
HAL Id: hal-00474647
https://inria.hal.science/hal-00474647v2

Submitted on 5 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Reconfiguration Language for Virtualized Grid
Infrastructures

Rémy Pottier, Marc Léger, Jean-Marc Menaud

To cite this version:
Rémy Pottier, Marc Léger, Jean-Marc Menaud. A Reconfiguration Language for Virtualized Grid
Infrastructures. 10th IFIP WG 6.1 International Conference on Distributed Applications and In-
teroperable Systems (DAIS) / Held as part of International Federated Conference on Distributed
Computing Techniques (DisCoTec), Jun 2010, Amsterdam, Netherlands. pp.42-55, �10.1007/978-3-
642-13645-0_4�. �hal-00474647v2�

https://inria.hal.science/hal-00474647v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Reconfiguration Language for Virtualized
Grid Infrastructures?

Rémy Pottier, Marc Léger, and Jean-Marc Menaud

Ascola (EMN/INRIA, LINA)
Ecole des Mines de Nantes

4, rue Alfred Kastler
44307 Nantes, France

first-name.last-name@emn.fr

Abstract. The growing needs in computational power to answer to the
increasing number of on-line services and the complexity of applications
makes it mandatory to build corresponding hardware infrastructures and
to share several distributed hardware and software resources thanks to
grid computing. To help with optimizing resource utilization, system
virtualization is a more and more adopted technique in data centers.
However, this software layer adds to the administration complexity of
servers and it requires specific management tools to deal with hypervisor
functionalities like live migration. To address this problem, we propose
VMScript, a domain specific language for administration of virtualized
grid infrastructures. This language relies on set manipulation and is used
to introspect physical and virtual grid architectures thanks to query ex-
pressions and notably to modify VM placement on machines.

1 Introduction

Data centers are one of more important Internet component (with the access
point and network). These infrastructures are used most of the time to host on-
line services. Traditional datacenters typically host a large number of relatively
small-sized applications, and host hardware and software for multiple organiza-
tional units or even different companies when traditional cluster belongs to a
single organization, with a relatively homogeneous hardware and system soft-
ware platform, and share a common systems management layer. So from an
architecture perspective, datacenter is closer to a grid architecture (which is a
clusters federation) than to a single cluster. That is why, and like grid, the physi-
cal administration of this infrastructure is a real challenge, both in monitoring
and in its administrative base operations (shutdown, reboot, etc.).

From a software perspective, virtualization [8] has spread in datacenter. It
allows to gain efficiency for resource utilization and flexibility for application
execution. In this approach, each small-sized application hosted is running in a

? This work is partially funded by the SelfXL ANR/ARPEGE project
(http://selfxl.gforge.inria.fr/dokuwiki/doku.php).

2 Rémy Pottier, Marc Léger, and Jean-Marc Menaud

virtual machine. Virtual machines (VMs) can be thus used to consolidate the
workloads of under-utilized servers to use fewer physical machines so as to save on
hardware and power consumption [10]. However virtualization as a new abstrac-
tion layer adds complexity for data center administrators. If administrators
agree on the benefits of virtualization to reduce costs and improve flexibility,
most also recognize that it makes the administration more complex and error
prone. That is why many companies think about adapting their management
tools and instrumentation to current needs of virtualized environments. One of
the new issues raised by administrators is the fine management of VMs.

Administrators want more particularly to express complex queries on re-
sources (introspection) and manipulate elements (intercession). Low levels APIs
(e.g. Xen API [4]) provide some primitive operations on VMs with for example
instantiation, shutdown, static or live migration, etc. but no complex operations
on sets of elements. Manipulation of collections of resources is then done by in-
voking these APIs in some general purpose or scripting languages which are not
necessarily adapted in terms of concision and precision of their syntax.

