
HAL Id: hal-00657971
https://centralesupelec.hal.science/hal-00657971

Submitted on 9 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Detecting illegal system calls using a data-oriented
detection model

Jonathan-Christofer Demay, Frédéric Majorczyk, Eric Totel, Frédéric Tronel

To cite this version:
Jonathan-Christofer Demay, Frédéric Majorczyk, Eric Totel, Frédéric Tronel. Detecting illegal sys-
tem calls using a data-oriented detection model. 26th International Information Security Conference
(SEC), Jun 2011, Lucerne, Switzerland. pp.305-316, �10.1007/978-3-642-21424-0_25�. �hal-00657971�

https://centralesupelec.hal.science/hal-00657971
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Detecting illegal system calls using a data-oriented

detection model

Jonathan-Christofer Demay1, Frédéric Majorczyk2, Eric Totel1, and Frédéric Tronel1

1 Supelec, Rennes, France, first_name.last_name@supelec.fr
2 IRISA / Université de Rennes 1, Rennes, France, first_name.last_name@irisa.fr

Abstract. The most common anomaly detection mechanisms at application level

consist in detecting a deviation of the control-flow of a program. A popular

method to detect such anomaly is the use of application sequences of system

calls. However, such methods do not detect mimicry attacks or attacks against the

integrity of the system call parameters. To enhance such detection mechanisms,

we propose an approach to detect in the application the corruption of data items

that have an influence on the system calls. This approach consists in building au-

tomatically a data-oriented behaviour model of an application by static analysis

of its source code. The proposed approach is illustrated on various examples, and

an injection method is experimented to obtain an approximation of the detection

coverage of the generated mechanisms.

1 Introduction

Generally speaking, an attack against an application consists in exploiting a vulnera-

bility in order to violate the confidentiality or integrity properties of the system or the

application under attack. In the context of intrusion detection methods at application

level, a lot of existing work focuses on the detection of the violation of the integrity

property. Attacks against a process can consist in corrupting either the control-flow

of the program (e.g., to execute injected code), or the data items manipulated by the

program during its execution. A lot of papers focus on the detection of the program

control-flow corruption, either considering the process as a white box, or seeing it as a

black box. An exemple of a white box approach is to verify during the execution that

the control-flow graph of the program is legal. An example of the black box approach

consists in verifying that the trace of the process execution in the system is correct (e.g.,

the sequence of system calls [1]). Both approaches can be subject to false negatives, as

the attacker can either corrupt data items that do not influence the control-flow of the

program, or perform attacks that mimic [2] the normal behaviour of the application.

Various papers [3,4,5,6] have enhanced the black box approach in order to detect these

types of refined attacks.

In this paper, we propose a white box approach for intrusion detection that aims at

detecting the corruption of the data items in an application, so as to detect erroneous

system calls (e.g., their arguments are not correct, or the data that led to their execution

were incorrect). The approach relies on the building of a data-oriented behaviour model.

This method can be presented as an interesting complement to the usual control-flow

corruption detection method, in order to detect data oriented attacks. To attain this goal

we use static analysis to build constraints on intrusion sensitive data items, then we

instrument the software with executable assertions that check these constraints during

the execution of the program.

The contribution of this paper is not to provide new static analysis techniques, as our

work relies on an off-the-shelf static analyser called Frama-C [7]. However, we want

to show on real-life examples that a detection model can be built by static analysis and

detect data attacks (even unknown ones).

The paper is organized in the following way: after a short related work section on

white-box attack detection, we show how to build the behaviour model and emphasize

the accuracy of the model on a previously known attack. Then we show the results of the

software instrumentation on various examples. At the end we evaluate on an example

the detection rate we can expect from the generated detection mechanisms.

2 Related Work

We believe that white box mechanisms can help improving the detection performance

as they are able to take advantage of the internal state of the monitored program. Indeed,

they have access to all the internal data structures and algorithms used by the program.

That is the case, for example, with Control-Flow Integrity [8] and Program Shep-

herding [9]. These generic techniques verify the integrity of the control-flow of a pro-

gram. A control-flow graph of the program is computed prior to its execution and then

used at run time to check the integrity of the process control-flow. Because mimicry at-

tacks still need to force the program control-flow to deviate from valid execution paths,

they are caught by these approaches. However, unlike our approach, all those techniques

are completely ineffective against computation data attacks (also called non-control data

attacks [10]), since these attacks are performed using a valid execution path.

