
HAL Id: hal-00804114
https://inria.hal.science/hal-00804114

Submitted on 5 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dynamic Deployment of Sensing Experiments in the
Wild Using Smartphones

Nicolas Haderer, Romain Rouvoy, Lionel Seinturier

To cite this version:
Nicolas Haderer, Romain Rouvoy, Lionel Seinturier. Dynamic Deployment of Sensing Experiments in
the Wild Using Smartphones. 13th International IFIP Conference on Distributed Applications and
Interoperable Systems (DAIS), Jun 2013, Florence, Italy. pp.43-56, �10.1007/978-3-642-38541-4_4�.
�hal-00804114�

https://inria.hal.science/hal-00804114
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Dynamic Deployment of Sensing Experiments in the

Wild Using Smartphones

Nicolas Haderer, Romain Rouvoy, and Lionel Seinturier

Inria Lille – Nord Europe,

LIFL - CNRS UMR 8022,

University Lille 1, France

firstname.lastname@inria.fr

Abstract. While scientific communities extensively exploit simulations to vali-

date their theories, the relevance of their results strongly depends on the realism

of the dataset they use as an input. This statement is particularly true when consid-

ering human activity traces, which tend to be highly unpredictable. In this paper,

we therefore introduce APISENSE, a distributed crowdsensing platform for col-

lecting realistic activity traces. In particular, APISENSE provides to scientists a

participative platform to help them to easily deploy their sensing experiments in

the wild. Beyond the scientific contributions of this platform, the technical orig-

inality of APISENSE lies in its Cloud orientation and the dynamic deployment

of scripts within the mobile devices of the participants.We validate this platform

by reporting on various crowdsensing experiments we deployed using Android

smartphones and comparing our solution to existing crowdsensing platforms.

1 Introduction

For years, the analysis of activity traces has contributed to better understand crowd

behaviors and habits [13]. For example, the Urban Mobs initiative1 visualizes SMS or

call activities in a city upon the occurrence of major public events. These activity traces

are typically generated from GSM traces collected by the cellphone providers [21].

However, access to these GSM traces is often subject to constraining agreements with

the mobile network operators, which restrict their publication, and have a scope limited

to telecom data.

In addition to that, activity traces are also used as a critical input to assess the quality

of scientific models and algorithms. As an example, the Reality Mining activity traces2

collected by the MIT Media Lab or the Stanford University Mobile Activity TRAces

(SUMATRA)3 have become a reference testbed to validate mobile algorithms in ad

hoc settings [18]. The Community Resource for Archiving Wireless Data At Dartmouth

(CRAWDAD)4 is another initiative from the Dartmouth College aiming at building a

repository of wireless network traces. Nonetheless, the diversity of the activity traces

1 http://www.urbanmobs.fr
2 http://reality.media.mit.edu
3 http://infolab.stanford.edu/pleiades/SUMATRA.html
4 http://crawdad.cs.dartmouth.edu

available in these repositories remains limited and thus often constrains scientists to

tune inadequate traces by mapping some of the parameters to their requirements. More

recently, some approaches have mined the data exposed by location-based social net-

work like Gowalla or Foursquare, but the content of these activity traces remains limited

to coarse-grained locations collected from users check-ins.

In this context, we believe that cellphones represent a great opportunity to collect

a wide range of crowd activity traces. Largely adopted by populations, with more than

472 millions sold in 2011 (against 297 millions in 2010) according to Gartner institute5,

smartphones have become a key companion in people’s dailylife. Not only focusing on

computing or communication capabilities, modern mobile devices are now equipped of

a wide range of sensors enabling scientist to build a new class of datasets. Furthermore,

the generalization of app stores or markets on many mobile phone platforms leverages

the enrollment of participants to a larger scale than it was possible previously.

Using cellphones to collect user activity traces is reported in the literature either as

participatory sensing [4], which requires explicit user actions to share sensors data, or

as opportunistic sensing where the mobile sensing application collect and share data

without user involvement. These approaches have been largely used in the multiples

research studies including traffic and road monitoring [2], social networking [15] or

environmental monitoring [16]. However, developing a sensing application to collect a

specific dataset over a given population in not trivial. Indeed, a participatory and oppor-

tunistic sensing application needs to cope with a set of key challenges [6,12], including

energy limitation, privacy concern and needs to provide incentive mechanisms in order

to attract participants.