Our proposition relies on the use of several domain specific languages (DSLs)
for grid administration. First of all, we need to define a model for describing
grid resources. In our model, a grid user defines a task in the form of a set of
VMs called a virtual job which can execute on the grid. A grid is then modeled
as a graph of physical elements like machines, racks or clusters, and logical
elements including VMs, virtual jobs, and users. We define description languages
for administrators to represent grid physical architectures, virtual organizations
as sets of users. Another language allows user to describe virtual jobs they want
to submit to the grid. In addition to these description languages, another DSL
is used to manage the resources previously describe (i.e. navigate in the grid
physical and logical architecture to select elements with given properties). This
last language is also used to execute reconfiguration operations on grid elements
like VM migrations [5].

This paper is organized as follows. Section 2 presents some related work
about languages for grid management. Section 3 presents our model to represent
resources in a grid architecture and some description languages to build these
architectures and virtual jobs. Section 4 describes a domain specific language
for the grid management based on selections, navigations and dynamic recon-
figurations in grid architectures. Our DSL approach for grid administration is
evaluated in Section 5 before concluding in Section 6.

2 Related Work

We are considering two categories of work related to grid administration and
DSLs, those involving basic operations and those on language aspects.

Basic operations: Shells and APIs. Basic management operations are performed
by using hypervisor APIs which allow to manipulate VMs (instantiation, migra-
tion, destruction, etc.). As each hypervisor (Xen [4], KVM [11], etc.) has its own

A Reconfiguration Language for Virtualized Grid Infrastructures 3

API, the libvirt API 1 may be used to manage different virtualization solutions
through a common interface. Above these APIs, shells unify the most common
management operations and administrators can similarly manage a server what-
ever the hypervisor is. Shells (e.g. Usher [13]) and API approaches are designed
for local management on a given server. For good working order, administrators
need to have information about the whole grid to manage grid resources. To fill
this gap, some virtual machine managers [15] (e.g. Virtual Machine Manager 2)
offer an overview of the grid with real time monitoring. These tools help ad-
ministrators to manage all grid elements with a common interface, sometimes
a graphical user interface, whatever the hypervisor is. However, they offer only
limited operations in terms of resource queries and complex reconfiguration op-
erations.

Domain Specific Languages Language approaches address description and reser-
vation in grid context. A grid description may be carved up into grid resources
description and description of how to use these resources (that is to say job
descriptions). The Job Submission Description Language (JSDL) [3] is a XML
based language to describe a job and its needs (resources and applications). For a
grid architecture description, VXDL [9] is a language for virtual resources inter-
connection networks specification and modeling. It describes virtual infrastruc-
tures, especially virtual network, and queries the model about the network topol-
ogy. Other specific languages have proposed to permit users to get resources and
use them. ClassAd [14] and xRSL [2] are declarative languages with attribute-
value pairs. A language keyword identifies properties on which users can make
a selection. Users describe resources required (network, disk, memory, etc.) and
how to use them. SWORD [1] is a framework which collects grid monitoring
information into a database and provides a query language for selecting and
ranking required resources. These languages address grid resources utilization
and grid description but not administrative tasks.

Our aim is to overcome the limitations of these tools and languages by propos-
ing an approach based on several domain specific languages for both describing
and managing (observation and reconfiguration) resources in grids.

3 Specification of Grid Architectures

We distinguish two kinds of actors: administrators and users. Administrators
configure servers, networks and, with virtualization, define virtual machines
placement. Users submit their jobs and manage them without explicitly choos-
ing specific servers. Each user describes the resources necessary for his job. In
our case, grid resources are modeled by virtual machine requirements like in [7].
A job is composed of a set of virtual machines which will be executed on the
infrastructure, it is then called a virtual job or vjob (called lease in other works
[16]. Each user belongs to a virtual organization (VO).
1 http://libvirt.org/html/libvirt-libvirt.html
2 http://virt-manager.et.redhat.com/

4 Rémy Pottier, Marc Léger, and Jean-Marc Menaud

3.1 Life Cycle in Grid Management

Figure 1 describes the classical lifecycle in a grid with the user vjob submission
and adminstrator’s maintenance operation. First, after the user has specified his
vjob, he submits it to the vjob configuration parser. This parser builds a vjob
with the appropriate number of virtual machines. Then, this vjob is submitted
to the management system. If the submission succeeds, all virtual machines of
the vjob are placed in the grid.

