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Abstract. Originally proposed for privacy protection in the context of statisti-

cal databases, differential privacy is now widely adopted in various models of

computation. In this paper we investigate techniques for proving differential pri-

vacy in the context of concurrent systems. Our motivation stems from the work

of Tschantz et al., who proposed a verification method based on proving the ex-

istence of a stratified family between states, that can track the privacy leakage,

ensuring that it does not exceed a given leakage budget. We improve this tech-

nique by investigating a state property which is more permissive and still implies

differential privacy. We consider two pseudometrics on probabilistic automata:

The first one is essentially a reformulation of the notion proposed by Tschantz et

al. The second one is a more liberal variant, relaxing the relation between them by

integrating the notion of amortisation, which results into a more parsimonious use

of the privacy budget. We show that the metrical closeness of automata guaran-

tees the preservation of differential privacy, which makes the two metrics suitable

for verification. Moreover we show that process combinators are non-expansive

in this pseudometric framework. We apply the pseudometric framework to reason

about the degree of differential privacy of protocols by the example of the Dining

Cryptographers Protocol with biased coins.

1 Introduction

Differential privacy [14] was originally proposed for privacy protection in the context

of statistical databases, but nowadays it is becoming increasingly popular in many other

fields, ranging from programming languages [24] to social networks [23] and geoloca-

tion [20]. One of the reasons of its success is its independence from side knowledge,

which makes it robust to attacks based on combining various sources of information.

In the original definition, a query mechanism A is ǫ-differentially private if for

any two databases u1 and u2 which differ only for one individual (one row), and any

property Z , the probability distributions of A(u1),A(u2) differ on Z at most by eǫ,
namely, Pr[A(u1) ∈ Z] ≤ eǫ · Pr[A(u2) ∈ Z]. This means that the presence (or the

data) of an individual cannot be revealed by querying the database. In [7], the principle

of differential privacy has been formally extended to measure the degree of protection

of secrets in more general settings.
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tional Natural Science Foundation of China (Grant No.60833001).



In this paper we deal with the problem of verifying differential privacy properties for

concurrent systems, modeled as probabilistic automata admitting both nondeterministic

and probabilistic behavior. In such systems, reasoning about the probabilities requires

solving the nondeterminism first, and to such purpose the usual technique is to consider

functions, called schedulers, which select the next step based on the history of the com-

putation. However, in our context, as well as in security in general, we need to restrict

the power of the schedulers and make them unable to distinguish between secrets in the

histories, or otherwise they would plainly reveal them by their choice of the step. See

for instance [6, 8, 2] for a discussion on this issue. Thus we consider a restricted class of

schedulers, called admissible schedulers, following the definition of [2]. Admissibility

is introduced to deal with bisimulation-like notions in security contexts: Two bisimilar

processes are typically considered to be indistinguishable, yet an unrestricted scheduler

could trivially separate them.

The property of differential privacy requires that the observations generated by two

different secret values be probabilistically similar. In standard concurrent systems the

notion of similarity is usually formalized as an equivalence, preferably preserved un-

der composition, i.e., a congruence. We mention in particular trace equivalence and

bisimulation. The first is often used for its simplicity, but in general is not composi-

tional [17]. The second one is a congruence and it is appealing for its proof technique.

Process equivalences have been extensively used to formalize security properties like

secrecy [1] and noninterference [15, 25, 26].

In this paper we focus on metrics suitable for verifying differential privacy. Namely,

metrics for which the distance between two processes determines an upper bound on

the ratio of the probabilities of the respective observables. We start by considering the

framework proposed by Tschantz et al. [27], which was explicitly designed for the pur-

pose of verifying differential privacy. Their verification technique is based on proving

the existence of an indexed family of bijections between states. The parameter of the

starting states, representing the privacy budget, determines the level of differential pri-

vacy of the system, which decreases over time by subtracting the absolute difference

of probabilities in each step during mutual simulation. Once the balance reaches zero,

processes must behave exactly the same. We reformulate this notion in the form of a

pseudometric, showing some novel properties as a distance relation.

The above technique is sound, but has a rather rigid budget management. The main

goal of this paper is to make the technique more permissive by identifying a pseudo-

metric that is more relaxed and still implies an upper bound on the privacy leakage.

In particular, the pseudometric we propose is based on a thriftier use of the privacy

budget, which is inspired by the notion of amortisation used in some quantitative bisim-

ulations [18, 10]. The idea is that, when constructing the bijections between states, the

differences among the probabilities of related states are kept with their sign, and added

with their sign through each step. In this way, successive differences can compensate

(amortise) each other, and rather than always being consumed, the privacy budget may

also be refurbished. In [18] the idea of amortisation is applied on a set of cost-based ac-

tions. The quantitative feature considered here is discrete probability distributions over

states, which is shown to benefit from the theory of amortisation as well.
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Furthermore, there is a soundness criterion on the distance notion for probabilistic

concurrent systems defined in [13]. It says that 0-distance in a pseudometric is expected

to fully characterise bisimilarity. We show that 0-distance in the two pseudometrics im-

plies bisimilarity while the converse does not hold. Although the pseudometrics do not

thoroughly satisfy the criterion, we prove that several process combinators including

parallel composition are non-expansive in the pseudometrics. Non-expansiveness gives

a desirable property that when close processes are placed in the same context, the re-

sulting processes are still close in the distance. This can be viewed as an analogue of the

congruence properties of bisimulation. Finally, we illustrate the verification technique

of differential privacy using the example of the Dining Cryptographers Problem(DCP)

with biased coins.

More related Work. Verification of differential privacy has become an active area of

research. Among the approaches based on formal methods, we mention those based on

type-systems [24, 16] and logical formulations [3].

In a previous paper [28], one of the authors has developed a compositional method

for proving differential privacy in a probabilistic process calculus. The technique there

is rather different from the ones presented in paper: the idea is based on decomposing

a process in simpler processes, computing the level of privacy of these, and combining

them to obtain the level of privacy of the original program.

A line of one very interesting approach related to ours in spirit - considering pseu-

dometrics on probabilistic automata - includes the work by Desharnais et al. [13] and

Deng et al. [11]. They both use the metric à la Kantorovich proposed in [13], which

represents a cornerstone in the area of bisimulation metrics. It would be attractive to

see how the Kantorovich metric can be adapted to reason about differential privacy.

Finally, among several formalizations of the notion of information protection based

on probability theory, we mention some rather popular approaches, mainly based on

information theory, in particular, to consider different notions of entropy depending on

the kind of adversary, and to express the leakage of information in terms of the notion of

mutual information. We name a few works also discussed in the models of probabilis-

tic automata and process algebra: Boreale [4] establishs a framework for quantifying

information leakage using absolute leakage, and introduces a notion of rate of leakage.

Deng et al. [12] use the notion of relative entropy to measure the degree of anonymity.

Compositional methods based on Bayes risk method are discussed by Braun et al. [5]. A

metric for probabilistic processes based on the Jensen-Shannon divergence is proposed

in [22] for measuring information flow in reactive processes. Unlike the information-

theoretical approach, differential privacy provides strong privacy guarantees indepen-

dently from side knowledge. However, progress for differential privacy has been rela-

tively new and going slowly. It would be interesting to see how the issues stressed and

the reasoning techniques developed there can be adapted for differential privacy.