These constraints are making difficult, for scientists non expert in this field, to easily

collect realistic datasets for their studies. But more importantly, the developed ad hoc

applications may neglect privacy and security concerns, resulting in the disclosure of

sensible user information. With regards to the state-of-the-art in this field, we therefore

observe that current solutions lack of reusable approaches for collecting and exploiting

crowd activity traces, which are usually difficult to setup and tied to specific data repre-

sentations and device configurations. We therefore believe that crowdsensing platforms

require to evolve in order to become more open and widely accessible to scientific com-

munities. In this context, we introduce APISENSE, an open platform targeting multiple

research communities, and providing a lightweight way to build and deploy opportunis-

tic sensing applications in order to collect dedicated datasets.

This paper does not focus on user incentive challenges, which we already addressed

in [10] to provide an overview of appropriate levers to encourage scientists and partici-

pants to contribute to such sensing experiments.

The remainder of this paper is organized as follows. We provide an overview of the

APISENSE platform by detailling the server-side infrastructure as well as the client-

side application (cf. Section 2). Then, we report on the case studies we deployed in the

wild using APISENSE (cf. Section 3) before comparing our solution to the state-of-the-

art approaches (cf. Section 4). Finally, we discuss the related work in this domain (cf.

Section 5) before concluding (cf. Section 6).

5 http://www.gartner.com/it/page.jsp?id=1924314

2 Distributed Crowdsensing Platform

The APISENSE platform distinguishes between two roles. The former, called scientist,

can be a researcher who wants to define and deploy an experiment over a large popu-

lation of mobile users. The platform therefore provides a set of services allowing her

to describe experimental requirements in a scripting language, deploying experiment

scripts over a subset of participants and connect other services to the platform in order

to extract and reuse dataset collected in other contexts (e.g., visualization, analysis, re-

play). Technically, the server-side infrastructure of APISENSE is built on the principles

of Cloud computing in order to offer a modular service-oriented architecture, which can

be customized upon scientist requirements. The latter is the mobile phone user, identi-

fied as a participant. The APISENSE platform provides a mobile application allowing to

download experiments, execute them in a dedicated sandbox and automatically upload

the collected datasets on the APISENSE server.

2.1 Server-side Infrastructure

The main objective of APISENSE is to provide to scientist a platform, which is open,

easily extensible and configurable in order to be reused in various contexts. To achieve

this goal, we designed the server-side infrastructure of APISENSE as an SCA distributed

system (cf. Figure 1). The Service Component Architecture (SCA)6 standard is a set of

specifications for building distributed application based on Service-Oriented Architec-

tures (SOA) and Component-Based Software Engineering (CBSE) principles.

Fig. 1. Architecture of the APISENSE Web Infrastructure.

All the components building the server-side infrastructure of APISENSE are hosted

by a Cloud computing infrastructure [17]. The Scientist Frontend and Participant Fron-

tend components are the endpoints for the two categories of users involved in the plat-

form. Both components define all the services that can be remotely invoked by the

scientists or the participants. For example, once authenticated, the scientist can create

new experiments, follow their progression, and exploit the collected dataset directly

from this web interface.

6 http://www.osoa.org

Crowdsensing Library. To reduce the learning curve, we decided to adopt standard

scripting languages in order to ease the description of experiments by the scientists. We

therefore propose the APISENSE crowdsensing library as an extension of the JavaScript,

CoffeeScript, and Python languages, which provides an efficient mean to describe an

experiment without any specific knowledge of mobile device programming technolo-

gies (e.g., Android SDK). The choice of these host languages was mainly motivated

by their native support for JSON (JavaScript Object Notation), which is a lightweight

data-interchange format reducing the communication overhead.

The APISENSE crowdsensing library adopts a reactive programming model based

on the enlistment of handlers, which are triggered upon the occurence of specific events

(cf. Section 3). In addition to that, the API of APISENSE defines a set of sensing func-

tions, which can be used to retrieve specific contextual data form sensors. The library

supports a wide range of features to build dataset from built-in sensors proposed by

smartphones technologies, such as GPS, compass, accelerometers, bluetooth, phone

call, application status (installed, running) in the context of opportunistic crowdsens-

ing, but also to specify participatory sensing experiments (e.g., surveys).

Privacy Filters. In addition to this script, the scientist can configure some privacy fil-

ters to limit the volume of collected data and enforce the privacy of the participants. In

particular, APISENSE currently supports two types of filters. Area filter allows the sci-

entist to specify a geographic area where the data requires to be collected. For example,

this area can be the place where the scientist is interested in collecting a GSM signal

(e.g., campus area). This filter guarantees the participants that no data is collected and

sent to the APISENSE server outside of this area. Period filter allows the scientist to

define a time period during which the experiment should be active and collect data. For

example, this period can be specified as the working hours in order to automatically

discard data collected during the night, while the participant is expected to be at home.