Fig. 1. Global architecture of the grid framework

The management system is used to build a grid representation, to modify
it, or to query it. It knows all elements of the grid representation and it allows
to ensure some good properties such as uniqueness (e.g., a unique IP per ma-
chine). The management system also checks that grid elements are correctly and
completely configured. For example, the virtual machine memory is essential to
place a VM on a server. Moreover the management system is able to place VMs
in the grid with respect to their needs. If no placement is found for a VM, it is
rejected.

The grid representation is built from a full description of the grid supplied by
an administrator. This representation is a structural model of the grid resources
(discussed in Section 3.2) and it is tied to the real grid by a monitoring sys-
tem (in our case Ganglia [12]). This one checks grid representation information
to ensure consistency between the real grid and its representation. This causal
connection is only maintained for servers and VMs in our framework because
the monitoring system does not give information about other elements, like the
cluster organization. So if an unexpected event happens, for example an ele-
ment disappears, the monitoring system detects it and the grid representation
is updated accordingly.

Several verifications are performed on this description by the grid configura-
tion parser in collaboration with monitoring system and management system.

A Reconfiguration Language for Virtualized Grid Infrastructures 5

In the first place, this parser checks the structure of the grid by comparison
between the description and the grid model. In the second place, information
from grid description are compared to monitoring system information. When
a representation is built, the administrator can perform grid reconfigurations,
like adding a server, in the management console. He may write a sequence of
operations in a script executed in a management console. For example, migrate
a virtual machine, then shut down a server.

3.2 A Grid Model

A model of grids (Figure 2) has been conceived as a multi-graph with labeled
nodes and arcs. In this graph, the nodes correspond to grid elements with proper-
ties and operations. The arcs represent relations between these elements. This
graph is navigable with bidirectional relations. This model is one particular
view of what a grid is, but it can be adjusted for describing other kinds of grid
organizations. It is composed of two kinds of elements: physical elements and
logical elements.

Fig. 2. A grid model

A physical element is basically a server container. The smaller the container
is, the more accurate the location information of the server is. Servers are iden-
tified by the more generic term machine. Some node properties are mandatory
and must be initialized to enable grid management. Optional properties, like
operating system, allow administrator to simplify the grid management. A ma-
chine is placed into a rack at a specific level. A set of racks composes a cluster
which itself belongs to a site. A site is a general term to design a set of clusters.
A site can represent either simply a room where servers are located, or a city
with several data centers. The main element of the logical view is the virtual
machine (VM). In a vjob defined by several VMs, we can create special groups
of VMs called VMSet. For instance, a VMset can be used to group all VMs

6 Rémy Pottier, Marc Léger, and Jean-Marc Menaud

containing server for a given tier in a 3-tiers application. Each vjob is linked to
its owner represented by a User element. A virtual organization (VO) is a set of
users who can connect to the grid. Physical and logical views are linked by the
hosting relation between machines and VMs.

An important property is the life-cycle state of machines, VMs and vjobs.
These states represent the current element life cycle and allow to restrict the exe-
cution of some operations. The machine life cycle is a trivial two-state automaton
with on and off states. The VM life cycle consists of five states: uninitialized
before some mandatory properties are configured, initialized, started, suspended
and stopped. As we only consider live migration operations on VMs, the VM
state remains running during migration. A vjob is a composition of VMs, so a
vjob has the same life cycle as a VM.

Several description languages are provided to specify grid architectures. These
languages are based on XML and XML Schema, so that they conform to our grid
model and its mandatory properties. The first language is used by administra-
tors to describe the physical architecture of grids. This description is used by
the grid configuration parser to build the physical representation of the grid.
<g r id name=” pa s t e l ”>

<s i t e name=”EMN” c i t y=”Nantes”>
<c l u s t e r name=”Xen”>

<rack name=” ra1 ”>
< l e v e l number=”2”>

<machine hostname=” paste l −1.b217 . home” ip=” 192 . 168 . 0 . 107 ”
mac=”00 : 2 1 : 7 0 : 2 5 : 5 5 : b 0 ”>
<cpu arch=”64” number=”2” capac i ty=”2000” />
<memory capac i ty=”4000” />
<d i sk capac i ty=”150” />
<os fami ly=”Unix” d i s t r i b u t i o n=”Ubuntu” />

</machine>
</ l e v e l>
< l e v e l number=”3”>

<machine hostname=” paste l −2.b217 . home” ip=”dhcp”
mac=”00 : 2 1 : 7 0 : 2 5 : 5 5 : b 1 ”>

. . .

