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Abstract—Routing in Wireless Sensor Networks (WSNs) is one
of the tasks that heavily impact network lifetime: current routing
protocols, such as Ad-hoc On-demand Distance Vector (AODV),
generate excessive and rather unnecessary overhead for route
discovery, which in turn contributes to deplete the limited power
resources of sensors. In this work, we propose a novel machine
learning-based approach to perform network pruning during
route discovery aiming at reducing data overhead. Our approach
assumes that sensor nodes are aware of their locations and
have processing capabilities to run lightweight machine learning
algorithms. We perform extensive simulations considering WSNs
consisting of different amounts of nodes. Results show that our
proposed approach can reduce data overhead by 50% to 65%,
depending on the amount of nodes and pruning aggressiveness.

I. INTRODUCTION

Wireless Sensors Networks (WSNs) consist of a distributed
set of autonomous interconnected sensor nodes, which can
range from hundreds to thousands. These sensor nodes are pri-
marily used for sensing and monitoring in various applications
such as, e.g., industrial factories, environment surveillance
and health monitoring, and have stringent battery, storage
and processing constraints. In fact, WSNs generally lack an
infrastructure for energy supply, and sensors are generally tiny
battery-powered devices with a low transmission power. As
it is impractical to frequently replace sensor batteries, it is
of utmost importance to design efficient strategies to perform
main sensor tasks while prolonging batteries life-time.

Packet routing, which is the process of discovering routes
to interconnect nodes, represents one of the crucial tasks in
WSNs. An efficient routing strategy needs to take into account
the specific characteristics of the network, such as topology,
mobility and security requirements. Specifically, in WSNs, a
desired property of any routing strategy is the minimization of
the control data overhead that nodes exchange with one another
to establish and maintain routes. In this respect, a broad
distinction exists between proactive and reactive protocols. In
the former, e.g., Open Shortest Path First (OSPF) [1], the
nodes of the network regularly exchange control messages
to keep the discovered routes up to date. In the latter, e.g.,
Ad-hoc On-demand Distance Vector (AODV) [2], the route
discovery phase is initiated only when two nodes need to
communicate. By triggering the exchange of control messages

only on demand, reactive protocols generate lower overhead
with respect to the proactive ones. Further reducing the over-
head generated by reactive protocols is crucial to save energy,
and therefore prolong network lifetime, especially in large
networks composed of a high number of nodes, where data
overhead can increase dramatically. For instance, in the AODV
protocol, route requests (RREQ) messages are broadcast in the
network, and may eventually reach nodes that are located far
away from the target destination, which yields unnecessary
control signaling overhead.

In this work, we propose a modified version of the AODV
protocol that exploits machine learning (ML) strategies to
reduce the overhead generated in the route discovery phase
by performing network pruning. The implementation of our
solution is publicly available at1. We train an ML algorithm
that, given the euclidean distances between a node and a
source/destination pair, infers the probability of that node
belonging to the path that interconnects them. Based on the
outcome of the ML model, a decision whether to keep or
discard the node in the discovery process is taken. More
specifically, upon receiving a RREQ message for establish-
ing a route between a source and a destination, each node
infers the probability of being part of a path between them
and, if the probability is lower than a predefined threshold
value, referred to as pruning threshold, the node does not
broadcast the RREQ messages to its neighbors, thus limiting
their spread and therefore reducing overhead. As, nowadays,
microprocessors for sensors can afford executing light-weight
ML algorithms without requiring additional infrastructures [3],
pruning can be implemented directly by nodes. We also assume
that each node knows its position (e.g., through the GPS),
as this information is usually required for various network
applications [4]. Moreover, we consider that the position of
the source can be included into the RREQ messages, while the
position of the destination (which is, in most of the cases, the
sink that connects the WSN with an external infrastructure)
can be easily propagated into the network (e.g., using the
method proposed in Ref. [5]). Hence, nodes can compute their
distances with respect to source and destination, and execute

1https://github.com/FatimaEzzedinee/ML-based-Network-Pruning-for-
Routing-Data-Overhead-Reduction-in-Wireless-Sensor-Networks
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the proposed ML algorithm.
To evaluate the effectiveness of our proposed approach,

we perform extensive simulations considering various network
topologies and quantitatively compare the overhead (measured
as the total number of RREQ messages generated in the
route discovery phase) of our approach to that of the AODV
protocol. Results show that our proposed ML-based approach
for network pruning in WSN can achieve a reduction of up
to 65%, while negligibly impacting other routing parameters
such as average route length.