By combining these filters, the scientist preserves the privacy of participants, re-

duces the volume of collected data, and improves the energy efficiency of the mobile

application (cf. Section 4).

Deployment Model. Once an experiment is defined with the crowdsensing library,

the scientist can publish it into the Experiment Store component in order to make it

available to participants. Once published, two deployment strategies can be considered

for deploying experiments. The former, called pull-based approach, is a proactive de-

ployment strategy where participants download the list of experiments from the remote

server. The latter, known as push-based approach, propagates the experiments list up-

dates to the mobiles devices of participants. In the case of APISENSE, the push-based

strategy would induce a communication and energy overhead and, in order to leave the

choice to participants to select the experiments they are interested in, we adopted the

pull-based approach as a deployment strategy. Therefore, when the mobile device of

a participant connects to the Experiment Store, it sends its characteristics (including

hardware, current location, sensor available and sensors that participants want to share)

and receives the list of experiments that are compatible with the profile of the partici-

pant. The scientists can therefore configure the Experiment Store to limit the visibility

of their experiments according the characteristics of participants. In order to reduce the

privacy risk, the device characteristics sent by the participants are not stored by the

infrastructure and scientist cannot access to this information.

Additionally, the Experiment Store component is also used to update the behav-

ior of the experiment once deployed in the wild. When an opportunistic connection is

established between the mobile device and the APISENSE server, the version of the

experiment deployed in the mobile device is compared to the latest version published

in the server. The installed crowdsensing experiment is automatically updated with the

latest version of the experiment without imposing participants to re-download manu-

ally the experiment. In order to avoid any versioning problem, each dataset uploaded

automatically includes the version of the experiment used to build the dataset. Thus,

scientists can configure the Experiment Store component in order to keep or discard

datasets collected by older versions of the experiment.

2.2 Client-side Library

Although our solution could be extended to other Operating Systems, the APISENSE

mobile application is currently based on the Android operating system for the follow-

ing reasons. First, the Android operating system is popular and largely adopted by the

population, unit sales for Android OS smartphones were ranked first among all smart-

phone OS handsets sold worldwide during 2011 with a market share of 50.9% according

to Gartner. Secondly, Android is an open platform supporting all the requirements for

continuous sensing applications (e.g., multitasking, background processing and ability

to develop an application with continuous access to all the sensors), while for example,

iOS 6 does no permit a continuous accelerometer sampling.

A participant willing to be involved in one or more crowdsensing experiments pro-

posed by a scientist can download the APISENSE mobile application by flashing the QR

code published on APISENSE website, install it, and quickly create an account on the

remote server infrastructure. Once registered, the HTTP communications between the

mobile device of the participant and the remote server infrastructure are authenticated

and encrypted in order to reduce potential privacy leaks when transferring the collected

datasets to the APISENSE server. From there, the participant can connect to the Exper-

iment Store, download and execute one or several crowdsensing experiments proposed

by scientists.

Figure 2 depicts the APISENSE software architecture. Building on the top of An-

droid SDK, this architecture is mainly composed of four main parts allowing i) to in-

terpret experiment scripts (Facades, Scripting engine) ii) to establish connection with

the remote server infrastructure (Network Manager), iii) to control the privacy parame-

ters of the user (Privacy Manager), and iv) to control power saving strategies (Battery

Manager).

Scripting Engine. Sensor Facades bridge the Android SDK with the Scripting Engine,

which integrates scripting engines based on the JSR 223 specification. We build a mid-

dleware layer Bee.sense Scripting, which exposes the sensors that can be accessed from

the experiment scripts. This layer covers three roles: a security role to prevent malicious

calls of critical code for the mobile device, a efficiency role by including a cache mech-

anism to limit system calls and preserve the battery, and an accessibility role to leverage

the development of crowdsensing experiments, as illustrated in Section 3.

Fig. 2. Architecture of the APISENSE Mobile Application.

Battery Manager. Although the latest generations of smartphones provides very pow-

erful computing capabilities, the major obstacle to enable continuous sensing applica-

tion refers to their energy restrictions. Therefore, in order to reduce the communication

overhead with the remote server, which tends to be energy consuming, datasets are up-

loaded only when the mobile phone is charging. In particular, the battery manager com-

ponent monitors the battery state and triggers the network manager component when

the battery starts charging in order to send all the collected datasets to the remote server.