Other white box approaches that focus on non-control-data attacks and that do not

exhibit this weakness have been proposed. For example, Write-Integrity Testing [11]

enforces control-flow and data-flow integrity in a program. In the work on Data Flow

Integrity [12], a data-flow graph is computed prior to the execution. It contains, for each

data item read by an instruction, the set of instructions that may have written its current

value. This data-flow graph is then used at run time to verify the integrity of the data

flow of the process. If the program has a vulnerability that is exploited to corrupt some

data, the next time this data is read a deviation from the data-flow graph will be ob-

served allowing thus the detection of the attack. This type of approach is very effective

against all kinds of non-control-data attacks, but use a very different philosophy than

our approach. They focus on the illegal modification of the data, whereas in our ap-

proach we focus on the correctness of the data. As a consequence some attacks missed

by the data-flow integrity method (such as an illegal value stored in a correct variable)

can be detected by our approach. Conversely some illegal writes can be missed by our

approach (a legal value can be written in an incorrect variable), making both approaches

complementary.

3 Intrusion Detection

In this section, we explain how non-control-data attacks are real threats and how a

data-oriented behavior model can detect them. We also present SIDAN 3 (Software In-

strumentation for the Detection of Attacks on Non-control-data) [13], a tool we have

developed that implements our detection model.

3.1 An attack against non-control-data

00. int main(int argc, char ** argv){

01. char buffer[256];

02. uid_t uid = 5;

03.

04.

05. seteuid(uid);

06.

07. while(aux = fgets(buffer, 256, stdin))

08. {

09. seteuid(0);

10. printf(buffer);

11.

12. seteuid(uid);

13. }

14. }

00. int main(int argc, char ** argv){

01. char buffer[256];

02. uid_t uid = 5;

03.

04. assert(uid == 5);

05. seteuid(uid);

06.

07. while(aux = fgets(buffer, 256, stdin))

08. {

09. seteuid(0);

10. printf(buffer);

11. assert(uid == 5);

12. seteuid(uid);

13. }

14. }

Fig. 1. Example of string format vulnerability and useful assertions

Chen et al. [10] have demonstrated that non-control data attacks can be as severe as

control-data attacks on various real world vulnerabilities. Among them, a vulnerability

found in the implementation of the open source ftp server wu_ftpd will serve as an

example to illustrate our approach. Figure 1 (left column) is an excerpt of the original

code exhibiting the same vulnerability. Line 10, a string taken as user input (line 7) is

printed without using a string format. Consequently, a user can forge an incorrect buffer

containing string formats that allows to write directly in memory. In this case, the target

could be the uid variable. As a consequence, the attacker can elevate its privilege at

line 12, without corrupting the execution path, by forcing the parameter of the seteuid

call to be the administrator identifier (zero). This example shows how such an attack

violates a very simple constraint on the uid variable. Indeed, the uid variable should

remain constant during the execution of the loop (lines 7 to 13) and should be equal to

the value it has been assigned at uid (line 2). The problem we tackle in this paper is to

automatically build such constraints in order to detect attacks at runtime.

3.2 Data oriented detection Model

In our approach, we consider that an attacker aims at modifying data items in the mem-

ory space of a process in order to execute one or more incorrect system calls. This

objective can be fulfilled in two ways: either the attacker alters variables that influence

3 http://www.rennes.supelec.fr/ren/rd/ssir/outils/sidan/

the internal control-flow of the program (and thus executes system calls in an incorrect

context), or the attacker modifies directly or indirectly the values of the parameters of

one or more system calls (and thus executes legal system calls with incorrect values).

Both types of attacks aims at modifying non-control data items in the program. Note

here that non-control data items are all variables used by the program source code, and

can thus have an impact on the control-flow of the application. They are opposed to

control-data items that are used by the system (and not the application) to control the

execution flow of the application (e.g., a return adress on the stack).

In order to detect these modifications, we propose to identify the set of constraints

that should be verified at runtime for these items. Generally speaking, these constraints

can be divided in two classes: the variation domain of the variables (e.g., a variable can

take a restricted set of values), and the relationship between the variation domains of the

variables (i.e., when a variable has particular values, other variables take a defined set of

values). If we only check if a variable is within its variation domain, it may be easy for

an attacker to impose a reasonable value that would fit in the variation domain, but that

is incorrect in the context of the program. Clearly, if we can maintain the relationship

with other variables, it will be more difficult for an attacker to modify simultaneously

several variables that depend on each other while keeping the program in a consistent

state. As a consequence, we propose to define a data behaviour model for intrusion

detection that aims at taking into account these requirements.