The rest of the paper is organized as follows. In Sec. II
we briefly review existing literature related to routing in
WSN, with special attention to routing strategies enhanced
by means of ML techniques. Sec. III describes the proposed
ML-based methodology and the modified AODV protocol.
Sec. IV presents numerical results, discusses limitation and
future research directions. Finally, Sec. V concludes the paper.

II. RELATED WORK

A large variety of routing protocols has been proposed to
address the specific requirements of various types of WSNs,
such as high mobility [6], security constraints [7] and charac-
teristics of the topology [8] (we refer the reader to Ref. [9] for
a detailed survey). Similarly to our work, Ref. [4] proposes
a routing protocol for WSN that exploits the knowledge of
the position of the destination. In that work, the next node in
the route discovery process is selected based on simple hand-
crafted rules (i.e., lowest distance with respect to the desti-
nation). Instead, we employ ML methodologies to establish
which nodes should be excluded (i.e., pruned) from the route
discovery process. Other works have proposed enhancements
of well-known protocols, e.g., to increase the energy efficiency
of the OSPF protocol [10], or to reduce data overhead in the
AODV protocol [11]. In particular, similar to our work, Ref.
[11] defines a probability for each node to broadcast RREQ
messages which depends on the number of its neighbors.
Instead, we apply an ML-based network pruning approach
to decide whether a node should broadcast RREQ messages.
Recently, ML techniques techniques have been extensively
applied to WSN routing protocols (see Ref. [12] for a survey).
Among these works, ML has been used to enhance AODV
only in [13], where a genetic algorithm is employed to select
the best among a set of computed paths. To our knowledge, no
previous works have focused on enhancing the route discovery
phase of AODV, neither on applying network pruning to reduce
the overhead of RREQ messages in a WSN network employing
AODV. Our application of ML focuses is inspired by our
previous work [14], where we applied network pruning to
enhance routing in optical networks. In this work, we adapt
the methodology proposed in [14] to the AODV protocol (e.g.,
we define a data representation suitable for WSNs).

III. MACHINE-LEARNING-BASED AD-HOC ON-DEMAND
DISTANCE VECTOR

This section describes the design of the ML model used
to compute the likelihood that each node belongs to the path
between a source/destination pairs, and elaborates on how to
integrate this model into the AODV protocol.

A. Machine Learning model

1) Data Representation: We observe that nodes belonging
to paths discovered by the AODV protocol have comparable
topological and geographical characteristics (e.g., similar dis-
tances with respect to a set of predefined nodes). Therefore, we
propose to represent each node in the network ni as [f (i)

s , f
(i)
d ],

where f
(i)
s and f

(i)
d represent the euclidean distances of the i-

th node with reference to the source s and to the destination
d, respectively. By using this representation strategy, we aim
to make nodes belonging to the path between s and d dis-
tinguishable from those that do not belong to it. Moreover,
the selected representation can be obtained at low processing
complexity, and therefore meets the computational capacity of
resource-constrained sensors.

2) Training: The procedure for generating the dataset for
model training is as follows:

1) Generate Ktr networks, each composed of Ntr nodes.
2) Randomly select Mtr pairs of sources and destinations

among the nodes of the network.
3) Define two empty lists Dx and Dy to store nodes

representations and corresponding labels, respectively.
4) Execute the AODV protocol to obtain a path between

each of the Mtr source/destination pairs.
5) For every node of the discovered paths (e.g., ni), add its

representation [f
(i)
s , f

(i)
d ] to the list Dx and the value 1

to the list Dy .
6) Randomly select nodes (e.g., nj) from the set of nodes

that do not belong to the path and add its representation
[f

(j)
s , f

(j)
d ] to the list Dx and the value 0 to the list Dy .