Additionally, this component monitors the current battery level and suspends the script-

ing engine component when the battery level goes below a specific threshold (20% by

default) in order to stop all running experiments. This threshold can be configured by

the participant to decide the critical level of battery she wants to preserve to keep using

her smartphone.

Privacy Manager. In order to cope with the ethical issues related to crowdsensing ac-

tivities, the APISENSE mobile application allows participants to adjust their privacy

preferences in order to constrain the conditions under which the experiments can col-

lect data. As depicted in Figure 3, three categories of privacy rules are currently de-

fined. Rules related to location and time specify geographical zone and time intervals

conditions under which experiments are authorized to collect data, respectively. All the

privacy rules defined by the participant are interpreted by the Privacy Manager compo-

nent, which suspends the scripting engine component when one these rules is triggered.

The last category of privacy rules refers to authorization rules, which prevent sensors

activation or access to raw sensor data if the participant does not want to share this

information. Additionally, a built-in component uses cryptography hashing to prevent

experiments from collecting sensitive raw data, such as phone numbers, SMS text, or

address book.

3 Crowdsensing Experiments

This section reports on four experiments that have been deployed in the wild using our

platform. These examples demonstrate the variety of crowdsensing experimentations

that are covered by the APISENSE infrastructre.

Fig. 3. Participant Privacy Preferences.

3.1 Revealing Users’ Identity from Mobility Traces

This first experiment aimed at identifying the potential privacy leaks related to the

sporadic disclosure of user’s locations. To support this experiment, we developed a

APISENSE script, which reports every hour the location of a participant, known as Al-

ice. Listing 1.1 describes the Python script we used to realize this experiment. This

script subscribes to the periodic scheduler provided by the time facade in order to

trigger the associated lambda function every hour. This function dumps a timestamped

longitude/latitude position of Alice, which is automatically forwarded to the server.

1 time.schedule({’period’: ’1h’},

2 lambda t: trace.add({ ’time’: t.timestamp,

3 ’lon’: gps.longitude(), ’lat’: gps.latitude() }))

Listing 1.1. Identifying GeoPrivacy Leaks (Python).

While this periodic report can be considered as anonymous since no identifier is

included in the dataset, this study has shown that the identity of Alice can be semi-

automatically be inferred from her mobility traces. To do so, we built a mobility model

from the dataset we collected in order to identify clusters of Alice’s locations as her

points of interest (POI). By analyzing the size of the clusters and their relative times-

tamps, we can guess that the largest POI in the night relates to the house of Alice.

Invoking a geocoding service with the center of this POI provides us a postal address,

which can be used as an input to the yellow pages in order to retrieve a list of candidate

names. In parallel, we can identify the places associated to the other POIs by using the

Foursquare API, which provides a list of potential places where Alice is used to go.

From there, we evaluate the results of search queries made on Google by combining

candidate names and places and we rank the names based on the number of pertinent

results obtained for each name. This heuristic has demonstrated that the identity of a

large population of participants can be easily revealed by sporadically monitoring her

location [11].

3.2 Building WiFi/GSM Signal Open Data Maps

This second experiment illustrates the benefits of using APISENSE to automatically

build two open data maps from datasets collected in the wild. Listing 1.2 is a JavaScript

script, which is triggered whenever the location of a participant changes by a distance

of 10 meters in a period of 5 minutes. When these conditions are met, the script builds

a trace which contains the location of the participant and attaches WiFi and GSM net-

works characteristics.

1 trace.setHeader(’gsm_operator’, gsm.operator());

2 location.onLocationChanged({ period: ’5min’,

3 distance: ’10m’ }, function(loc) {

4 return trace.add({

5 time: loc.timestamp,

6 lat: loc.latitude, lon: loc.longitude,

7 wifi: { network_id: wifi.bssid(),

8 signal_strength: wifi.rssi() },

9 gsm: { cell_id: gsm.cellId(),

10 signal_strength: gsm.dbm() } });

11 });

Listing 1.2. Building an Open Data Map (JavaScript)

From the dataset, collected by three participants over one week, we build an QuadTree

geospatial index to identify the minimum bounding rectangles that contain at least a

given number of signal measures. These rectangles are then automatically colored based

on the median signal value observed in this rectangle (cf. Figure 4). This map has been

assessed by comparing it with a ground truth map locating the GSM antennas and WiFi

routers7.