Formally, we define for a given system call SCi its data behavior model by a triple

(SCi,Vi,Ci) where Vi is the set of variables the system call depends on, and Ci the set

of constraints on these variables that can be deduced from the program analysis. We

can define the normal data behavior model of the program by the set of all triples,

DBM = {∀i,(SCi,Vi,Ci)}. In the following section, we address the two problems faced

to build this model: how to determine the set of variables a system call depends on, and

how to obtain the constraints that must be verified on these variables at runtime.

Building the set of variables Building Vi requires the ability to determine in the pro-

gram which are the variables that influence the execution of the particular system call

SCi. Generally speaking, a system call can depend on a variable in two different ways:

a variable either has an influence on the path in the program that leads to the execu-

tion of SCi or influences the parameters of SCi. These sets of variables can be built by

using a static analysis technique called program slicing [14]. A program slice can be

defined as the parts of a program that potentially affect the values computed at some

point of interest of this program. In our case, we are looking for all the variables that

influence a system call, and thus all variables that are in the program slice whose point

of interest is the system call itself. In the static analysis field, the computation of a

program slice is generally based on the computation of a program dependency graph

(PDG) [15]. The PDG is a directed graph whose vertices correspond to statements and

control predicates, and edges correspond to data and control dependencies. This graph

can be used to exhibit the set of variables a particular system call depends on, and the

type of dependency. In our implementation, we directly use the PDG notion to discover

in the program all variables a system call depends on. To illustrate this paragraph, we

can consider the example on Figure 1: the seteuid call at line 5 depends on one vari-

able: uid. However, the seteuid call at line 12 depends indirectly on the aux variable and

directly on the uid variable.

Constraint discovery Automatically discovering constraints in the source code on the

variables that are defined in the previous paragraph requires to use static analysis tech-

niques. We could imagine any types of constraints, including for example temporal con-

straints. In practice, static analysis techniques often compute constant constraints, also

called invariants. Indeed, any static analysis technique that is able to compute invariants

from the source code fits our needs. Moreover, a popular technique for calculating such

invariants is the abstract interpretation method [16]. In practice, abstract interpretation

provides a way to find properties on the variables of a program by computing abstract

domains that represent abstractions of the real properties of the program. Several mod-

els have been developed to discover such invariants. Among them, we have chosen

to focus on the build of numerical abstract domains, i.e., we intend to find numerical

invariants. These types of domains can be classified in two groups: non-relational do-

mains that find numerical properties on variables individually, and relational domains

that permit to find numerical properties on logically linked variables. Non-relational

domains include for example the interval domain [16] (wich permits to find invariants

of the form vi ∈ [c1,c2] where vi is a variable of the program and c1 and c2 are numerical

constants), the constant propagation domain (vi = c) and the congruence domain [17]

(vi ∈ aZ+ b). Example of relational domains can be cited such as the polyhedron do-

main [18] (α1v1 + ...+αnvn ≤ c), the linear equality domain [19] (α1v1 + ...+αnvn = c)

and the linear congruence equality domain [20] (α1v1 + ...+ αnvn ≡ a[b]). The prob-

lem with relational domains is that the algorithms they use usually do not scale on

large programs. That is why Frama-C uses computational methods that are based on

non-relational domains.

00: extern int a, b;

01: void f(int);

03: void g(){

04: if (b == 0) a = 1;

05: else if(b == 1) a = 2;

06: else return;

09: f(a);

10: }

00: extern int a, b;

01: void f(int);

03: void g(){

04: if (b == 0) a = 1;

05: else if(b == 1) a = 2;

06: else return;

08: assert((a == 1 && b == 0) || (a == 2 && b == 1))

09: f(a);

10: }

Fig. 2. C code sample that emphasises relations between variables

SIDAN Plugin in the Frama-C framework We implemented in SIDAN the computa-

tion of numerical constraints for a given system call. Frama-C provides a Value Analysis

plugin that is able to provide a computation of the variation domains of the variables

that influence the function calls. This plugin provides constraints of the type "integer

variable x lies within the domain [0,5] in all executions" as a result. If we consider

the example Figure 2, the assertion generated for the call to the function f , using the

Value Analysis plugin of Frama-C alone would be a ∈ {1,2} and b ∈ {0,1}. Indeed, as

the Value Analysis plugin uses a non-relational abstract domain, his result misses the

relation between the variables a and b.