Using the obtained dataset, an Extreme Gradient Boosting
(XGB) model is trained to learn a map between the represen-
tation of ni (i.e., [f (i)

s , f
(i)
d ]) and a ground truth label that is

1 if ni belongs to the path between source s and destination
d, and 0 otherwise. The training is framed as a regression,
in such a way that the trained model outputs a probability
pisd ∈ [0, 1], which is the likelihood that node ni belongs
to the path between s and d. In order to avoid training a
model that is biased towards one of the two classes (i.e., either
belonging or not to the path), the generated dataset is balanced
by construction, i.e., to have the same number of samples for
each class.

B. ML-assisted AODV

The AODV protocol uses two main control messages to
perform the route discovery phase, namely Route Requests
(RREQ) and Route Reply (RREP). When a source s wants to
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communicate with a destination d, it starts broadcasting RREQ
to its neighbors, which in turn broadcast the RREQ to their
neighbors, and so on until the destination is reached. Upon
receiving an RREQ message, the destination forwards back the
RREP message, and the communication between s and d can
start over the discovered route. Following Ref. [15], we assume
that no caching mechanism is set in place. In future work,
we will assume that also intermediate nodes which know how
to reach the destination can directly forward RREP messages
back to the source.

We observe that a RREQ contains the identifier of both
source s and destination d. In our implementation, RREQ
packets are modified to contain the locations of s and d as
well. Upon the reception of a RREQ message, each node
(say ni) computes the distance between its own location
and the locations of sources and destination, i.e., it obtains
the representation [f

(i)
s , f

(i)
d ], and provides them as input to

the ML model. From this query, it obtains the probability
pisd ∈ [0, 1], which captures the likelihood that node i belongs
to the path between s and d. This probability is then compared
with a pruning threshold parameter γ and, if pisd ≥ γ, node
ni broadcasts the RREQ message to its neighbors; otherwise,
ni does not forward the RREQ message.

IV. NUMERICAL RESULTS

A. Simulation Settings

We consider an area of 4900 m2 (70 m length and 70 m
wide) with N nodes placed following a uniform distribution
within the area. We perform simulations considering different
values of N varying from 100 to 1000 with a step of 100. For
each value of N , we perform 20 simulations randomly varying
the location of the nodes within the network. Following Ref
[16], we consider that each node (i.e., each sensor) can reach
any other node within a 10-meter range, based on its maximum
power transmission range, thus all nodes that fall within a
range of 10-meter from one another are considered neighbors.
For each simulation, we consider 50 requests generated ran-
domly between source and destination sensors.

We test our proposed approach using a model trained on
data collected from Ktr = 50 networks, each composed of
Ntr = 100 nodes deployed over a 4900 m2 total surface area
(70 m length and 70 m wide). In each of these networks,
Mtr = 100 routes have been computed. We consider three
values of the pruning threshold γ ∈ [0.4, 0.5, 0.6]. The pruning
threshold reflects the aggressiveness of the model: increasing
γ decreases the probability that a node belongs to the path
between source and destination, and therefore decreases the
probability of propagating RREQ messages. On the other hand,
decreasing γ increases the probability of propagating RREQ
messages.

We measure the effectiveness of our proposed approach by
means of the following three metrics:

• Percentage of Paths Found (% Success), which measures
the percentage of successful path discoveries using the

ML-aided AODV protocol. In fact, pruning the network
may disconnect source and destinations, which results in
the failure of the route discovery phase.

• Percentage Gain in Overhead (% Overhead Gain G),
which is obtained as Ggain = 100 · Onp−Op

Onp
, where

Onp is the overhead obtained using the AODV protocol
to establish routes, and Op is the overhead obtained
with our proposed ML-aided AODV. Note that, in case
the latter cannot find a path (i.e., because pruning has
disconnected the network), the original AODV protocol
is executed in the network. The term Op accounts for
both the overhead generated by the first attempt (with the
ML-aided AODV) and with the second route discovery
(performed by AODV).

