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Abstract. Recently, wealthy network services such as Internet proto-
col television (IPTV) and Voice over IP (VoIP) are expected to become
more pervasive over the Next Generation Network (NGN). In order to
serve this purpose, the quality of these services should be evaluated sub-
jectively by users. This is referred to as the quality of experience (QoE).
The most important tendency of actual network services is maintaining
the best QoE with network functions such as admission control, resource
management, routing, traffic control, etc. Among of them, we focus here
on routing mechanism. We propose in this paper a protocol integrating
QoE measurement in routing paradigm to construct an adaptive and
evolutionary system. Our approach is based on Reinforcement Learning
concept. More concretely, we have used a least squares reinforcement
learning technique called Least Squares Policy Iteration. Experimental
results showed a significant performance gain over traditional routing
protocols.
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1 Introduction

The theory of quality of experience (QoE) has become commonly used to repre-
sent user perception. For evaluating network service, one has to measure, moni-
tor, quantify and analyze the QoE in order to characterize, evaluate and manage
services offered over this network. For users, also for operators and Internet ser-
vice providers, the end-to-end quality is one of the major factors to be achieved.
Actually the new term of QoE has been introduced to make end-to-end (e2e)
QoS more clearly captures the experience of the users, which attempts to objec-
tively measure the service delivered, QoE also takes in account the needs and the
desires of the subscribers when using network services. Furthermore, the main
challenge lies in how to take the dynamic changes in the resources of communi-
cation networks into account to provide e2e QoS for individual flows. Developing
an efficient and accurate QoS mechanism is the focus of many challenges; mostly
it is the complexity and stability. In reality, e2e QoS with more than two non
correlated criteria is NP-complete [1]. Both technologies and needs continue to
develop, so complexity and cost become limiting factors in the future evolution



of networks.
In order to solve a part of this problem, one has integrated QoE in network
systems to adapt decision control in real-time. In fact, QoE does not replace
QoS, but improves it. As an important factor of the end-to-end user perception,
the QoE is an key metric for the design of systems and engineering processes.
In addition, with QoE paradigm, we can reach a better solution to real-adaptive
control network components.
Many people think that QoE is a part of QoS but it is a wrong perception. In
reality, QoE covers the QoS concept. In order to demonstrate this theoretical
point, we observe a quality chain of user-to-user services in Fig. 1. The quality
perceived by end-user when using end-devices is called QoD (Quality of Design).
The quality of network service including core network and access network is de-
termined by QoS access and QoS backbone. QoE is satisfied only in the case
that QoD and QoS are satisfied. So we can see that the user-to-user QoE is a
conjunction of QoD and QoS.
In fact, there are many of network functions through which we can implement

Fig. 1. Quality chain in an e2e service

QoE concept to improve system quality such as admission control, resource man-
agement, routing, traffic control, etc. Among of them, we focus on routing mech-
anism. Our purpose is to construct an adaptive routing method that can retrieve
environment information and adapt to the environment changes. This adaptive
routing mechanism maintains the required QoE of end-users. It is very necessary
with network systems that have great dynamics (i.e. unreliable communication)
and multiple user profiles where the required QoE levels are different. Most of
the actual adaptive routing mechanisms that focus on optimizing simultaneously
more than two non-correlated QoS metrics (i.e. e2e delay, jitter, response time,
bandwidth) meet NP-complete problem we have mentioned above.
That is why in this paper we want to present a novel approach that integrates
QoE measurement in a routing paradigm to construct an adaptive and evolu-
tionary system.
Our approach is based on Reinforcement Learning (RL). More concretely, we
based our protocol on Least Squares Policy Iteration (LSPI) [2], a RL technique
that combines least squares function approximation with policy iteration.
The paper is structured as follows: Section II surveys briefly related works. In
section III, some preliminaries of reinforcement learning for routing paradigm



are expressed. In section IV we focus on our approach based on reinforcement
learning. The experimental results are shown in section V. Paper is ended with
conclusion and some future works in section VI.