If we consider the program Figure 2, we see that when b == 0 then a == 1, and

when b == 1 then a == 2. Actually, to obtain this result we have to consider that there

are two paths leading to the call to the function f , and that the constraint to verify at

the call to f should take these two paths into account. The Value Analysis plug-in uses

an algorithm that can potentially keep in memory several invariants computation on

several execution paths. The plug-in can be parametrized to define the number of paths

explored in parallel by the Value Analysis plug-in, which is related to the number of

states it keeps in memory before computing an union. If the number of paths explored

in parallel is sufficient, the Value Analysis plug-in now has internally the information

required to build these kinds of constraints. By using a hook in the Value Analysis plug-

in, it is possible for our plug-in to access this internal information while the analysis is

performed. Thus, it allows us to build the invariant by using the variation domain of all

the variables on each path. In the example we have described, the invariant generated

for line 08 is (((b == 0)∧ (a == 1))∨ ((b == 1)∧ (a == 2))).
Note that the example we give here focuses on invariants computed for integers.

In practice, the Value Analysis plug-in performs well on integers and floats, but is not

very efficient for pointer analysis (at best, it detects access to an unallocated buffer

and some out-of-bound access). Discovering constraints on strings is also unavailable

due to the fact that the specification of the standard string functions is not included

in Frama-C. In order to build some constraints on strings, we have preprocessed the

source code to replace standard string comparisons by a set of character comparisons

whenever possible (see Figure 3 line 3). As a result, some constraints on string buffers

have been obtained in the programs we tested our approach on.

3.3 Generated assertions

In order to verify the constraints in the program, we insert executable assertions (see

Figure 2 line 08), which is a technique heavily used in the dependability domain, and

more precisely in defensive programming [21,22].

The constraints that we can compute for a given system call deal with the variables

that are available locally in the context of the system call. However, this call generally

depends not only on the local variables but also on the variables manipulated by pre-

vious functions in the call stack. That is why it is necessary to compute invariants for

all function calls that are on the path that leads to the system call. This implies that we

must distribute the executable assertions on all the paths that lead to system calls. More-

over, some system calls can be performed in functions located in external libraries. As

a consequence, we choose to insert executable assertions in front of each function call.

To demonstrate the assertion generation capabilities of our data-oriented detection

model, we first use as an example a vulnerable version of OpenSSH.

The code in Figure 3 is inspired by this vulnerable version of OpenSSH and repro-

duces the basic structure of the real code. The vulnerability is located in the packet_read

function and can be used to overwrite the value of the passwd variable with an empty

00: void do_authentication(){

01: int auth = 0;

...

03: if(!strcmp(pwd, ""))

/* for users with no password */

05: else

/* do_authloop(); */

07: while(auth != 1) {

08: type = packet_read(data);

09: switch (type) {

10: case SSH_CMSG_AUTH_PASSWORD:

11.

12: auth = auth_password(pwd, data);

13: break;

14: ...

15: }

16: }

17: do_authenticated(user);

18: }

00: void do_authentication(){

01: int auth = 0;

...

03: if(pwd[0] != ’\0’)

/* for users with no password */

05: else

/* do_authloop(); */

07: while(auth != 1) {

08: type = packet_read(data);

09: switch (type) {

10: case SSH_CMSG_AUTH_PASSWORD:

11: assert(pwd[0] != ’\0’);

12: auth = auth_password(pwd, data);

13: break;

...

15: }

16: }

17: do_authenticated(user);

18: }

Fig. 3. Example inspired from OpenSSH

OpenSSH DropbearSSH ihttpd fnord ssmtp

Number of lines 38000 11000 1043 2303 2976

Number of assertions 291 91 145 41 240

Computation time 6 hours 3 hours 45 minutes 1 minute 17 seconds 5 hours 22 minutes

Table 1. Assertions generated

string during the execution of do_authloop. This allows a successful authentication on

the system with any known account (e.g., root) and without having to provide a valid

password.

Among the assertions generated, the one located at line 11 in the example in Figure 3

has been produced by our plug-in and detects this attack against the program state.