Contribution. The main contributions of this paper can be summarized as follows:

- We reformulate the notion of approximate similarity proposed in [27] in terms of a

pseudometric and we study the properties of the distance relation (in Section 3).
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- We propose the second pseudometric which is more liberal than the former one, in

the sense that the total differences of probabilities get amortised during the mutual

simulation. We show that the level of differential privacy is continuous with respect

to the metric, which says that if every two processes running on two adjacent secrets

of a system are close in the metric then the system is differentially private, making

the metric suitable for verification (in Section 4).

- We show that 0-distance in the pseudometrics implies bisimilarity (in Section 5).

- We present the non-expansiveness property in the pseudometrics for CCSp operators

in a probabilistic variant of Milner’s CCS [21] (in Section 6).

- We use the pseudometric framework to show that the Dining Cryptographers protocol

with probability-p biased coins is | ln p
1−p

|-differentially private. (in Section 7).

The rest of the Paper. In the next section we recall some preliminary notions about

probabilistic automata, differential privacy and pseudometrics. Section 8 concludes.

Detailed proofs can be found in the appendix.

2 Preliminaries

2.1 Probabilistic automata

Given a set X , we denote by Disc(X) the set of discrete sub-probability measures

over X ; the support of a measure µ is defined as supp(µ) = {x ∈ X |µ(x) > 0}. A

probabilistic automaton (henceforth PA) A is a tuple (S, s, A,D) where S is a finite set

of states, s ∈ S is the start state, A is a finite set of action labels, and D ⊆ S × A ×
Disc(S) is a transition relation. We write s

a
−→ µ for (s, a, µ) ∈ D, and we denote

by act(d) the action of the transition d ∈ D. A PA A is fully probabilistic if from each

state of A there is at most one transition available.

An execution α of a PA is a (possibly infinite) sequence s0a1s1a2s2 . . . of alternat-

ing states and labels, such that for each i : si
ai+1

−→ µi+1 and µi+1(si+1) > 0. We use

lstate(α) to denote the last state of a finite executionα. We use Exec∗(A) andExec(A)
to represent the set of finite and all executions of A, respectively. A scheduler of a PA

A = (S, s, A,D) is a function ζ : Exec∗(A) 7→ D such that ζ(α) = s
a

−→ µ ∈ D
implies that s = lstate(α). The idea is that a scheduler selects a transition among the

ones available in D, basing its decision on the history of the execution. The execution

tree of A with respect to the scheduler ζ, denoted by Aζ , is a fully probabilistic au-

tomaton (S′, s′, A′, D′) such that S′ ⊆ Exec∗(A), s′ = s, A′ = A, and α
a

−→ ν ∈ D′

if and only if ζ(α) = lstate(α)
a

−→ µ for some µ and ν(αas) = µ(s). Intuitively,

Aζ is produced by unfolding the executions of A and resolving all non-deterministic

choices using ζ. Note that Aζ is a simple and fully probabilistic automaton. We use α
with primes and indices to range over states in an execution tree.

A trace is a sequence of labels in A∗ ∪ Aω obtained from executions by removing

states. We use [ ] to represent the empty trace, and a to concatenate two traces. A state

α of Aζ induces a probability measure over traces as follows. The basic measurable

events are the cones of finite traces, where the cone of a finite trace t, denoted by Ct, is

the set {t′ ∈ A∗ ∪ Aω|t ≤ t
′}, where ≤ is the standard prefix preorder on sequences.
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The probability of a cone Ct induced by state α, denoted by Prζ [α ⊲ t], is defined

recursively as follows.

Prζ [α ⊲ t] =















1 if t = [ ],
0 if t = aat′ and act(ζ(α)) 6= a,
∑

si∈supp(µ) µ(si)Prζ [αasi ⊲ t
′]

if t = aat′ and ζ(α) = s
a

−→ µ.

(1)

Admissible schedulers. We consider a restricted class of schedulers, called admissi-

ble schedulers, following the definition of [2]. Essentially this definition requires that

whenever given two adjacent states s, s′, namely, differing only for the choice for some

secret value, then the choice made by the scheduler on s and s′ should be consistent, i.e.

the scheduler should not be able to make a different choice on the basis of the secret.

Note that in [27] scheduling is not an issue since non-determinism is not allowed.

More precisely, in [2] admissibility is achieved by introducing tags for transitions.

Admissible schedulers are viewed as entities that have access to a system through a

screen with buttons, where each button represents one (current) available option, i.e.

an enabled tag. A scheduler ζ is admissible if for all finite executions having the same

sequence of screens, ζ decides the same tagged transition for them.

Pseudometrics on states. A pseudometric1 on S is a function m : S2 → R satisfying

the following properties: m(s, s) = 0 (reflexivity), m(s, t) = m(t, s) (symmetry) and

m(s, t) ≤ m(s, u) + m(u, t) (triangle inequality). We define m1 � m2 iff ∀s, t :
m1(s, t) ≥ m2(s, t) (note that the order is reversed).

2.2 Differential privacy

Differential privacy [14] was originally defined in the context of statistical databases,

by requiring that a mechanism (i.e. a probabilistic query) gives similar answers on ad-

jacent databases, that is those differing on a single row. More precisely, a mechanism

K satisfies ǫ-differential privacy iff for all adjacent databases x, x′: Pr[K(x) ∈ Z] ≤
eǫ · Pr[K(x′) ∈ Z] for all Z ⊆ range(K). Differential privacy imposes looser restric-

tions on non-adjacent secrets, which is considered as another merit of it.

In this paper, we study concurrent systems taking a secret as input and producing

an observable trace as output. Let U be a set of secrets and ∼ an adjacency relation

on U , where u ∼ u′ denotes the fact that two close secrets u, u′ should not be easily

distinguished by the adversary after seeing observable traces. A concurrent system A
is a mapping of secrets to probabilistic automata, where A(u), u ∈ U is the automaton

modelling the behaviour of the system when running on u. Differential privacy can be

directly adapted to this context:

Definition 1 (Differential Privacy). A concurrent system A satisfies ǫ-differential pri-

vacy (DP) iff for any u ∼ u′, any finite trace t and any admissible scheduler ζ:

Prζ [A(u) ⊲ t] ≤ eǫ · Prζ [A(u′) ⊲ t]

1 Unlike a metric, points in a pseudometric need not be distinguishable; that is, one may have

m(s, t) = 0 for distinct values s 6= t.
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3 The accumulative pseudometric

In this section, we present the first pseudometric based on a reformulation of the relation

family proposed in [27]. We reformulate their notion in the form of an approximate

bisimulation relation, named accumulative bisimulation, and then use it to construct a

pseudometric on the state space.