Example of a partial description of a physical grid architecture

As different actors handle the logical view differently, there are two languages
to describe it. The first one allows an administrator to link users with a grid by
specifying VOs. The second one is used by grid users to define their vjobs to be
submitted to the grid.
<vjob name=”myjob” per iod=”24h” command=”run . sh”>

<vm hostname=”myvm” ip=” 192 . 1 68 . 0 . 2 ” f i l e=”/ farm/LennyApp/myvm. c f g ”>
<need cpu=”2000” memory=”3000” d i sk=”500” />

</vm>
<vmset name=”db”>

<vm hostname=”dataBase1” f i l e=”/ t e s t . net /mysql . c f g ”>
<need memory=”256”/>

</vm>
<vm hostname=”dataBase2” f i l e=”/ t e s t . net /mysql . c f g ”>

<need memory=”256”/>
</vm>

</vmset>
</vjob>

Example of a vjob description

A Reconfiguration Language for Virtualized Grid Infrastructures 7

4 A Domain Specific Language for Grid Management

Once our grid model has been defined, administrators and users manage re-
sources by navigating and selecting elements in grid physical and logical ar-
chitectures and by dynamically reconfiguring these architectures. This section
describes VMScript, a domain specific language for grid management, i.e. intro-
spection and intercession in grid elements. This language is inspired by previ-
ous work on a reconfiguration language in component-based architectures called
FScript [6]. Actually, our language is divided into two parts for respectively in-
trospection and reconfiguration. The introspection language, named VMPath,
is used to express queries in grid architectures. The reconfiguration language,
VMScript, allows the execution of dynamic reconfiguration operations on grids
and is a super set of VMPath.

4.1 Selection and Navigation in Grid Architectures

A grid configuration (or architecture) is defined as a labeled directed multigraph.
To query these architectures, the VMPath language is used as a side-effect free
declarative language. It is restricted to the navigation in grid architectures, the
selection of grid elements by their location or their properties. Therefore, the
execution of a VMPath expression cannot lead to modifications in grids.

VMPath syntax. The language has a very concise but powerful syntax based on
XPath 1.0 [17], the W3C standard query language for XML documents. Several
arguments are in favor of this choice:

– XPath does not depend on the specific syntax of XML documents, it can be
used on abstract graph models such as our grid model. Actually XPath only
defines concepts of nodes, properties and relations between nodes.

– The syntax is open and flexible. Although XPath specifies a fixed set of
nodes and relations (XPath axes) to query XML documents, it is possible to
define new types of nodes and relations. Our grid model does not use XPath
base XML axes (child, attribute, etc.) but defines its own navigation axes.

– The syntax is concise and readable, an XPath allows to express one-line
queries. Moreover, XPath defines a node-set data type which allows powerful
set queries with set operations.

Despite all these advantages, VMPath does not rely on existing XPath imple-
mentations because these implementations are too tied to XML representations.

The generic syntax of a VMPath expression consists of a sequence of steps
separated by slashes (cf. Figure 3). A step is composed of an axis specifier which
indicates the arc to follow in the graph for navigation, and a set of optional
predicates to filter the selected nodes. There is no intrinsic notion of hierarchy in
navigation and so a navigation axis does not necessarily represent a hierarchical
relation between elements. The beginning of the expression, $grid, refers to
the initial node set used in the query. This node set is stored in a VMPath

8 Rémy Pottier, Marc Léger, and Jean-Marc Menaud

variable and denotes in this case a grid element. The navigation axis used in
the expression is the site axis which basically selects all site nodes belonging to
the grid. This set of sites is then filtered thanks to a predicate to select only
sites which are named ‘Paris’, i.e. all sites which are localized in Paris. The ‘@’
symbol is used to query the value of the name property.