• Percentage of Extra Path Length (% Extra Path), which
is the percentage extra-length of the paths discovered by
the ML-aided AODV with respect to AODV.

B. Discussion

Figure 1 shows the % Success for varying N and for
different values of pruning threshold γ. First, we note that
for N = 100 the proposed approach achieves very low %
Success, ranging between 47% (for a pruning threshold of 0.6)
to 70% (for a pruning threshold of 0.4). As N increases to
200, % Success increases to 65%, 82% and 90% for a pruning
threshold of 0.6, 0.5 and 0.4, respectively, and then % Success
continues to increase progressively for higher N to reach 75%,
90% and 98% for N = 1000 and pruning threshold of 0.6, 0.5
and 0.4, respectively. This shows that our proposed strategy
can achieve a near-100 % Success for large N assuming a
suitable pruning threshold is used. It follows that the pruning
threshold should be tuned based on the size of network.

We now discuss the impact of pruning on overhead. Figure
2 shows the % Overhead Gain G for varying N and for the
three values of pruning threshold already considered. Results
show that for networks with small N , % Overhead Gain G is
between 30% and 35%, depending on the pruning threshold
used. These values of G are the lowest seen in our simulations.
This is expected as, for N = 100, our proposed strategy
successfully finds a path between source and destination only
in 40% to 70% of the cases, depending on the pruning
threshold (see Fig. 1). We recall that, when the ML-aided
AODV fails, our proposed strategy incurs extra overhead due
to applying the AODV protocol after the failure of the ML-
aided AODV, which explains the relatively low % Overhead
Gain G. For larger values of N , G increases to reach 65%,
62% and 55% at N = 1000 for pruning threshold γ = 0.6,
0.5 and 0.4, respectively. We highlight that, even with an
aggressive pruning strategy with a threshold of 0.6, which
yields lower % Success than that of 0.5 and 0.4, % Overhead
Gain G is the highest. This is due to the fact that the overhead
generated when the ML-aided AODV protocol can find a
path on an aggressively-pruned network is significantly lower
than the overhead generated on the original network. This
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Fig. 1. Percentage of paths found by the ML-aided AODV protocol, for
several number of nodes N and pruning threshold γ

well compensates the additional overhead generated by the re-
execution of the AODV protocol when a path cannot be found
with the ML-aided AODV approach, thus yielding a high %
Overhead Gain. In terms of length of the discovered lightpaths,
the average path length increases by less than 5% in all cases,
showing that our proposed approach can significantly reduce
the routing overhead without heavily impacting the path length.
The following evaluations will be performed in future work:

• Impact on delay: the ML-aided AODV protocol intro-
duces less delay with respect to AODV; however, an
additional delay is introduced when the pruning process
disconnects source and destination pairs, as a re-execution
of AODV on the original network needs to be performed.

• Impact on network lifetime: by reducing the overhead,
the ML-aided AODV protocol is also expected to increase
network lifetime, because of the reduced power consump-
tion of sensors. However, the power consumed to execute
the ML model needs to be taken into consideration.

• Evaluation of the robustness of the ML-aided AODV with
respect to various system parameters, such as mobility
and transmission power of the nodes.

V. CONCLUSION

In this work, we propose a novel machine learning-based
network pruning algorithm and combine it with the AODV
algorithm to reduce data overhead in the route discovery phase
in WSNs. The ML algorithm infers the probability that a node
belongs to the path connecting a given source destination pair
and decides, based on a pruning threshold, whether to remove
or include the node in the pruned network. A pruned node does
not forward RREQ messages to its neighbors. By the means
of simulations, we compare the performance of our proposed
approach to that of AODV considering different number of
nodes in the WSN. Results show that our proposed approach
successfully discover a route in up to 90% of the queries
and can reduce data overhead by 50% to 65%, depending on
the amount of nodes and pruning aggressiveness. As a future
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Fig. 2. Percentage gain of overhead G, for several number of nodes N and
pruning threshold γ

work, in addition to optimizing pruning threshold, we plan
to consider the impact of our approach on the overall route
discovery delay and required power consumption.
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