We start by defining an approximate lifting operation that lifts a relation over states

to a relation over distributions. Intuitively, we use a parameter ǫ to represent the total

privacy leakage budget. A parameter c ranging over [0, ǫ], starting from 0, records the

current amount of leakage and increasing over time by adding the maximum absolute

difference of probabilities, denoted by σ, in each step during mutual simulation. Once

c reaches the budget bound ǫ, processes must behave exactly the same. Since the total

bound is ǫ, only a total of ǫ privacy can be leaked, a fact that will be used later to verify

differential privacy. We use D to simply differentiate notions of this section from the

following sections.

Definition 2. Let ǫ > 0, c ∈ [0, ǫ], R ⊆ S×S× [0, ǫ]. The D-approximate lifting of R
up to c, denoted by LD(R, c), is the relation on Disc(S) defined as:

µLD(R, c)µ′ iff ∃ bijection β : supp(µ) → supp(µ′) such that

∀s ∈ supp(µ) : (s, β(s), c + σ) ∈ R where σ = max
s∈supp(µ)

| ln
µ(s)

µ′(β(s))
|

This lifting allows us to define an approximate bisimulation relation:

Definition 3 (Accumulative bisimulation). A relation R ⊆ S × S × [0, ǫ] is a ǫ-
accumulative bisimulation iff for all (s, t, c) ∈ R:

1. s
a

−→ µ implies t
a

−→ µ′ with µLD(R, c)µ′

2. t
a

−→ µ′ implies s
a

−→ µ with µLD(R, c)µ′

We can now define a pseudometric based on accumulative bisimulation as:

mD(s, t) = min{ǫ | (s, t, 0) ∈ R for some ǫ-accumulative bisimulation R}

Proposition 1. mD is a pseudometric, that is:

1. (reflexivity) mD(s, s) = 0
2. (symmetry) mD(s1, s2) = mD(s2, s1)
3. (triangle inequality) mD(s1, s3) ≤ mD(s1, s2) +mD(s2, s3)

Proof Sketch. The proof proceeds by showing for each clause respectively that: 1.

IdS = {(s, s, 0)|s ∈ S} is a 0-accumulative bisimulation; 2. Assume that (s1, s2, 0)
is in a ǫ-accumulative bisimulation R, then R′ = {(s′2, s

′

1, c)|(s
′

1, s
′

2, c) ∈ R} is

a ǫ-accumulative bisimulation; 3. Assume that (s1, s2, 0) is in the ǫ1-accumulative

bisimulation R1 ⊆ S × S × [0, ǫ1], (s2, s3, 0) is in the ǫ2-accumulative bisimulation

R2 ⊆ S × S × [0, ǫ2]. Their relational composition R1R2 ⊆ S × S × [0, ǫ1 + ǫ2]:

{(s′1, s
′

3, c)|∃s
′

2, c1, c2.(s
′

1, s
′

2, c1) ∈ R1 ∧ (s′2, s
′

3, c2) ∈ R2 ∧ c ≤ c1 + c2}

is a ǫ1 + ǫ2-accumulative bisimulation. ⊓⊔
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0.4 0.6

(b) A(u2)

Fig. 1: A PIN-checking system: mD(A(u1),A(u2))=∞, mA(A(u1),A(u2)) = ln 9
4

Verification of differential privacy using mD. As already shown in [27], the closeness

of processes in the relation family implies a level of differential privacy. We here restate

this result in terms of the metric mD.

Lemma 1. Given a PA A, let R be a ǫ-accumulative bisimulation, c ∈ [0, ǫ], let ζ
be an admissible scheduler, t be a finite trace, α1, α2 two finite executions of A. If

(lstate(α1), lstate(α2), c) ∈ R, then

1

eǫ−c
≤

Prζ [α1 ⊲ t]

Prζ [α2 ⊲ t]
≤ eǫ−c

The above lemma shows that in a ǫ-accumulative bisimulation, two states related by

a current leakage amount c, produce distributions over the same trace that only deviate

by a factor (ǫ− c) representing the remaining amount of leakage. Then it is easy to get

that the level of differential privacy is continuous with respect to mD.

Theorem 1. A concurrent system A is ǫ-differentially private if mD(A(u),A(u′)) ≤ ǫ
for all u ∼ u′.

4 The amortised pseudometric

As shown in the previous section, mD is useful for verifying differential privacy. How-

ever, a drawback of this metric is that the definition of accumulative bisimulation is

too restrictive: first, the amount of leakage is only accumulated, independently from

whether the difference in probabilities is negative or positive. Moreover, the accumu-

lation is the same for all branches, and equal to the worst branch, although the actual

difference on some branch might be small. As a consequence, mD is inapplicable in

several systems, as shown by the following toy example.
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Example 1. Consider a PIN-checking system A(u) in which the PIN variable u is des-

ignated from two secret codes u1 and u2. In order to protect the secrecy of the two

PINs, rather than announcing to a user deterministically that whether the password he

enters is correct or wrong, the system makes a response probabilistically. The idea is to

give a positive answer with a higher probability when the password and the PIN match,

and to give a negative answer with a higher probability otherwise.

The PIN-checking system could be defined as the PA shown in Fig. 1.We use label

ai to model the behavior that the password entered by a user is ui, where i ∈ {1, 2}.

We use label ok and no to represent a positive and a negative answer, respectively.

Consider an admissible scheduler always choosing for A(u1) the a1-branch (the

case for the a2-branch is similar), thus scheduling for A(u2) also the a1-branch. It is

easy to see that the ratio of probabilities for A(u1) and A(u2) producing the same finite

sequences (a1no a2 no)
∗ is (0.4×0.6

0.6×0.4 )
∗ = 1. For the rest sequences (a1no a2 no)

∗a1ok

and (a1noa2 no)
∗a1no a2 ok, we can check that the ratios are bounded by 9

4 . Thus, A
satisfies ln 9

4 -differential privacy. However, we can not find an accumulative bisimula-

tion with a bounded ǫ between A(u1) and A(u2). The problem lies in that the leakage

amount is always accumulated by adding the absolute differences during cyclic simula-

tions, resulting in a convergence to ∞.

In order to obtain a more relaxed metric, we employ the amortised bisimulation

relation of [18, 10]. The main intuition behind this notion is that the privacy leakage

amount in each simulation step may be either reduced due to a negative difference of

probabilities, or increased due to a positive difference. Hence, the long-term budget gets

amortised, in contrast to the accumulative bisimulation in which the budget is always

consumed. We start by defining the corresponding lifting, using A to represent amor-

tised bisimulation-based notions. Note that the current leakage c ranges over [−ǫ, ǫ].

Definition 4. Let ǫ > 0, c ∈ [−ǫ, ǫ], R ⊆ S × S × [−ǫ, ǫ]. The A-approximate lifting

of R up to c, denoted by LA(R, c), is a relation on Disc(S) defined as:

µLA(R, c)µ′ iff ∃ bijection β : supp(µ) → supp(µ′) such that

∀s ∈ supp(µ) : (s, β(s), c+ ln
µ(s)

µ′(β(s))
) ∈ R

Note that if ln µ(s)
µ′(β(s)) is positive, then after this mutual step, the current leakage for

s and β(s) gets increased, otherwise decreased. We are now ready to define amortised

bisimulation.