$grid/site[@location == "Paris"]/...

Initial node set

Axis specifier

Optional

filtering predicates

Additional steps

Fig. 3. Syntax of query expressions

VMPath is a dynamically typed language (type checking is performed at
runtime). The four primitive data types defined are the same as in XPath 1.0:
node-set, string, number, and boolean. As there is no notion of attribute nodes, a
special type multi-set has been added to deal with multi-sets of primitive types.
The VMPath language supports the classic arithmetic, boolean and comparison
operators and also set operators (union, intersection and difference).

Functions in VMPath are side-effect free procedures. A library of predefined
functions is provided with the language. These functions are essentially:

– property accessors to get values of node properties (e.g., ‘name()’ to get
the name of a node). The ‘@’ notation before a property name is strictly
equivalent to the accessor function on the property (e.g., ‘@name’). It should
be noted that these functions can be applied to a set of elements. For instance
‘name($set)’ would return a multiset of strings corresponding to all the
names of the elements contained in the set ‘$set’.

– functions for string manipulation (e.g., ‘concat()’ for string concatenation,
‘match()’ to test the matching of a string and a regular expression)

– aggregation functions on element collections: ‘size()’ (returns the cardinality
of a set), ‘sum()’ (returns the sum of a number set), etc.

VMPath examples. VMPath can be used to express a wide range of queries on
grid architectures. Some examples are presented afterwards.

A selection of all racks in a grid is performed thanks to the following expres-
sion:
$gr id / s i t e / c l u s t e r / rack

A shortcut navigation axis is usable when there is no ambiguous path in the
graph to reach the wanted nodes. For instance, the previous expression using a
shortcut axis could be expressed as follows:
$gr id // rack

A Reconfiguration Language for Virtualized Grid Infrastructures 9

Grid elements can be selected by the value of properties. For example, we
may want to find the rack which contains a machine with a specific IP address
in a cluster:
$ c l u s t e r //machine [@ip == ’ 192 . 168 . 110 . 36 ’] // rack

4.2 Dynamic Reconfiguration of Grids

The VMPath query language is integrated into another DSL focusing on the dy-
namic reconfiguration of grids, VMScript. VMPath expressions are used to select
the grid elements to reconfigure. VMScript is an imperative language providing
procedures and control structures so as to program reconfiguration scripts of
grids.

Procedures. VMScript makes the distinction between two kinds of procedures:
functions and actions. Functions are side-effect free procedures only for grid
introspection, whereas actions are intercession procedures to actually modify
grid configurations. A primitive action in our model is a primitive graph trans-
formation in a grid representation such as listed below:

– Addition or removal of a node. For instance, to add or remove a cluster node
in the graph, we could use respectively the following procedures:
new−c l u s t e r () ;
de l e t e−c l u s t e r ($ c l u s t e r) ;

– Addition or removal of a relation between nodes. For instance, these two
procedures respectively add and remove a rack relation between a cluster
and a rack, i.e. add and remove a rack in a cluster:
add−rack ($ c l u s t e r , $rack) ;
remove−rack ($ c l u s t e r , $rack) ;

– Modification of the value of a node property. To change the name of a grid,
the following setter is applied:
set−name($gr id , ”mygrid”) ;

All these primitive actions are automatically generated from the description
of our grid model so that possible modifications in the model are transparently
taken into account. Native procedures like primitive actions are implemented
in Java, the implementation language of the VMScript interpreter. However it
is possible to define procedures directly in the VMScript language. These user-
defined procedures can be loaded at any time in the interpreter. A VMScript
procedure is specified by means of the function or action keywords:

function isEmpty (s e t) {
return s i z e ($ s e t)==0;

}

action migrate−vjob (vjob , dest) {
for $vm : $vjob /vm {

migrate ($vm, $dest) ;
}

}

10 Rémy Pottier, Marc Léger, and Jean-Marc Menaud

The first procedure is a function which returns true if a set is empty, false
otherwise. The second procedure is an action which takes a virtual job and a
machine in argument. It consolidates the vjob on the same destination machine
by migrating all of its VMs. These two procedures are part of a standard library.
This library contains utility procedures which are loaded when the interpreter
is instantiated.