3.3 Detecting Exceptions Raised by User Applications

The third experiment highlights that APISENSE does not impose to collect geolocated

dataset and can also be used to build realistic dataset focusing on the exceptions that are

raised by the participants’ applications. To build such a dataset, Listing 1.3 describes a

CoffeeScript script that uses the Android logging system (logCat) and subscribes to

error logs (’*:E’). Whenever, the reported log refers to an exception, the script builds

a new trace that contains the details of the log and retrieves the name of the application

reporting this exception.

1 logcat.onLog {filter: ’*:E’},

2 (log) -> if log.message contains ’Exception’

3 trace.save

4 message: log.message,

5 time: log.timestamp,

6 application: apps.process(log.pid).applicationName,

7 topTask: apps.topTask().applicationName

Listing 1.3. Catching Mobile Applications’ Exceptions (CoffeeScript)

Once deployed in the wild, the exceptions reported by the participants can be used

to build a taxonomy of exceptions raised by mobile applications. The Figure 5, depicts

the results of this experiment based on a dataset collected from three participants over

one month. In particular, one can observe that a large majority of errors reported by

the participant’s applications are related to permission or database accesses, which can

usually be fixed by checking that the application is granted an access prior to any in-

vocation of a sensor or the database. This experiment is a preliminary step in order to

better identify bugs raised by applications once they are deployed in the wild as we

believe that the diversity of mobile devices and operating conditions makes difficult the

application of traditional in vitro testing techniques.

7 http://www.cartoradio.fr

Fig. 4. GSM Open Data Map. Fig. 5. Exceptions Taxonomy

3.4 Experimenting Machine Learning Models

The fourth experiment does not only collect user-contributed datasets, but also deals

with the empirical validation of models on a population of participants. In this scenario,

the scientist wanted to assess the machine learning model she defined for detecting the

activity of the users: walking, sitting, standing, running, or climbing and down stairs. To

assess this model, she deployed a script that integrates two phases: an exploration phase

and an exploitation one. To set up this experiment, we extended the scripting library by

integrating a popular machine learning [14] and adding a new facade to use its features

from script. The script (cf. Listing 1.4) therefore starts with an exploration phase in

order to learn a specific user model. During this phase, APISENSE generates some

dialogs to interact with the participant and ask her to repeat some specific movements.

The script automatically switches to the next movement when the model has recorded

enough raw data from the accelerometer to provide an accurate estimation. Once the

model is considered as complete, the script dynamically replace the timer handler to

switch into the exploration phase. The dataset collected by the server-side infrastructure

of APISENSE contain the model statisitcs observed for each participant contributing to

the experiment.

1 var classes = ["walk","jog","stand", "sit", "up", "down"];

2 var current = 0; var buffer = new Array();

3 var model = weka.newModel(["avrX","avrY",...], classes);

4 var filter = "|(dx>"+delta+")(dy>"+delta+")(dz>"+delta+")";

6 var input = accelerometer.onChange(filter,

7 function(acc) { buffer.push(acc) });

9 var learn = time.schedule({ period: ’5s’ }, function(t) {

10 if (model.learn(classes[current]) >= threshold) {

11 current++;

12 }

13 if (current < classes.length) { // Learning phase

14 input.suspend();

15 var output = dialog.display({ message: "Select movement", spinner: classes });

16 model.record(attributes(buffer), output);

17 sleep(’2s’);

18 buffer = new Array();

19 input.resume();

20 } else { // Exploitation phase

21 dialog.display({message: "Learning phase completed"});

22 learn.cancel();

23 model.setClassifier(weka.NAIVE_BAYES);

24 time.schedule({ period: ’5s’ }, function(t) {

25 trace.add({

26 position: model.evaluate(attributes(buffer)),

27 stats: model.statistics() });

28 buffer = new Array();

29 } } });

Listing 1.4. Assessing Machine Learning Models (JavaScript).

Figure 6 reports on the collected statistics of this experiment and shows that the pre-

diction model developed by the scientist matches quite accurately the targeted classes.

Predicted class
Acc (%)

Walk Jog Stand Sit Up Down

Walk 66 0 4 0 0 0 94,3

Jog 0 21 0 0 0 0 100

Stand 4 0 40 0 0 0 90,9

Sit 0 0 2 83 0 0 97,6

Up stair 0 0 0 0 22 0 100

Down stair 0 0 0 0 0 11 100

Fig. 6. Representative Confusion Matrix.