Definition 5 (Amortised bisimulation). A relation R ⊆ S × S × [−ǫ, ǫ] is a ǫ-
amortised bisimulation iff for all (s, t, c) ∈ R:

1. s
a

−→ µ implies t
a

−→ µ′ with µLA(R, c)µ′

2. t
a

−→ µ′ implies s
a

−→ µ with µLA(R, c)µ′

Similarly to the previous section, we can finally define a pseudometric on states as:

mA(s, t) = min{ǫ | (s, t, 0) ∈ R for some ǫ-amortised bisimulation R}

Proposition 2. mA is a pseudometric.
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Proof Sketch. The proof proceeds by showing that: 1. IdS = {(s, s, 0)|s ∈ S} is a

0-amortised bisimulation; 2. Assume that (s1, s2, 0) is in a ǫ-amortised bisimulation

R, then R′ = {(s′2, s
′

1, c) |(s′1, s
′

2,−c) ∈ R} is a ǫ-amortised bisimulation; 3. Let

(s1, s2, 0) be in the ǫ1-amortised bisimulation R1 ⊆ S × S × [−ǫ1, ǫ1], (s2, s3, 0) be

in the ǫ2-amortised bisimulation R2 ⊆ S × S × [−ǫ2, ǫ2]. Their relational composition

R1R2 ⊆ S × S × [−ǫ1 − ǫ2, ǫ1 + ǫ2]:

{(s′1, s
′

3, c)|∃s
′

2, c1, c2.(s
′

1, s
′

2, c1) ∈ R1 ∧ (s′2, s
′

3, c2) ∈ R2 ∧ c1 + c2 = c}

is a ǫ1 + ǫ2-amortised bisimulation. ⊓⊔

Verification of differential privacy using mA. We now show that mA can be used to

verify differential privacy.

Lemma 2. Given a PA A, let R be a ǫ-amortised bisimulation, c ∈ [−ǫ, ǫ], let ζ
be an admissible scheduler, t be a finite trace, α1, α2 two finite executions of A. If

(lstate(α1), lstate(α2), c) ∈ R, then

1

eǫ+c
≤

Prζ [α1 ⊲ t]

Prζ [α2 ⊲ t]
≤ eǫ−c

Note that there is a subtle difference between Lemmas 1 and 2, in that the denominator

in the left-hand bound is eǫ+c instead of eǫ−c. This comes from the amortised nature of

R. We can now show that differential privacy is continuous with respect to mA as well.

Theorem 2. A concurrent system A is ǫ-differentially private if mA(A(u),A(u′)) ≤ ǫ
for all u ∼ u′.

Example 2 (Example 1 revisited). Consider again the concurrent system shown in Fig. 1.

Let S and T denote the state space of A(u1) and A(u2), respectively. Let R ⊆ S×T ×
[ln 4

9 , ln
9
4 ]. It is straightforward to check according to Def. 5 that the following relation

is an amortised bisimulation between A(u1) and A(u2).

R = { (A(u1),A(u2), 0),

(s2, t2, ln
2
3 ), (s5, t5, ln

3
2 ), (s3, t3, ln

2
3 ), (s4, t4, 0), (s5, t5, ln

4
9 ),

(s6, t6, ln
3
2 ), (s5, t5, ln

2
3 ), (s7, t7, ln

3
2 ), (s8, t8, 0), (s5, t5, ln

9
4 ) }

Thus mA(A(u1),A(u2)) ≤ ln 9
4 . By Theorem 2, A is ln 9

4 -differentially private.

5 Comparing the two pseudometrics

In this section, we formally compare the two metrics, showing that our pseudometric is

indeed more liberal than the first one. Moreover,we investigate whether they can fully

characterise bisimilarity. We show that mD and mA only imply bisimilarity, while the

converse direction does not hold because of the strong requirement of the bijections in

their definitions.

We show that mA is bounded by mD. Note the converse does not hold, since Ex-

amples 1 and 2 already show the cases in which mD is infinite while mA is finite.

9



Lemma 3. mD � mA.

Proof Sketch. Let RD ⊆ S × S × [0, ǫ] be the ǫ-accumulative bisimulation such that

(s, t, 0) ∈ RD . It is sufficient to show that the relation RA ⊆ S × S × [−ǫ, ǫ] defined

on the basis of RD as follows is a ǫ-amortised bisimulation.

(s′, t′, cA) ∈ RA iff ∃cD.(s′, t′, cD) ∈ RD ∧ |cA| ≤ cD

Relations with probabilistic bisimilarity. We adopt the notion of probabilistic bisimi-

larity which was first defined in [19]. An equivalence relation over S can be lifted to a

relation over distributions over S by stating that two distributions are equivalent if they

assign the same probability to the same equivalence class.

Formally, let R ⊆ S×S be an equivalence relation. Two probability distributionsµ1

and µ2 are R-equivalent, written µ1L(R)µ2, iff for every equivalence class E ∈ S/R
we have µ1(E) = µ2(E), in which µi(E) =

∑

s∈E µi(s), i = 1, 2.

Definition 6. An equivalence relation R ⊆ S × S is a strong bisimulation iff for all

(s, t) ∈ R, s
a

−→ µ implies t
a

−→ µ′ with µL(R)µ′ 2. We write s ∼ t whenever there is

a strong bisimulation that relates them. ∼ is the maximum strong bisimulation, namely

strong bisimilarity.

Proposition 3. The following hold:

– mD(s, t) = 0 ⇒ s ∼ t
– mA(s, t) = 0 ⇒ s ∼ t

The proofs are achieved by showing that the relation R induced by 0 distance in mA

(or mD), namely, (s, t) ∈ R iff mA(s, t) = 0, is a strong bisimulation.

6 Process algebra

Process algebras provide the link to the desired compositional reasoning about approx-

imate equality in such a pseudometric framework. We would like process operators to

be non-expansive in the pseudometrics, which allows us to estimate the degree of differ-

ential privacy of a complex system from its components. In this section we consider a

simple process calculus whose semantics is given by probabilistic automata. We define

prefixing, non-deterministic choice, probabilistic choice, restriction and parallel com-

position constructors for the process calculus, and show that they are non-expansive in

the sense that when neighboring processes are placed in the same context, the resulting

processes are still neighboring.

The syntax of CCSp is:

α ::= a | a | τ prefixes

P,Q ::= α.P | P |Q | P +Q |
⊕

i∈1..n piPi | (νa)P | 0 processes

Here
⊕

i∈1..n piPi stands for a probabilistic choice constructor, where the pi’s repre-

sent positive probabilities, i.e., they satisfy pi ∈ (0, 1] and
∑

i∈1..n pi = 1. It may be

2 The converse is implied by the symmetry of the equivalence relation R.
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ACT
α.P

α
−→ δ(P )

PROB
⊕

i∈I pi Pi
τ

−→
∑

i pi Pi

SUM1
P

α
−→ µ

P +Q
α

−→ µ
PAR1

P
α

−→ µ

P |Q
α

−→ µ |Q

COM
P

a
−→ δ(P ′) Q

a
−→ δ(Q′)

P |Q
τ

−→ δ(P ′ |Q′)
RES

P
α

−→ µ α 6= a, a

(νa)P
α

−→ (νa)µ

Fig. 2: The semantics of CCSp. SUM1 and PAR1 have corresponding right rules SUM2

and PAR2, omitted for simplicity.

occasionally written as p1P1 ⊕ · · · ⊕ pnPn. The rest constructors are the standard ones

in Milner’s CCS [21].