2 Related work

Routing mechanism is key to the success of large-scale, distributed communica-
tion and heterogeneous networks. The goal of every algorithm is to direct traffic
from source to destinations maximizing network performance while minimizing
costs. We cannot apply a static routing mechanism because network environ-
ment changes all time. So most existing routing techniques are designed to be
capable to take into account the dynamics of the network. In other word, they
are called adaptive routing protocol.
[3] presents a dynamic routing algorithm for best-effort traffic in Integrated-
Services networks. Their purpose is to improve the throughput of high-bandwidth
traffic in a network where flows exhibiting different QoS requirements are present.
In this algorithm, one of two approaches is captured: either performing hop-based
path computation, or evaluating the available bandwidth on a specific path. The
problem is that the authors just focus on QoS requirements. Furthermore, this
approach lacks learning process for an adaptive method.
The idea of applying RL to routing in networks was firstly introduced by Boyan
and Littman [4]. Authors described the Q routing algorithm for packet routing.
Reinforcement learning module is integrated into each node in network. There-
fore, each router uses only local communication to maintain accurate statistics
in order to minimize delivery times. However, this proposal is a simple reinforce-
ment learning approach. It just focus on optimizing one basis network metric
(delivery times).
AntNet, an adaptive, distributed, mobile-agents-based algorithm is introduced
in [5]. In this algorithm, each artificial ant builds a path from its source to
destination node. Collecting explicit information about the time length of the
path components and implicit information about the load status of the net-
work is realized in the same time of building the path. This information is then
back-propagated by another ant moving in the opposite direction and is used to
modify the routing tables of visited nodes.
In [6], authors proposed an application of gradient ascent algorithm for rein-
forcement learning to a complex domain of packet routing in network commu-
nication. This approach updates the local policies while avoiding the necessity
for centralized control or global knowledge of the networks structure. The only
global information required by the learning algorithm is the network utility ex-
pressed as a reward signal distributed once in an epoch and dependent on the
average routing time.
In [7], KOQRA, a QoS based routing algorithm based on a multi-path routing
approach combined with the Q-routing algorithm, is presented. The global learn-
ing algorithm finds K best paths in terms of cumulative link cost and optimizes
the average delivery time on these paths. The technique used to estimate the



end-to-end delay is based on the reinforcement learning approach to take into
account dynamic changes in networks.
We can see that all of these approaches above do not take into account the per-
ception and satisfaction of end-users. In other word, they ignored QoE concept.
In order to solve this lack, other proposals are presented:
In [8], authors propose to use an overlay network that is able to optimize the
e2e QoE by routing around failures in the IP network. Network components are
located both in the core and at the edge of the network. However, this system
has no adaptive mechanism that can retrieve QoE feedback of end-users and
adapt to the system actions.
[9] presents a new adaptive mechanism to maximize the overall video quality
at the client. This proposal has taken into account the perception of end-users,
in other words, the QoE. Overlay path selection is dynamically done based on
available bandwidth estimation, while the QoE is subjectively measured using
Pseudo-Subjective Quality Assessment (PSQA) tool. After receiving a client de-
mand, the video server chooses an initial strategy and an initial scheme to start
the video streaming. Then, client uses PSQA to evaluate the QoE of the received
video in real time and send this feedback to server. After examining this feed-
back, the video server will decide to keep or to change its strategy. With this
adaptive mechanism, all is done dynamically and in real time. This approach has
well considered end-users perception. However this adaptive mechanism seems
to be quite simple procedure. One should add learning process to construct much
more user’s profile.
In [10], authors proposed a routing scheme that adaptively learns an optimal
routing strategy for sensor networks. This approach is based on LSPI, the same
way on which we base our approach. However, in [10], the feedback information
is gathered on each intermediate node along the routing path, that is not appli-
cable for integrating the QoE feedback that we just obtain until data flux reach
the destination. In our approach, we have changed LSPI technique such that we
only require the feedback from the end node of the routing path.

3 Preliminaries

3.1 Reinforcement Learning model

In a reinforcement learning (RL) model [11] [12], an agent is connected to its
environment via perception and action (Fig. 2). Whenever the agent receives
as input the indication of current environment state, the agent then chooses an
action, a, to generate as output. The action changes the state of the environment.
The new value is communicated to the agent through a reinforcement signal, r.
Formally, the model consists of:

– a discrete set of environment states: S;

– a discrete set of agent actions: A;

– a set of scalar reinforcement signals: R;



Fig. 2. Reinforcement Learning model

So the agent’s goal is to find a policy π, mapping states to actions, that max-
imizes some long-run measure of reinforcement. In RL paradigm, one uses two
types of value functions to estimate how good is for the agent to be in a given
state:

– State-Value function V π(s): expected return when starting in s and following
π thereafter.

