. When n and ∆ are known, TDBroadcast[shortest] can be solved

in B exchanging O(m) info. messages and no control messages, in O(n∆) time.

Reusability for subsequent broadcasts. Note that the solution discussed above

offers no gain on the number of information messages in the subsequent broad-

casts. An alternative solution would be to achieve explicit termination for the

first broadcast in order to build a reusable broadcast tree (and learn its depth d
in the process). In this case, dissemination is achieved with O(m) information

messages, termination detection is achieved similarly to the algorithm where

only ∆ is known with O(n) control messages (where however affiliation mes-

sages are not necessary, and the number of control messages would decrease to

n − 1). In this way the control messages would increase, but subsequent broad-

casts could reuse the tree for dissemination with O(n) information messages,

and termination detection could be implicit with no exchange of control mes-

sage at all after d∆ time. The choice of either solution may depend on the size

of an information message and the expected number of broadcasts planned.
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