The semantics of a CCSp term is a probabilistic automaton defined according to

the rules in Fig. 2. We write s
a

−→ µ when (s, a, µ) is a transition of the probabilistic

automaton. We also denote by µ|Q the measure µ′ such that µ′(P |Q) = µ(P ) for all

processes P and µ′(R) = 0 if R is not of the form P |Q. Similarly (νa)µ = µ′ such that

µ′((νa)P ) = µ(P ). A transition of the form P
a

−→ δ(P ′), i.e. a transition having for

target a Dirac measure, corresponds to a transition of a non-probabilistic automaton.

Proposition 4. If m(P,Q) ≤ ǫ, where m ∈ {mD,mA}, then

1. m(a.P, a.Q) ≤ ǫ

2. m(pR⊕ (1 − p)P, pR⊕ (1− p)Q) ≤ ǫ

3. m(R+ P,R+Q) ≤ ǫ

4. m((νa)P, (νa)Q) ≤ ǫ

5. m(R |P,R |Q) ≤ ǫ.

Proof sketch. The proof proceeds by finding a ǫ-accumulative (resp. amortised) bisimu-

lation relation witnessing their distance inm not greater than ǫ. Let R be a ǫ-accumulative

(resp. amortised) bisimulation relation witnessing m(P,Q) ≤ ǫ. Define the relation

IdS = {(s, s, 0)|s ∈ S}. We construct for each clause a relation R′ as follows and

show that it is a ǫ-accumulative (resp. amortised) bisimulation relation.

1. R′ = { (a.P, a.Q, 0) } ∪R,

2. R′ = { (pR⊕ (1− p)P, pR ⊕ (1− p)Q, 0) } ∪ R ∪ IdR,

3. R′ = { (R+ P,R +Q, 0) } ∪ R ∪ IdR,

4. R′ = { ((νa)P ′, (νa)Q′, c) | (P ′, Q′, c) ∈ R},

5. R′ = { (R′ |P ′, R′ |Q′, c) | (P ′, Q′, c) ∈ R} ∪ IdR.
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Fig. 3: Chaum’s system for the Dining Cryptographers.

7 An application to the Dining Cryptographers Protocol

In this section we use the pseudometric method to reason about the degree of differential

privacy of the Dining Cryptographers Protocol [9] with biased coins. In particular, we

show that with probability-p biased coins, the degree of differential privacy in the case

of three cryptographers is | ln p
1−p

|. This result can also be generalized to the case of n
cryptographers.

The problem of the Dining Cryptographers is the following: Three cryptographers

dine together. After the dinner, the bill has to be paid by either one of them or by

another agent called the master. The master decides who will pay and then informs

each of them separately whether he has to pay or not. The cryptographers would like

to find out whether the payer is the master or one of them. However, in the latter case,

they wish to keep the payer anonymous.

The Dining Cryptographers Protocol (DCP) solves the above problem as follows:

each cryptographer tosses a fair coin which is visible to himself and his neighbor to

the left. Each cryptographer checks his own coin and the one to his right and, if he is

not paying, announces “agree” if the two coins are the same and “disagree” otherwise.

However, the paying cryptographer says the opposite. It can be proved that the master

is paying if and only if the number of disagrees is even [9].

The graph shown in Fig. 3 illustrates the dinner-table and the allocation of the coins

between the three cryptographers. We consider the coins which are probability-p biased,

i.e., producing 0 (for “head”) with probability p, and 1 (for “tail”) with 1 − p. We

consider the final announcement in the order of out0out1out2, with out i ∈ {a, d} (a
for “agree” and d for “disagree”, i ∈ {0, 1, 2}) announced by Crytpi. For example, if

Crytp0 is designated to pay, Coin0Coin1Coin2 = 010, then out0out1out2 = ada.

We are interested in the case when one of the cryptographers is paying, since that

is the case in which they want to keep the payer anonymous. We use Master (mi) to

denote the system in which Crytpi is designated to pay. To show that the DCP is dif-
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(a) Master(m0)
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τ

(b) Master (m1)

Fig. 4: The probabilistic automata of the Dining cryptographers.

ferentially private, both pseudometrics introduced before can be used. In this problem,

it suffices to find between Master (mi)’s bounded distances in the accumulative pseu-

dometric mD, more precisely, bounded accumulative bisimulation relations.

Proposition 5. A DCP with three cryptographers and with probability-p biased coins

is | ln p
1−p

|-differentially private.

Proof. Fig. 4 shows two probabilistic automata Master(m0) and Master(m1) when

Crytp0 and Crytp1 are paying respectively. Basically they are probabilistic distribu-

tions over all possible outcomes Coin0Coin1Coin2 (i.e. inner states) produced by

the three-coins toss, followed by an announcement determined by each outcome. For

simplicity initial τ transitions are merged harmlessly. Let b0b1b2 and c0c1c2 represent

two inner states of Master(m0) and Master(m1) respectively. There exists a bijection

function f between them:

c0c1c2 = f(b0b1b2) = b0(b1 ⊕ 1)b2

where ⊕ represents the addition modulo 2 (xor), such that the announcement of b0b1b2
can be shown equal to the one of c0c1c2.

Note that, the probability of reaching an inner state b0b1b2 from Master (m0) is

pi(1 − p)(3−i), where i ∈ {0, 1, 2, 3} is the number of 0 in {b0, b1, b2}. Because c0 =
b0, c1 = b1 ⊕ 1, c2 = b2, the ratio between the probabilities of reaching b0b1b2 from

Master (m0) and c0c1c2 from Master(m1) differs at most by | ln p
1−p

|. It is easy to see

that {(Master (m0),Master (m1), 0)} ∪ { (b0b1b2, f(b0b1b2), | ln
p

1−p
|) | b0, b1, b2 ∈

{0, 1} } forms a | ln p
1−p

|-accumulative bisimulation relation. Thus mD(Master(m0),

Master (m1)) ≤ | ln p
1−p

|.

Similarly, we consider the probabilistic automataMaster (m2) when Crytp2 is pay-

ing (though omitted in Fig. 4). Let e0e1e2 represent one of its inner states. We can also
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find a bijection f ′ between c0c1c2 and e0e1e2: e0e1e2 = f ′(c0c1c2) = c0c1(c2 ⊕ 1),
and a bijection f ′′ between b0b1b2 and e0e1e2: e0e1e2 = f ′′(b0b1b2) = (b0 ⊕ 1)b1b2
such that they output same announcements, The rest proceeds as above. By Theorem 1,

the DCP is | ln p
1−p

|-differentially private. ⊓⊔

The above proposition can be extended to the case of n dining cryptographers where

n ≥ 3. We assume that the n cryptographers are fully connected, i.e., that a coin exists

between every pair of cryptographers. Let ckl (k, l ∈ Z, k, l ∈ [0, n− 1], k < l) be the

coin linking two cryptographers Crytpk and Crytpl. In this case the output of Crytpi

would be out i = c0i ⊕ c1i ⊕ · · · ci(n−1) ⊕ pay(i), where pay(i) = 1 if Crytpi pays

and 0 otherwise.