V π(s) = Eπ{Rt|st = s} (1)

– Action-Value function Qπ(s, a): expected return starting from s, taking the
action a, and thereafter following policy π

Qπ(s, a) = Eπ{Rt|st = s, at = a} (2)

where: t is any time step and R is the return.
Regarding policy iteration notion, the reason for computing the value function
for a policy is to find better policies. Once a policy, π, has been improved using
V π to yield a better policy, π′, we can then compute V π

′
and improve it again

to yield an even better π′′. We can thus obtain a sequence of monotonically
improving policies and value functions:

π0
E−→ V π0

I−→ π1
E−→ V π1

I−→ π2
E−→ ...

I−→ π∗
E−→ V ∗ (3)

where E denote a policy evaluation and I denotes a policy improvement.
The goal is to find an optimal policy that maps states to actions such that the
cumulative reward is maximized, which is equivalent to determining the following
Q function (Bellman equation):

Q∗(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)maxa′Q
∗(s′, a′) (4)

In our approach, we don’t apply directly this basic Q function. In fact, this
basic Q-Learning value function requires a large number of tries before being
able to converge to the optimal solution, furthermore it is sensitive to the pa-
rameter setting. So we must approximate it using a technique called Function
Approximation that is presented in the next section.



3.2 Function Approximation

The table representing the estimate of value functions with one entry for each
state or for each state-action pair is limited to tasks with small numbers of
states and actions. Time and data needed to accurately fill them is a problem
too. In routing system to which we applied reinforcement learning, most states
encountered will never have been experienced exactly before. Generalizing from
previously experienced states to ones that have never been seen is the only way
to learn anything at all on these tasks.
We require a generalization method called function approximation [12] because
it takes examples from a desired function (e.g., a value function) and attempts
to generalize from them to construct an approximation of the entire function.
Function approximation is a combination between reinforcement learning meth-
ods and existing generalization methods. One of the most important special cases
in function approximation is Linear method that is the method we have applied
to our approach.

4 Proposed approach

Our idea to take into account end-to-end QoE consists to develop adaptive mech-
anisms that can retrieve the information from their environment (QoE) and
adapt to initiate actions. These actions should be executed in response to un-
foreseen or unwanted event as an unsatisfactory QoS, a negative feedback or
malfunctioning network elements.
The purpose of this approach consists of:

– Integrate parameters from the terminal application (or user) in terms of QoE
metrics in the decision loop system.

– Taking into account the feedback of QoS and QoE metrics as input for au-
tonomy in the adaptive model.

– Developing a viable model of a knowledge plane enabling scaling on equip-
ment located in different parts of the network.

– Taking into account a propagation model of dysfunction and stable algo-
rithms.

Concretely, the system integrates the QoE measurement in an evolutionary rout-
ing system in order to improve the user perception based on the choice of the
best optimal QoE paths (Fig. 3). So in that way, the routing process is build
according to the improvement of QoE parameters. The system is based on adap-
tive algorithms that simultaneously process an observation and learn to perform
better.
In this section, we describe in detail our proposal in order to integrate QoE
measurement in an adaptive routing system. We first present our mapping of
reinforcement learning model to our routing model. Then we describe Least-
Squares Policy Iteration technique on which we based our approach. Finally the
learning procedure is depicted.



Fig. 3. Integration of QoE measurement in routing system

4.1 Reinforcement learning based routing system including QoE
measurement

In order to integrate reinforcement learning notion into our routing system, we
have mapped reinforcement learning model to our routing model in the context
of learning routing strategy (Fig. 4). We consider each router in the system as a
state. The states are arranged along the routing path. Furthermore, we consider
each link emerging from a router as an action to choose. The system routing
mechanism corresponds to the policy π.
After data reach end-users, QoE evaluation is realized to give a QoE feedback to

Fig. 4. Routing system based on reinforcement learning

the system. We consider this feedback as environment reward and our purpose
is to improve the policy π using this QoE feedback. Concretely, the policy π is
chosen so that it is equal to argmax of action value function Q in policy π:

πt+1(st) = argmaxQπt(st, a) (5)



4.2 Least-Squares Policy Iteration

Least-Squares Policy Iteration (LSPI) [2] is a recently introduced reinforcement
learning method. Our choice is based on the fact that this technique learns the
weights of the linear functions, thus can update the Q-values based on the most
updated information regarding the features. It does not need carefully tuning
initial parameters (e.g., learning rate). Furthermore, LSPI converges faster with
less samples than basic Q-learning. In this technique, instead to calculate di-
rectly action-value function Q (Equation 4), this latter is approximated with
a parametric function approximation. In other words, the value function is ap-
proximated as a linear weighted combination:

Q̂π(s, a, ω) =

k∑
i=1

φi(s, a)ωi = φ(s, a)Tω (6)

where φ(s, a) is the basis features vector and ω is weight vector in the linear
equation. The k basis functions represent characteristics of each state-action
pair.
We have to update the weight vector ω to improve system policy.
Equation 4 and 6 can be transformed to Φω ≈ R + γPπΦω, where Φ represent
the basis features for all state-action pairs. This equation is reformulated as:

ΦT (Φ− γPπΦ)ωπ = ΦTR (7)

Basing on equation 7, the weight ω of the linear functions in equation 6 is
extracted:

ω = (ΦT (Φ− γPπΦ))−1 × ΦTR (8)

4.3 Learning procedure

For a router s and forwarding action a, s’ is the corresponding neighbor router
with P (s′|s, a) = 1. Our learning procedure is realized as follows: when a packet
is forwarded from node s to s’ by action a, which has been chosen by current
Q-values φ(s, a)Tω, a record < s, a, s′, φ(s, a) > is inserted to the packet. The
gathering process (Fig. 5) is realized until the packet arrives at the destination
(end-users). Thus with this way, one can trace the information of the whole

Fig. 5. Learning procedure



routing path. At the end-users, a QoE evaluation process is realized to give a
QoE score that is the value of R vector in equation 8. Furthermore, with the
gathered information, the new value of ω is determined using equation 8. Then
this new weight value ω′ is sent back to the system along the routing path in
order to improve policy procedure in each router on the routing path. With the
new weights ω′, policy improvement is realized in each router on the routing
path by selecting the action a with the highest Q-value:

π(s|ω′) = argmaxaφ(s, a)Tω′ (9)

The next section presents some experiment results in comparing our approach
with other routing protocols.

5 Simulation results

We have used Opnet simulator version 14.0 to implement our approach in an
autonomous system. Regarding network topology, we have implemented an irreg-
ular network with 3 separated areas including 38 routers, each area is connected
to each other by one link, all links are similar (Fig. 6). For QoE evaluation

Fig. 6. Simulated network

method, we have used a reference table represents human estimated MOS 1

function [13] of loss packet rate based on real experiment.
To validate our results, we compare our approach with two kinds of algorithm:

1 Mean Opinion Score (MOS) gives a numerical indication of the perceived quality of
the media received after being transmitted. MOS is expressed in one number, from
1 to 5, 1 being the worst and 5 the best. The MOS is generated by averaging the
results of a set of standard, subjective tests where a number of users rate the service
quality



– Those based on Shortest Path First (SPF) technique where routing in this
family used the only best path based on delay constraint.

– The Routing Information Protocol (RIP), a dynamic routing protocol used in
local and wide area networks. It uses the distance-vector routing algorithm.
It employs the hop count as a routing metric. RIP prevents routing loops
by implementing a limit on the number of hops allowed in a path from the
source to a destination.

In order to have QoE evaluation results, we have implemented a measurement
model that is depicted in Fig. 7. The video server provides video streaming to the

Fig. 7. QoE evaluation model

client through a proxy into which we have integrated a packet lost model. In the
destination, in order to construct the reference table, the Client Video realizes
packet lost measurement and the end-users give a MOS score. Thus we have an
equivalent MOS score for each packet lost ratio. Our simulation results are based
on this reference table to give MOS scores equivalent to packet lost ratio. Fig.
8 illustrates the result of average MOS score of three protocols: SPF, RIP and
our approach. With the three protocols we have implemented in the simulation,
we can notice that each is based on a different criteria. The SPF focuses on
minimizing the routing path. On the other side, RIP focuses on the hop-count of
routing packages. As our protocol, we rely on user perception. As shown in Fig.
8, we can see that our approach gives better results than two other algorithms
in the same delay. So with our approach, despite network environment changes,
we can maintain a better QoE without any other e2e delay.

6 Conclusion

In this paper, we present a novel approach for routing systems in consider-
ing the user-to-user QoE, which has integrated QoE measurement to routing
paradigm for an adaptive and evolutionary system. The approach is based on



Fig. 8. Simulation results

a least squares reinforcement learning technique. The simulation results we ob-
tained with OPNET simulations demonstrates that our proposed approach yields
significant QoE evaluation improvements over traditional approaches using the
same e2e delay.
Some future works includes applying our protocol to real testbed to verify its
feasibility, using standard QoE evaluation methods and implementing protocol
on IPTV flows.
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