In order to figure out the capability of our tool to generate assertions on common

programs, we have applied it on SSH servers (OpenSSH and Dropbear SSH), http

servers (fnord and ihttpd), and a smtp server (ssmtp). The results are summarized in

Table 1. As a result, we could say that the number of assertions generated is obviously

heavily dependant on the program source code.

4 Assessment of the detection mechanisms

Even though it is possible to test our detection mechanism against various real world

attacks such as those described in [10], such a method would only cover a very small

subset of all possible attacks. In order to evaluate the detection coverage of our ap-

proach, we would need to know all the vulnerabilities that afflict a program as well as

every possible way of exploiting them. As it is not possible to automatically compute

this from the source code, we need to define another method to evaluate the detection

coverage of our model. In this section we propose a method to assess the detection

mechanisms by simulating attacks against non-control-data items without prior knowl-

edge of the vulnerabilities. Our goal is to simulate the consequences of non-control-data

attacks by directly modifying in the process memory space the data items it is currently

manipulating. In this section, we propose an approach to evaluate our detection mech-

anism that is similar to the ones proposed in the security field to help discover new

vulnerabilities (fuzzing) and in the dependability field to evaluate fault detection and

tolerance mechanisms (fault injection).

4.1 Simulation of attacks against non-control data

Generally speaking, a particular vulnerability usually allows the attacker to access a

limited part of a process memory. However, in the worst case scenario it can give to an

attacker an access to the whole memory space of a process. For that reason, our injection

mechanism is given access to potentially every internal data item of the program under

test. However, to accurately simulate a real non-control-data attack, we want to restrict

(1) the locations and (2) the instants where an injection can occur during the execution

of a program. Firstly, during such an attack not every data item is a potential target. The

data items that may be of interest for an attacker are within the subset of data items that

can influence the execution of the system calls. Consequently, we target only these data

items (they define the locations of potential injections). Other data items are irrelevant

for our simulation approach. Secondly, we will modify such items only when they are

currently in use (i.e., when they are influencing the current execution of the program).

4.2 Code instrumentation and fault injection

To simulate this injection model, two problems have to be addressed: how do we de-

termine the set of data items that are potential targets for a non-control-data attack, and

how do we determine for each one of them when it is appropriate to inject a corrupted

value. Clearly, the set of data we want to modify is the very same set of data items we

have defined in Section 3.2.

The simplest way to determine the memory address of a variable we want to inject

is to obtain it at execution time. This is why we have choosen to also embed the cor-

rupting mechanisms within the source code. Moreover we have decided to distribute the

injection mechanisms when the corresponding variables are reachable, that is right be-

fore every function call that depends on them. We used the same approach as described

in Section 3.3 where we discussed the distribution of the detection mechanisms. In the

end, each candidate function call is preceded by a call to the corrupting function imple-

mented by a single external function called inject().

Each injection point is assigned a unique identifier. This identifier is passed as a pa-

rameter to the injection function. The remaining arguments are the number of variables

that can be corrupted and for each one of them, its address and its size. The corrupting

function is controlled by an external process using environment variables. This process

controls the unique identifier of the injection that is to be activated, the variable that

will be corrupted and the value used to perform the injection. An injection is triggered

only once, even when the call to the corrupting function happens many times (e.g., in

a loop). The tool presented in Section 3 has been modified in order to perform the in-

strumentation needed by our injection mechanism. Note that the set of variables A used

in an assertion is always a subset of the set of variables I used in the injection process

(see Figure 4). Indeed, the injection can be performed in any variable that influences

extern int a;

const int b = 1;

if (a == 0) {

inject(0,2,&a,sizeof(a),&b,sizeof(b));

assert(b == 1 && a == 0);

f(b);

}

A ≡ I

extern int a;

extern int b;

if (a) {

inject(0,2,&a,sizeof(a),&b,sizeof(b));

assert(a != 0);

f(b);

}

A ⊂ I

extern int a;

extern int b;

if (a == b) {

inject(0,2,&a,sizeof(a),&b,sizeof(b));

f(b);

}

A ≡ /0

Fig. 4. Different cases of injections and assertions

the function call, unlike the assertions that only concern variables for which value con-

straints have been discovered.