Proposition 6. A DCP with n fully connected cryptographers and with probability-p
biased coins is | ln p

1−p
|-differentially private.

We can see that the more the coins are biased, the worse the privacy gets. If the

coins are fair, namely, p = 1 − p = 1
2 , then the DCP is 0-differentially private, in

which case the privacy is well protected. With the help of the pseudometric method,

we get a general proposition about the degree of differential privacy of DCP. Moreover,

it is obtained through some local information, rather than by computing globally the

summations of probabilities for each trace.

8 Conclusion and future work

We have investigated two pseudometrics on probabilistic automata: the first one is a

reformulation of the notion proposed in [27], the second one is designed in the sense that

the total privacy leakage bound gets amortised. Each of them establishs a framework

for the formal verification of differential privacy for concurrent systems. Namely, the

closer processes are in the pseudometrics, the higher level of differential privacy they

can preserve. We have showed that our pseudometric is more liberal than the former

one. They both impliy strong bisimilarity, and the typical process algebra operators

are non-expansive with respect to the distance in the pseudometrics. We have used the

pseudometric verification method to learn that: A Dining Cryptographers protocol with

probability-p biased coins is | ln p
1−p

|-differentially private.

In this paper we have mainly focused on developing a basic framework for the for-

mal verification of differential privacy for concurrent systems. In the future we plan

to develop more realistic case-studies and applications. Another interesting direction,

which is also our ongoing work, is to investigate a new pseudometric, adapted from the

metric à la Kantorovich proposed in [13], see whether it can fully characterise bisimilar-

ity, and moreover, release the bijection requirement in the definition of the quantitative

bisimulations considered in this paper.
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A Appendix

Proofs are shown according to their orders in the main text.

A.1 Proof of Proposition 1

Proposition 1. mD is a pseudometric, that is:

1. (reflexivity) mD(s, s) = 0
2. (symmetry) mD(s1, s2) = mD(s2, s1)
3. (triangle inequality) mD(s1, s3) ≤ mD(s1, s2) +mD(s2, s3)

Proof. 1. For reflexivity, it is enough to show that the identity relation over the set

S of states, that is the relation IdS = {(s, s, 0)|s ∈ S}, is an 0-accumulative

bisimulation. This is easy.

2. For symmetry, assume that (s1, s2, 0) is in a ǫ-accumulative bisimulation R, we

will show that R′ = {(s′2, s
′

1, c)|(s
′

1, s
′

2, c) ∈ R} is a ǫ-accumulative bisimulation,

thus we have mD(s2, s1) ≤ ǫ.
- It is easy to see that (s2, s1, 0) ∈ R′, because (s1, s2, 0) ∈ R.

- For (s′2, s
′

1, c) ∈ R′, if s′2
a

−→ µ2, we must show that there exists a transition

from s′1: s′1
a

−→ µ1 and µ2L
D(R′, c)µ1. Since (s′1, s

′

2, c) ∈ R, there exists a

transition from s′1 such that s′1
a

−→ µ1 and µ1L
D(R, c)µ2. According to the

definition of D-approximate lifting, there exist a bijection β : supp(µ1) −→
supp(µ2), such that for all s′′1 in supp(µ1), there exists s′′2 ∈ supp(µ2) such that

s′′2 = β(s′′1 ) and (s′′1 , s
′′

2 , c + σ) ∈ R where σ = maxs′′
1
∈supp(µ1) | ln

µ1(s
′′

1 )
µ′(s′′

2
) |.

Then µ2L
D(R′, c)µ1 holds, because we have the inverse of the bijection β satis-

fying s′′1 = β−1(s′′2 ), and (s′′2 , s
′′

1 , c+ σ) ∈ R′.

- For the other direction, it is analogous to the above case.

3. For transitivity, assume that (s1, s2, 0) is in the ǫ1-accumulative bisimulation R1 ⊆
S × S × [0, ǫ1], (s2, s3, 0) is in the ǫ2-accumulative bisimulation R2 ⊆ S × S ×
[0, ǫ2]. we mush show that their relational compositionR1R2 ⊆ S×S×[0, ǫ1+ǫ2]:

{(s′1, s
′

3, c)|∃s
′

2, c1, c2.(s
′

1, s
′

2, c1) ∈ R1 ∧ (s′2, s
′

3, c2) ∈ R2 ∧ c ≤ c1 + c2}

is a ǫ1 + ǫ2-accumulative bisimulation.

- It is easy to see that (s1, s3, 0) ∈ R1R2, because (s1, s2, 0) ∈ R1 and (s2, s3, 0) ∈
R2.

- for (s′1, s
′

3, c) ∈ R1R2, if s′1
a

−→ µ1, we must show that there exists a transition

from s′3: s′3
a

−→ µ3 and µ1L
D(R1R2, c)µ3. Since there exist s′2, c1, c2 such that

(s′1, s
′

2, c1) ∈ R1 and (s′2, s
′

3, c2) ∈ R2 and c ≤ c1 + c2, there exist also a

transition s′2
a

−→ µ2 and µ1L
D(R1, c1)µ2, and hence a transition s′3

a
−→ µ3

and µ2L
D(R2, c2)µ3. By the definition of D-approximate lifting, there exists a

bijection β1 : supp(µ1) −→ supp(µ2), s.t. for all s′′1 in supp(µ1), there exists

s′′2 ∈ supp(µ2) such that s′′2 = β1(s
′′

1 ) and

(s′′1 , s
′′

2 , c1 + σ1) ∈ R1 where σ1 = max
s′′
1
∈supp(µ1)

| ln
µ1(s

′′

1 )

µ2(s′′2 )
|.
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There exists also a bijection β2 : supp(µ2) −→ supp(µ3), s.t. for all s′′2 in

supp(µ2), there exists s′′3 ∈ supp(µ3) such that s′′3 = β2(s
′′

2 ) and

(s′′2 , s
′′

3 , c2 + σ2) ∈ R2 where σ2 = max
s′′
2
∈supp(µ2)

| ln
µ2(s

′′

2 )

µ3(s′′3 )
|.

It holds that µ1L
D(R1R2, c)µ3, because of the composition β1β2 satisfying

β1β2 : supp(µ1) −→ supp(µ3), s.t. for all s′′1 in supp(µ1), there exists s′′3 ∈
supp(µ3) such that s′′3 = β2(β1(s

′′

1 )) and

(s′′1 , s
′′

3 , c+ σ′) ∈ R1R2 where σ′ = max
s′′
1
∈supp(µ1)

| ln
µ1(s

′′

1 )

µ3(s′′3 )
|

and c+ σ′ ≤ c1 + σ1 + c2 + σ2.