4 Empirical Validations

Evaluating the Programming Models. In this section, we compare the APISENSE

crowdsensing library to two state-of-the-art approaches: ANONYSENSE [20] and POGO [3].

We use the RogueFinder case study, which has been introduced by AnonySense and re-

cently evaluated by POGO. Listings 1.5 and 1.6 therefore reports on the implementation

of this case study in ANONYSENSE and POGO, as decribed in the literature, while List-

ing 1.7 describes the implementation of this case study in APISENSE.

1 (Task 25043) (Expires 1196728453)

2 (Accept (= @carrier ’professor’))

3 (Report (location SSIDs) (Every 1 Minute)

4 (In location

5 (Polygon (Point 1 1) (Point 2 2)

6 (Point 3 0))))

Listing 1.5. Implementing RogueFinder in ANONYSENSE.

1 function start() {

2 var polygon = [{x:1, y:1}, {x:2, y:2}, {x:3, y:0}];

3 var subscription = subscribe(’wifi-scan’, function(msg){

4 publish(msg, ’filtered-scans’);

5 }, { interval: 60 * 1000 });

6 subscription.release();

7 subscribe(’location’, function(msg) {

8 if (locationInPolygon(msg, polygon))

9 subscription.renew();

10 else

11 subscription.release();

12 });

13 }

Listing 1.6. Implementing RogueFinder in POGO (JavaScript).

1 time.schedule { period: ’1min’ },

2 (t) -> trace.add { location: wifi.bssid() }

Listing 1.7. Implementing RogueFinder in APISENSE (CoffeeScript).

One can observe that APISENSE provides a more concise notation to describe

crowdsensing experiments than the state-of-the-art approaches. This concisition is partly

due to the fact that APISENSE encourages the separation of concerns by externalizing

the management of time and space filters in the configuration of the experiment. A di-

rect impact of this property is that the execution of APISENSE scripts better preserves

the battery of the mobile device compared to POGO, as it does not keep triggering the

script when the user leaves the assigned polygon. Nonetheless, this statement is only

based on an observation of POGO as the library is not made freely available to confirm

this empirically.

Evaluating the Energy Consumption. In this section, we compare the energy con-

sumption of APISENSE to a native Android application and another state-of-the-art

crowdsensing solution: FUNF [1]. FUNF provides an Android toolkit to build custom

crowdsensing applications à la carte. For each technology, we developed a sensing ap-

plication, which collects the battery level every 10 minutes. We observed the energy

consumption of these applications and we report their consumption in Figure 7.

Compared to the baseline, which corresponds to the native Android application, one

can observe that the overhead induced by our solution is lower than the one imposed by

the FUNF toolkit. This efficiency can be explained by the various optimizations included

in our crowdsensing library. Although more energyvorous than a native application, our

solution does not require advanced skills of the Android development framework and

covers the deployment and reporting phases on behalf of the developer.

As the energy consumption strongly depends on i) the nature of the experiment, ii)

the types of sensors accessed, and iii) the volume of produced data, we conducted a

second experiment in order to quantify the impact of sensors (cf. Figure 8). For this ex-

periment, we developed three scripts, which we deployed separately. The first script,

labelled Bee.sense + Bluetooth, triggers a Bluetooth scan every minute and col-

lects both the battery level as well as the resulting Bluetooth scan. The second script,

Bee.sense + GPS, records every minute the current location collected from the GPS

sensor, while the third script, Bee.sense + WiFi, collects a WiFi scan every minute.

These experiments demonstrate that, even when stressing sensors, it is still possible to

collect data during a working day without charging the mobile phone (40% of battery

left after 10 hours of pulling the GPS sensor).

5 Related Work

A limited number of data collection tools are freely available on the market. SYSTEM-

SENS [8], a system based on Android, focuses on collecting usage context (e.g., CPU,

memory, network info, battery) of smartphones in order to better understand the battery

consumption of installed applications. Similarly, LIVELABS [19] is a tool to measure

wireless networks in the field with the principal objective to generate a complete net-

work coverage map in order to help client to select network interface or network opera-

tors to identify blind spots in the network. However, all these tools are closed solutions,

 4100

 4120

 4140

 4160

 4180

 4200

 0 200 400 600 800 1000 1200 1400

V
ol

ta
ge

 (
m

V
)

Time (s)

Android Native Application
Funf

Bee.sense

Fig. 7. Energy Consumptions of Android,

APISENSE, and FUNF.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

B
at

te
ry

 le
ve

l (
%

)

Time (min)

Bee.sense
Bee.sense + GPS

Bee.sense + Bluetooth
Bee.sense + WiFi

Fig. 8. Impact of APISENSE on the Battery

Lifespan.

designed for collecting specific datasets and cannot be reused in unforeseen contexts

in contrast to APISENSE. Furthermore, these projects are typical experiments deployed

on mobile devices, without providing any privacy guarantee.