Control structures. VMScript supports classic control structures in addition to
the sequencing of instructions.

New variables can be created by assigning them an initial value. Variables
are mutable and their scope is defined by the block where they are declared.
In the following example, ‘grid’ is a global variable since it is defined outside
any block. It is initialized with a grid node built from the configuration file
mygrid.xml describing a grid architecture. A declared variable is then referenced
by means of the ‘$’ symbol.
g r id = adlnew−g r id (‘ ‘ mygrid . xml”) ;
echo ($gr id) ;

The conditional execution if-then-else uses the standard C syntax. The fol-
lowing example tests if the memory capacity of a machine is above a threshold.
If the test evaluates to true, it adds a VM to the machine, otherwise it prints a
message to the standard output.
i f ($machine@mem cap >= 2000) {

add ($vm, $machine) ;
} else {

echo (‘ ‘ Not enough memory . ”) ;
}

Iteration is restricted to finite sets with a for loop. This limitation prevents
from programming infinite loops and non-terminating scripts. The execution
semantics of an iteration is to sequentially iterate on every element in the set.
For example, the following code iterates on every machine in the grid which do
not host any VM.
for $m: $gr id //machine [s i z e (. /vm)==0] {

shutdown ($m) ;
}

Some native actions are defined to take either a single value or a set in argument.
In the latter case, the primitive action is executed in parallel on each element
of the set. For instance, the previous example could be executed in parallel with
the same action but without explicit iteration:
shutdown ($gr id //machine [s i z e (. /vm)==0]) ;

An explicit return statement allows the stopping of a program execution and
returns to the caller with possibly sending a value.
function cpu cons average (machines) {

return average (machines@cpu cons) ;
}

A Reconfiguration Language for Virtualized Grid Infrastructures 11

Execution model. Primitive actions defined in VMScript are directly mapped
on operations in the grid model. For instance, a migrate-vm action on a VM
node corresponds to a migrate Java method on a VM object from our model
API. As previously mentioned and thanks to the causal connection between the
grid and its representation, the execution of an operation in the model comes to
execute operations on real machines and VMs through SSH and calls to native
APIs (e.g., Xen API for Xen VMs). VMscript code is executed in an interpreter
programmed in Java which can be embedded in applications. Furthermore, an
interactive console is provided so as to interactively execute queries on a grid
and reconfiguration scripts.

5 Evaluation

We show first in this section the expressiveness of the VMScript language by
comparing it to another general purpose scripting language linked to a VM
API. We then present several use cases we experimented with VMScript for grid
management.

5.1 Comparison with a General Purpose Language

In this section, we compare an action written in VMScript with the same action
written in the scripting language Bash. The purpose of the example is to shut
down machines in order to perform some maintenance tasks on hardware (for
example, changing a hard disk). We want to select machines from their CPU
capacity and their kernel version. If these machines do not host VMs, we shut
them down. For this experimentation, all machines are stored in a same rack.
These machines boot a Linux operating system with different kernel versions
and different CPU and memory capacities. Each machine runs a Xen (v3.2.1)
hypervisor.

From a UNIX shell, we get the cpu capacity from reading the /proc/cpuinfo
file and just keep the value of the metric cpu MHz. We obtain the kernel version
by the command uname -r. To check that there is no VM hosted by the machine,
the Xen API is invoked for listing all hosted virtual machines on a node.