- For the other direction, it is analogous to the above case.

⊓⊔

A.2 Proof of Proposition 2

Proposition 2. mA is a pseudometric, that is:

1. (reflexivity) mA(s, s) = 0
2. (symmetry) mA(s1, s2) = mA(s2, s1)
3. (triangle inequality) mA(s1, s3) ≤ mA(s1, s2) +mA(s2, s3)

Proof. 1. For reflexivity, it is enough to show that the identity relation over the set S of

states, that is the relation IdS = {(s, s, 0)|s ∈ S}, is an 0-amortised bisimulation.

This is easy.

2. For symmetry, assume that (s1, s2, 0) is in a ǫ-amortised bisimulation R, we will

show that R′ = {(s′2, s
′

1, c)|(s
′

1, s
′

2,−c) ∈ R} is a ǫ-amortised bisimulation, thus

we have mA(s2, s1) ≤ ǫ.
- It is easy to see that (s2, s1, 0) ∈ R′, because (s1, s2, 0) ∈ R.

- for (s′2, s
′

1, c) ∈ R′, if s′2
a

−→ µ2, we must show that there exists a transition

from s′1: s′1
a

−→ µ1 and µ2L
A(R′, c)µ1. Since (s′1, s

′

2,−c) ∈ R, there exists

a transition from s′1 such that s′1
a

−→ µ1 and µ1L
A(R,−c)µ2. According to

the definition of A-approximate lifting, there is a bijection β : supp(µ1) −→
supp(µ2), s.t. for all s′′1 in supp(µ1), there exists s′′2 ∈ supp(µ2) such that s′′2 =
β(s′′1 ) and (s′′1 , s

′′

2 ,−c+lnµ1(s
′′

1 )−lnµ2(s
′′

2)) ∈ R. Then µ2L
A(R′, c)µ1 holds,

because we have the inverse of the bijection β satisfying s′′1 = β−1(s′′2 ), and

(s′′2 , s
′′

1 , c+ lnµ2(s
′′

2)− lnµ1(s
′′

1 )) ∈ R′.

- For the other direction, it is analogous to the above case.

3. For transitivity, let (s1, s2, 0) be in the ǫ1-amortised bisimulation R1 ⊆ S × S ×
[−ǫ1, ǫ1], (s2, s3, 0) be in the ǫ2-amortised bisimulationR2 ⊆ S×S×[−ǫ2, ǫ2]. we

mush show that their relational composition R1R2 ⊆ S×S × [−ǫ1 − ǫ2, ǫ1 + ǫ2]:

{(s′1, s
′

3, c)|∃s
′

2, c1, c2.(s
′

1, s
′

2, c1) ∈ R1 ∧ (s′2, s
′

3, c2) ∈ R2 ∧ c1 + c2 = c}

is a ǫ1 + ǫ2-amortised bisimulation.
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- It is easy to see that (s1, s3, 0) ∈ R1R2, because (s1, s2, 0) ∈ R1 and (s2, s3, 0) ∈
R2.

- for (s′1, s
′

3, c) ∈ R1R2, if s′1
a

−→ µ1, we must show that there exists a transition

from s′3: s′3
a

−→ µ3 and µ1L
A(R1R2, c)µ3. Since there exist s′2, c1, c2 such that

(s′1, s
′

2, c1) ∈ R1 and (s′2, s
′

3, c2) ∈ R2 and c1 + c2 = c, there exist also a

transition s′2
a

−→ µ2 and µ1L
A(R1, c1)µ2, and hence a transition s′3

a
−→ µ3 and

µ2L
A(R2, c2)µ3. By the definition of A-approximate lifting, there is a bijection

β1 : supp(µ1) −→ supp(µ2), s.t. for all s′′1 in supp(µ1), there exists s′′2 ∈
supp(µ2) such that

s′′2 = β1(s
′′

1) and (s′′1 , s
′′

2 , c1 + lnµ1(s
′′

1)− lnµ2(s
′′

2 )) ∈ R1.

There is also a bijection β2 : supp(µ2) −→ supp(µ3), s.t. for all s′′2 in supp(µ2),
there exists s′′3 ∈ supp(µ3) such that

s′′3 = β2(s
′′

2) and (s′′2 , s
′′

3 , c2 + lnµ2(s
′′

2)− lnµ3(s
′′

3 )) ∈ R2.

It holds that µ1L
A(R1R2, c)µ3, because we have the composition β1β2 satis-

fying β1β2 : supp(µ1) −→ supp(µ3), s.t. for all s′′1 in supp(µ1), there exists

s′′3 ∈ supp(µ3) such that

s′′3 = β2(β1(s
′′

1)) and (s′′1 , s
′′

3 , c+ lnµ1(s
′′

1)− lnµ3(s
′′

3 )) ∈ R1R2.

- For the other direction, it is analogous to the above case.

⊓⊔

A.3 Proof of Lemma 2

Lemma 2. Given a PA A, let R be an ǫ-amortised bisimulation, c ∈ [−ǫ, ǫ], let ζ
be an admissible scheduler, t be a finite trace, α1, α2 two finite executions of A. If

(lstate(α1), lstate(α2), c) ∈ R, then

1

eǫ+c
≤

Prζ [α1 ⊲ t]

Prζ [α2 ⊲ t]
≤ eǫ−c

Proof. We prove by induction on the length of trace t: |t|.

1. |t| = 0: According to equation (1), for any ζ, Prζ [α1 ⊲ t] = Prζ [α2 ⊲ t] = 1.

2. IH: For any two executions α1 and α2 of A, let s1 = lstate(α1) and s2 =
lstate(α2). (s1, s2, c) ∈ R implies that for any admissible scheduler ζ, trace t

′

where |t′| ≤ L: 1
eǫ+c ≤

Prζ [α1⊲t
′]

Prζ [α2⊲t′] ≤ eǫ−c.

3. We have to show that for any admissible scheduler ζ, trace t with |t| = L + 1,

(s1, s2, c) ∈ R implies 1
eǫ+c ≤

Prζ [α1⊲t]
Prζ [α2⊲t] ≤ eǫ−c.

Assume that t = aat′. We prove first the right-hand part Prζ [α1 ⊲ t] ≤ eǫ−c ∗
Prζ [α2 ⊲ t]. According to equation (1), two cases must be considered:

- Case act(ζ(α1)) 6= a. Then Prζ [α1 ⊲ t] = 0. Since ζ is admissible, it schedules

for α2 a transition consistent with α1, namely, not a transition labeled by a either.