FUNF [1] is an Android toolkit focusing on the development of sensing applications.

FUNF in a box is a service provided by FUNF to easily build a dedicated sensing applica-

tion from a web interface, while data is periodically published via the Dropbox service.

As demonstrated in Section 4, the current version of FUNF does not provide any support

for saving energy nor preserving user privacy. Furthermore, the current solution does

not support the dynamic re-deployment of experiments once deployed in the wild.

More interestingly, MYEXPERIENCE [9] is a system proposed for Windows mobile

smartphones, tackling the learning curve issue by providing a lightweight configuration

language based on XML in order to control the features of the application without

writing C# code. MYEXPERIENCE collects data using a participatory approach—i.e.,

by interacting with users when a specific event occurs (e.g., asking to report on the

quality of the conversation after a phone call ends). However, MYEXPERIENCE does

not consider severals critical issues, such as maintaining the privacy of participants or

the strategic deployment of experiments. Even if an experiment can be modified in the

wild, each experiment still requires a physical access to the mobile device in order to

be installed, thus making it difficult to be applied on a large population of participants.

In the literature, severals deployment of crowdsensing applications strategies have

been studied. For example, ANONYSENSE [20] uses—as APISENSE—a pull-based ap-

proach where mobile nodes periodically download all sensing experiments available on

the server. A crowdsensing experiment is written in a domain-specific language and de-

fines when a mobile node should sense and under which conditions the report should

be submitted to the server. However, ANONYSENSE does not provide any mechanism

to filter the mobile nodes able to download sensing experiments, thus introducing a

communication overhead if the node does not match the experiment requirements.

On the contrary, PRISM [7] and POGO [3] adopts a push-based approach to deploy

sensing experiments over mobile nodes. PRISM is a mobile platform, running on Mi-

crosoft Windows Mobile 5.0, and supporting the execution of generic binary code in

a secure way to develop real-time participatory sensing applications. To support real-

time sensing, PRISM server needs to keep track of each mobile node and the report

they periodically send (e.g., current location, battery left) before selecting the appro-

priate mobile phones to push application binaries. POGO proposes a middleware for

building crowdsensing applications and using the XMPP protocol to disseminate the

datasets. Nonetheless, POGO does not implement any client-side optimizations to save

the mobile device battery (e.g., area and period filters) as it systematically forwards the

collected data to the server.

SensorSafe [5] is another participatory platform, which allows users to share data

with privacy guaranties. As our platform, SensorSafe provides fine-grained temporal

and location access control mechanisms to keep the control of data collected by sensors

on mobile phone. However, participants have to define their privacy rules from a web

interface while in APISENSE these rules are defined directly from the mobile phone.

6 Conclusion

While it has been generally acknowledged as a keystone for the mobile computing

community, the development of crowdsensing platforms remains a sensitive and crit-

ical task, which requires to take into account a variety of requirements covering both

technical and ethical issues.

To address these challenges, we report in this paper on the design and the imple-

mentation of the APISENSE distributed platform. This platform distinguishes between

two roles: scientists requiring a sustainable environment to deploy sensing experiments

and participants using their own mobile device to contribute to scientific experiments.

On the server-side, APISENSE is built on the principles of Cloud computing and offers

to scientists a modular service-oriented architecture, which can be customized upon

their requirements. On the client-side, the APISENSE platform provides a mobile appli-

cation allowing to download experiments, executing them in a dedicated sandbox and

uploading datasets to the APISENSE server. Based on the principle of only collect what

you need, the APISENSE platform delivers an efficient yet flexible solution to ease the

retrieval of realistic datasets.

References

1. N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland. Social fmri: Investigating and shaping

social mechanisms in the real world. Pervasive and Mobile Computing, 2011.

2. James Biagioni, Tomas Gerlich, Timothy Merrifield, and Jakob Eriksson. EasyTracker: au-

tomatic transit tracking, mapping, and arrival time prediction using smartphones. In 9th Int.

Conf. on EmbeddedNetworked Sensor Systems. ACM, November 2011.