1 for machine in $ ∗ ; do
2 ke rne l=$ (ssh root@$machine uname −r)
3 cpu=$ (ssh root@$machine cat /proc / cpu in fo | grep ’ cpu MHz ’ | head −n 1 | sed

s / [ˆ0 −9.]// g)
4 i f [$cpu = ”2000” −a $ke rne l = ”2.6.26−1−xen−amd64”] ; then
5 i f [−z ”$ (ssh root@$machine xm l i | sed ’1d ’ | sed ’1d ’) ”] ; then
6 ssh root@$machine ha l t
7 f i
8 f i
9 done

Action written in a bash script

From the VMScript console, we set a variable “rack” with the rack to analyze.
So we select all machines of this rack with the wished “cpu cap”. For the kernel
version, the usage of an optional property “os dist” is required. We query the

12 Rémy Pottier, Marc Léger, and Jean-Marc Menaud

grid representation with the function “size()” to check that no VM is running
on a machine.

1 shutdown ($rack /machine [@cpu cap = 2000] [@os d i s t = =’ 2.6.26−1−xen−amd64 ’
] [s i z e (vm) = = 0] ;

Action written in VMScript

We can see the benefits from using the VMScript DSL because of:

– its concision: the VMScript action takes a single line versus 9 lines of codes
in Bash,

– its homogeneity and genericity: its not necessary to invoke a specific hyper-
visor API in the code,

– its guarantees: the shutdown action in VMScript has a precondition to check
that there is actually no VM hosted on a machine before shutting it down.

5.2 Some Common Use Cases in Grid Management

Some samples of VMScript code are given afterwards to exemplify the use of the
language for grid management.

The action keep-min-nodes is used to ensure that a given number of machines
is started so that they can easily host new VMs.

action keep−min−nodes (gr id , nb) {
for s : $g r id // s i t e {

no vm = $s //machine [s i z e (vm) = = 0] ;
on = s i z e ($no vm)
i f ($on > $nb) {

shutdown (subset ($no vm , $on − $nb))
} else i f ($on < $nb) {

power−on (subset ($s //machine [@state = = ’ o f f ’] ,
$nb − $on)) ;

}
}

}

The following action gets servers running a Xen hypervisor then puts a new
Xen configuration file and restarts the Xen daemon.

action hyperv i so r s−c on f i g (gr id , hyperv i sor , f i l ePa th) {
xen = $gr id //machine [@hypervisor = =’ xen ’ && @os fami ly = = ’ Linux ’] ;
put− f i l e ($xen , f i l ePa t h) ;
execute−command($xen , ’ / e t c / i n i t . d/xend r e s t a r t ’) ;

}

In the next action, we add a new server in the physical architecture and
migrate virtual machines of the most overhead servers to free a piece of memory.

action new−machine (gr id , hyperv i sor , f i l ePa t h) {
add−e lements (’new−s e r v e r . xml ’) ;
new−s e r v e r = $gr id //machine [@name = = ’ pas te l −90 ’] ;
s e rv e r1 = $gr id //machine [@mem free = = min(g r id //machine@mem free)] ;
migrate ($ s e rve r1 /vm[@mem need = = max(. / machine/vm@mem need)] ,
$new−s e r v e r) ;

}

A Reconfiguration Language for Virtualized Grid Infrastructures 13

6 Conclusion

Managing a virtualized grid infrastructure is a hard task and some tools are
required to help administrators with this. In the same way, although a grid can
aggregate a lot of heterogeneous physical and software resources, it must offer
a simple interface to its users, i.e. the application (job) providers. Regarding
these preoccupations, we proposed a domain specific language approach for grid
management.

More precisely, several DSLs are used for grid description, query and recon-
figuration. All these languages rely on the definition of a particular model of a
grid. A graph based representation of grids is maintained at runtime and con-
forms to this model. A first description language allows administrators to specify
a grid physical architectures as a hierarchical assembly of physical elements like
machines and clusters. A second language is used to group grid users by sets in
virtual organizations. The last description language is dedicated to the specifi-
cation of jobs (called virtual jobs) by users. A job, which has to be executed on
the grid, is described essentially as a set of VMs. A user can specify the resources
(CPU, memory, etc.) required to run the job.

The VMScript language focuses on querying grid architectures and on grid
reconfiguration. A subset of the language is declarative and is used to query
the grid through its runtime representation. This query is done by navigating in
the graph and selecting elements with some optional predicates. The imperative
part adds side effects to the language with control structures and procedures
called actions. These ones actually modify the grid architecture, for instance by
placing and moving VMs on machines.