Thus Prζ [α2 ⊲ t] = 0, the inequality is satisfied.
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- Case ζ(α1) = s1
a

−→ µ1. So, Prζ [α1 ⊲ t] =
∑

si∈supp(µ1)
µ1(si)Prζ [α1asi ⊲

t
′]. Since (s1, s2, c) ∈ R, there must be also a transition from s2 such that s2

a
−→

µ2 and µ1L
A(R, c)µ2. Since ζ is admissible, ζ(α2) = s2

a
−→ µ2. We use ti to

range over elements in supp(µ2). Thus, Prζ [α2 ⊲ t] =
∑

ti∈supp(µ2)
µ2(ti)·

Prζ [α2ati ⊲ t
′]. Since µ1L

A(R, c)µ2, there is a bijection β : supp(µ1) −→
supp(µ2), s.t. for any si ∈ supp(µ1), there is a state ti ∈ supp(µ2), ti = β(si)
and (si, ti, c + lnµ1(si) − lnµ2(ti)) ∈ R. Apply the inductive hypothesis to

α1asi, α2ati and t
′, we get that:

Prζ [α1asi ⊲ t
′] ≤ eǫ−(c+lnµ1(si)−lnµ2(ti)) ∗ Prζ [α2ati ⊲ t

′] (2)

Thus,

Prζ [α1 ⊲ t] (3)

=
∑

si∈supp(µ1)

µ1(si)Prζ [α1asi ⊲ t
′] (4)

≤
∑

si∈supp(µ1)

µ1(si)e
ǫ−(c+lnµ1(si)−lnµ2(β(si)))Prζ [α2aβ(si) ⊲ t

′] (5)

=
∑

si∈supp(µ1)

µ1(si) ∗
µ2(β(si))

µ1(si)
∗ eǫ−c ∗ Prζ [α2aβ(si) ⊲ t

′] (6)

=
∑

ti∈supp(µ2)

µ2(ti) ∗ e
ǫ−c ∗ Prζ [α2ati ⊲ t

′] (7)

= eǫ−c
∑

ti∈supp(µ2)

µ2(ti)Prζ [α2ati ⊲ t
′] (8)

= eǫ−c ∗ Prζ [α2 ⊲ t] (9)

which completes the proof of right-hand part. Lines (4) and (9) follow from the

equation (1). Line (5) follow from the inductive hypothesis, i.e. Line (2).

For the left-hand part Prζ [α2 ⊲ t] ≤ eǫ+c ∗ Prζ [α1 ⊲ t], exchange the roles of

s1 and s2, use β−1 instead of β, and all the rest is analogous. ⊓⊔

A.4 Proof of Theorem 2

Theorem 2. A concurrent system A is ǫ-differentially private if mA(A(u),A(u′)) ≤ ǫ
for all u ∼ u′.

Proof. Since mA(A(u),A(u′)) ≤ ǫ for all u ∼ u′, by the definition of mA, there exists

a ǫ-amortised bisimulation R such that (A(u),A(u′), 0) ∈ R. By Lemma 2, for any

admissible scheduler ζ, any finite trace t:

1

eǫ
≤

Prζ [A(u) ⊲ t]

Prζ [A(u′) ⊲ t]
≤ eǫ

Thus, A is ǫ-differentially private. ⊓⊔
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A.5 Proof of Lemma 3

Lemma 3. mD � mA.

Proof. Assume that RD ⊆ S × S × [0, ǫ] is the ǫ-accumulative bisimulation such that

(s, t, 0) ∈ RD . We define a relation RA ⊆ S × S × [−ǫ, ǫ] from RD as follows:

(s′, t′, cA) ∈ RA iff ∃cD.(s′, t′, cD) ∈ RD ∧ |cA| ≤ cD (10)

Now we prove that RA is an ǫ-amortised bisimulation.

1. It is easy to see that (s, t, 0) ∈ RA, because (s, t, 0) ∈ RD .

2. Given (s′, t′, cA) ∈ RA, if s′
a

−→ µ1, we must show that there exists a transition

from t′: t′
a

−→ µ2 and µ1L
A(RA, cA)µ2. By (10) we know that there exists cD

such that |cA| ≤ cD and (s′, t′, cD) ∈ RD . Thus there exists a transition from

t′ such that t′
a

−→ µ2 and µ1L
D(RD, cD)µ2. According to the definition of D-

approximate lifting, there exists a bijection β : supp(µ1) −→ supp(µ2), s.t. for all

s′′ in supp(µ1), there exists t′′ ∈ supp(µ2), t
′′ = β(s′′), (s′′, t′′, cD + σ) ∈ RD

where σ = maxs′′∈supp(µ1) | ln
µ1(s

′′)
µ2(t′′)

|. We have |cA + lnµ1(s
′′) − lnµ2(t

′′)| ≤

cD+σ and hence (s′′, t′′, cA+lnµ1(s
′′)− lnµ2(t

′′)) ∈ RA by (10). According to

the definition of A-approximate lifting, it holds that µ1L
A(RA, cA)µ2 as required.

3. For the other direction, it is analogous to the above case.

⊓⊔

A.6 Proof of Proposition 3

Proposition 3. The following hold:

– mD(s, t) = 0 ⇒ s ∼ t
– mA(s, t) = 0 ⇒ s ∼ t

Proof. We present below the proof of the second clause. The first clause mD(s, t) =
0 ⇒ s ∼ t can be obtained straightforwardly from Lemma 3: mD � mA and the

second clause.

Consider the relation R induced by 0 distance in mA. Namely,

(s, t) ∈ R iff mA(s, t) = 0.

Clearly it is an equivalence relation. We show that it is a strong bisimulation. Let

mA(s, t) = 0. Consider some s
a

−→ µ1. Since mA(s, t) = 0, there exists an 0-

amortised bisimulation R′ ⊆ S × S × [0, 0] such that (s, t, 0) ∈ R′. There exist a

bijection β and a distribution µ2 such that t
a

−→ µ2, for any si ∈ supp(µ1), there exists

ti ∈ supp(µ2), ti = β(si) and (si, ti, lnµ1(si)− lnµ2(ti)) ∈ R′. Because the leakage

budget is 0, which says that during the mutual simulation, every step must have exactly

the same probability, i.e. µ1(si) = µ2(ti). Furthermore by (si, ti, 0) ∈ R′, we have

mA(si, ti) = 0, thus [si] = [ti]. Henceforth, µ1([si]) = µ2([si]) for all [si] ∈ S/R as

required. ⊓⊔
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A.7 Proof of Proposition 6

Proof sketch. The proof proceeds analogously to the case of three cryptographers. To

find an accumulative bisimulation relation between every two instances of the DCP

Master (mi) and Master (mj), (i, j ∈ Z, i, j ∈ [0, n − 1], i < j), we point out

here mainly the bijection function between their inner states. Let b12b13 · · · b(n−1)n

and c12c13 · · · c(n−1)n represent the inner states of Master(mi) and Master (mj) re-

spectively, where the subscript (kl), (k, l ∈ Z, k, l ∈ [0, n − 1], k < l), indicates the

coin linking two cryptographers Crytpk and Crytpl. There exists a bijection function

f between them defined as: c12c13 · · · c(n−1)n = f(b12b13 · · · b(n−1)n), precisely,

ckl =

{

bkl ⊕ 1 if kl = ij,

bkl otherwise.

We can check that the bijective states defined in this way produce the same announce-

ment in Master(mi) and Master (mj). Moreover, only the coin (ij) is different, the

ratio between the probability mass of every bijective states is at most | ln p
1−p

|. ⊓⊔
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