3. N. Brouwers, M. Woehrle, R. Stern, M. Kalech, A. Feldman, G. Provan, H.T. Malazi, K. Za-

manifar, A. Khalili, SO Dulman, et al. Pogo, a Middleware for Mobile Phone Sensing. In

13th Int. Middleware Conference. Springer, 2012.

4. J.A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy, and M.B. Srivastava.

Participatory Sensing. 2006.

5. H. Choi, S. Chakraborty, M. Greenblatt, Z.M. Charbiwala, and M.B. Srivastava. Sensorsafe:

Managing health-related sensory information with fine-grained privacy controls. Technical

report, Technical Report, September 2010.(TR-UCLA-NESL-201009-01), 2010.

6. D. Cuff, M. Hansen, and J. Kang. Urban Sensing: Out of the Woods. Communications of the

ACM, 51(3), 2008.

7. T. Das, P. Mohan, V.N. Padmanabhan, R. Ramjee, and A. Sharma. Prism: Platform for

Remote Sensing Using Smartphones. In 8th Int. Conf. on Mobile Systems, Applications, and

Services. ACM, 2010.

8. H. Falaki, R. Mahajan, and D. Estrin. SystemSens: a tool for monitoring usage in smart-

phone research deployments. In 6th ACM Int. Work on Mobility in the Evolving Internet

Architecture, 2011.

9. J. Froehlich, M.Y. Chen, S. Consolvo, B. Harrison, and J.A. Landay. Myexperience: a system

for in situ tracing and capturing of user feedback on mobile phones. In 5th Int. Conf. on

Mobile Systems, Applications, and Services. ACM, 2007.

10. N. Haderer, R. Rouvoy, and L. Seinturier. A preliminary investigation of user incentives

to leverage crowdsensing activities. In 2nd International IEEE PerCom Workshop on Hot

Topics in Pervasive Computing (PerHot). IEEE, 2013.

11. Marc-Olivier Killijian, Matthieu Roy, and Gilles Trédan. Beyond San Fancisco Cabs : Build-

ing a *-lity Mining Dataset. In Work. on the Analysis of Mobile Phone Networks, 2010.

12. N.D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A.T. Campbell. A Survey of

Mobile Phone Sensing. IEEE Communications Magazine, 48(9), 2010.

13. L. Liu, C. Andris, A. Biderman, and C. Ratti. Uncovering Taxi Driver’s Mobility Intelligence

through His Trace. IEEE Pervasive Computing, 2009.

14. P. Liu, Y. Chen, W. Tang, and Q. Yue. Mobile weka as data mining tool on android. Advances

in Electrical Engineering and Automation, pages 75–80, 2012.

15. E. Miluzzo, N.D. Lane, H. Lu, and A.T. Campbell. Research in the App Store Era: Expe-

riences from the CenceMe App Deployment on the iPhone. In 1st Int. Work. Research in

the Large: Using App Stores, Markets, and other wide distribution channels in UbiComp

research, 2010.

16. M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen, E. Howard, R. West,

and P. Boda. PEIR, The Personal Environmental Impact Report, as a Platform for Partici-

patory Sensing Systems Research. In 7th Int. Conf. on Mobile Systems, Applications, and

Services. ACM, 2009.

17. Fawaz Paraiso, Nicolas Haderer, Philippe Merle, Romain Rouvoy, and Lionel Seinturier. A

Federated Multi-Cloud PaaS Infrastructure. In 5th IEEE Int. Conf. on Cloud Computing,

2012.

18. Matthieu Roy and Marc-Olivier Killijian. Brief Announcement: A Platform for Experiment-

ing with Mobile Algorithms in a Laboratory. In 28th Annual ACM Symp. on Principles of

Distributed Computing. ACM, 2009.

19. C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum. LiveLab: measuring wireless

networks and smartphone users in the field. ACM SIGMETRICS Performance Evaluation

Review, 38(3), 2011.

20. M. Shin, C. Cornelius, D. Peebles, A. Kapadia, D. Kotz, and N. Triandopoulos. AnonySense:

A System for Anonymous Opportunistic Sensing. Pervasive and Mobile Computing, 2010.

21. Timothy Sohn, Alex Varshavsky, Anthony LaMarca, Mike Y. Chen, Tanzeem Choudhury,

Ian E. Smith, Sunny Consolvo, Jeffrey Hightower, William G. Griswold, and Eyal de Lara.

Mobility Detection Using Everyday GSM Traces. In 8th Int. Conf. on Ubiquitous Computing,

volume 4206 of LNCS. Springer, 2006.