Our grid model essentially focuses on the representation of machines as physi-
cal resources. It does not deal at the moment with network topology and proper-
ties such as latency and bandwidth. However, as this model is extensible without
actually modifying the language syntax, these new preoccupations could be in-
troduced for future work provided that a suitable monitoring system gives that
information.

References

1. Jeannie Albrecht, David Oppenheimer, Amin Vahdat, and David A. Patterson.
Design and implementation tradeoffs for wide-area resource discovery. In In Pro-
ceedings of 14th IEEE Symposium on High Performance, Research Triangle Park,
pages 113–124. IEEE Computer Society, 2005.

2. Globus Alliance. Extended resource specification language (xrsl). Technical report,
Globus Alliance, 2009.

3. Ali Anjomshoaa. Job submission description language (jsdl) specification, version
1.0. Technical report, Global Grid Forum, 2005.

4. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
In SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems
principles, pages 164–177, New York, NY, USA, 2003. ACM.

14 Rémy Pottier, Marc Léger, and Jean-Marc Menaud

5. Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines.
In NSDI’05: Proceedings of the 2nd conference on Symposium on Networked Sys-
tems Design & Implementation, pages 273–286, Berkeley, CA, USA, 2005. USENIX
Association.

6. Pierre-Charles David, Thomas Ledoux, Marc Léger, and Thierry Coupaye. Fpath
& fscript: Language support for navigation and reliable reconfiguration fractal ar-
chitectures. Annals of Telecommunications - Special issue on Software Components
- The Fractal Initiative, 64:45–63, 2009.

7. Renato J. Figueiredo, Peter A. Dinda, and José A. B. Fortes. A case for grid com-
puting on virtual machines. In ICDCS ’03: Proceedings of the 23rd International
Conference on Distributed Computing Systems, page 550, Washington, DC, USA,
2003. IEEE Computer Society.

8. R. P. Goldberg. Architecture of virtual machines. In Proceedings of the workshop
on virtual computer systems, pages 74–112, New York, NY, USA, 1973. ACM.

9. Pascale Vicat-Blanc Primet Guilherme Piegas Koslovski and Andrea Schwert-
ner Char ao. Vxdl: Virtual resources and interconnection networks description
language. In Networks for Grid Applications, 2009.

10. Fabien Hermenier, Xavier Lorca, Jean-Marc Menaud, Gilles Muller, and Julia
Lawall. Entropy: a consolidation manager for clusters. In VEE ’09: Proceedings of
the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments, pages 41–50, New York, NY, USA, 2009. ACM.

11. Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm: the
linux virtual machine monitor. In Proceedings of the Linux Symposium, volume 1,
pages 225–230, June 2007.

12. M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia Distributed Monitoring
System: Design, Implementation, and Experience. Parallel Computing, 30(7):817–
840, July 2004.

13. Marvin McNett, Diwaker Gupta, Amin Vahdat, and Geoffrey M. Voelker. Usher:
an extensible framework for managing custers of virtual machines. In LISA’07:
Proceedings of the 21st conference on Large Installation System Administration
Conference, pages 1–15, Berkeley, CA, USA, 2007. USENIX Association.

14. Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed
resource management for high throughput computing. In In Proceedings of the
Seventh IEEE International Symposium on High Performance Distributed Com-
puting, pages 28–31, 1998.

15. Mendel Rosenblum and Tal Garfinkel. Virtual machine monitors: Current technol-
ogy and future trends. Computer, 38(5):39–47, 2005.

16. Borja Sotomayor, Kate Keahey, and Ian Foster. Combining batch execution and
leasing using virtual machines. In HPDC ’08: Proceedings of the 17th international
symposium on High performance distributed computing, pages 87–96, New York,
NY, USA, 2008. ACM.

17. World Wide Web Consortium. XML path language (XPath) version 1.0. W3C
Recommendation, November 1999. http://www.w3.org/TR/xpath/.