Our goal is to evaluate our detection mechanism presented in Section 3. To do that,

we need to cover a large set of memory corruptions that might be used by a malicious

user to perform an intrusion. Very much like a fuzzing technique, we are going to ran-

domly put the internal state of the process in an erroneous state. We perform various

injections during the execution of the program used in our test environment in order to

simulate the result of a vulnerability exploitation.

To activate a maximum of function calls in the program, we have written a set of

scenarios whose goal is to make the control-flow pass through a maximum number of

function calls. In the case of Dropbear SSH, we have written a set of 24 scenarios that

allows us to reach 92% of the function calls.

During the injection process, for each function call that can be reached by a scenario,

a random variable from the set of variables that influences the execution of this function

call is chosen to be injected with a random value. Each time an attack is simulated, the

controller logs if the scenario ended properly or if the process exited unexpectedly or

found itself in a deadlock and needed to be killed after a time-out. The controller also

logs the behavior of the process during the attack (in terms of system calls and their

arguments). The whole test setup is shown in Figure 5.

4.3 Evaluation results

Using the experimentation protocol described in Section 4.2, we have performed a to-

tal of 120 000 injections on the Dropbear SSH server. As explained before for each

injection, we have logged three kinds of information. Firstly, we have compared the

output generated by the server during the injection with respect to the output generated

without injection. These observations can be considered as an extremely accurate indi-

cator of a potential attack. Indeed, in these cases, the modification of a single variable

has been able to modify the execution of the SSH server upto the point its external be-

haviour (as seen by an SSH client) was changed. Note that 69.36% of the injections

have lead to such an alert (either a deviation of output, or a crash of the server). Of

course, while being an extremely accurate way of detecting intrusions, this approach is

difficult to generalize in real life settings, since it would require to compare the output

produced by the server for each command it receives with a reference output. Con-

sidering the generally extremely large set of outputs such a server can produce, this

Logs

Controller

Process

SynchronisationInjection
Random injection function

Random variable

Random value

End of scenario

End of process

Time-out

Scenarios Logs

Execution
System calls

alerts

SIDAN

alerts

Logs

process outputs

Fig. 5. Experimentation protocol

SIDAN alert Unexpected server exit Incorrect server output Strace alert

Injection detected 74827 21574 61470 26970

Detection rate 62.36% 18.13% 51.23% 22.48%

Table 2. Injection results on Dropbear SSH

approach is hopeless. Here we were able to use such an approach because of the limited

set of scenarios we have used during the assessment. Secondly, we also recorded the

set of system calls (with their arguments) that were generated during normal executions

of the different scenarios (training), and during injections. These recordings have been

submitted afterward to an offline intrusion detection mechanism [3]. Once again, this

IDS was settled in optimum conditions, since it was trained for a given scenario. And

even in these optimal conditions, note that it only detects 22.48% of injections.

Finally we have recorded the alerts generated by our SIDAN tool. The results of

all these measures are summarized in Table 2. A more detailed version of the obtained

results is given by the Figure 6. We can see that SIDAN detects 62.36 % of the injec-

tions. This detection rate is comparable to the one obtained by the first IDS based on

the comparison of the output generated by the server (but recall here, that we claim that

this kind of IDS is extremely difficult to build in real settings). However, SIDAN is still

prone to false negatives with at most 37.64% of injections missed. We can refine these

figures by taking into account the fact that within these 37.64% of cases where SIDAN

raised no alert, 10.63% where cases where : (1) neither the output generated by the SSH

server deviated from the reference output. (2) nor the system call trace deviated from

the reference trace. We can be highly confident that these cases do not correspond to

exploitable attacks. Hence we can subtract these 10.63% from the figures obtained for

false negatives for SIDAN. All in all, we can claim that the rate of false negatives for

SIDAN lies within a 27.01% and 37.64%.

0 10000 20000 30000 40000 50000

Unexpected server exit

Incorrect client output

Successful execution

]
]

]

]

]

]
13.15%

17.50%

12.37%

38.85%

12.12%

6.02%

]
]No SIDAN alert

SIDAN alert(s)

Fig. 6. Distribution of alerts

5 Conclusion and future work

In this article, we propose a sofware-level intrusion detection approach based on the

internal state of the process that detects data attacks, which are missed by traditional

control-flow approaches. Our mechanism relies on a data-oriented behavior model to

detect erroneous states that could lead to illegal system calls. We present a tool that

implements our approach by analyzing and instrumenting a program’s source code.

This tool has proved that our approach is useable in the context of real software and

that it can detect real world non-control-data attacks (such as the null password attack

on OpenSSH). We also propose a method to assess these intrusion detection systems

against data attacks by using a fault injection mechanism. In the particular case of Drop-

bear SSH, by using our evaluation method, we have estimated, without prior knowledge

of any attacks, an approximation of the detection coverage of our detection model.

However, the current implementation of our tool computes the constraints needed by

our detection model using only variation domains. This is clearly a limitation, because

it does not permit the detection of data attacks on variables whose variation domain

is statically unknown in the source code. That is why in the future we intend to use

additional static analysis techniques to discover more constraints. We also plan to in-

vestigate for our evaluation method the possibility of replacing the set of hand written

scenarios by automatically generated scenarios using fuzzing techniques [23].

References

1. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system

calls. Journal of Computer Security (1998)

2. Kruegel, C., Kirda, E., Mutz, D., Robertson, W.: Automating mimicry attacks using static

binary analysis. In: 14th conference on USENIX Security Symposium. (2005)

3. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of anomalous system call

arguments. In: 8th European Symposium on Research in Computer Security. (2003)

4. Bhatkar, S., Chaturvedi, A., Sekar, R.: Dataflow anomaly detection. In: 2006 IEEE Sympo-

sium on Security and Privacy (S&P’06). (2006)

5. Mutz, D., Robertson, W., Vigna, G., Kemmerer, R.: Exploiting execution context for the

detection of anomalous system calls. In: Proceeding of the 10th International Symposium

on Recent Advances in Intrusion Detection. (2007)

6. Feng, H., Kolesnikov, O., Fogla, P., Lee, W., Gong, W.: Anomaly detection using call stack

information. In: 2003 IEEE Symposium on Security and Privacy. (2003) 65

7. CEA: Frama-c, framework for modular analysis of c

8. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: CCS ’05: Pro-

ceedings of the 12th ACM conference on Computer and communications security. (2005)

9. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shepherding.

In: Proceedings of the Usenix Security Symposium. (2002)

10. Chen, S., Xu, J., Sezer, E., Gauriar, P., Iyer, R.: Non-control-data attacks are realistic threats.

In: Usenix Security Symposium. (2005)

11. Akritidis, P., Cadar, C., Raiciu, C., Costa, M., Castro, M.: Preventing memory error exploits

with wit. In: 2008 IEEE Symposium on Security and Privacy. (2008)

12. Castro, M., Costa, M., Harris, T.: Securing software by enforcing data-flow integrity. In: 7th

USENIX Symposium on Operating Systems Design and Implementation. (2006)

13. Demay, J.C., Totel, E., Tronel, F.: Sidan: a tool dedicated to software instrumentation for

detecting attacks on non-control-data. In: 4th International Conference on Risks and Security

of Internet and Systems (CRISIS’2009), Toulouse (October 2009)

14. Weiser, M.: Program slicing. IEEE Transactions on Software Engineering (1982)

15. Kuck, D.J., Kuhn, R.H., Padua, D.A., Leasure, B., Wolfe, M.: Dependence graphs and its use

in optimization. In: 8th ACM Symposium on Principles of Programming Languages. (1981)

16. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of

programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM

SIGACT-SIGPLAN symposium on Principles of programming languages. (1977)

17. Granger, P.: Static analysis of arithmetical congruences. International Journal of Computer

Mathematics 30 (1989) 165–190

18. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a

program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages. (1978)

19. Karr, M.: Affine relationships among variables of a program. In: Acta Informatica. (1976)

133–151

20. Granger, P.: Static analysis of linear congruence equalities among variables of a program.

In: TAPSOFT’91. (1991) 169–192

21. Goloubeva, O., Rebaudengo, M., Reorda, M.S., Violante, M.: Soft-error detection using

control flow assertions. In: Proceedings of the 18th IEEE International Symposium on Defect

and Fault Tolerance in VLSI Systems (DFT’03). (2003)

22. Vemu, R., Abraham, J.A.: Ceda: Control-flow error detection through assertions. In: Pro-

ceedings of the 12th IEEE International On-Line Testing Symposium). (2006)

23. Neves, N., Antunes, J., Correia, M., Verissimo, P., Neves, R.: Using attack injection to

discover new vulnerabilities. Conference on Dependable Systems and Networks (2006)

