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Abstract—In the context of the Internet of Things (IoT), the
effective operation of IoT applications heavily relies on the
functionality of sensors. These sensors are prone to failures
or malfunctions due to various factors, including adverse en-
vironmental conditions and aging components within sensors. To
mitigate the impact of faulty sensors on system performance,
notable research has focused on employing machine-learning
techniques to detect faulty sensor data. In this context, due
to the scarcity of real faulty data records and challenges in
generating them even in controlled environments, researchers
often model faulty data to create synthetic datasets containing
normal and abnormal data for evaluating fault detection models.
Our empirical investigation reveals that the current modeling
approach to simulate faulty sensor scenarios does not adequately
mirror the complexity of real-world faulty sensor behaviors.
Therefore, to improve the efficacy of fault detection algorithms
in practical applications, it is imperative to investigate sensor
fault models further. To address this gap, we conducted a
comparative analysis of existing fault models and proposed a
novel composite approach for modeling faulty sensor behaviors
that can more effectively capture real-world sensor behaviors.
Our focus was to evaluate how different fault models impact the
effectiveness of anomaly detection algorithms when tested in real-
world scenarios. The evaluation included algorithms trained on
synthetic datasets derived from various fault models, assessing
their performance in identifying real-world faulty data. We also
provide diverse labeled datasets, including normal and abnormal
data collected from real-world applications.

Index Terms—Fault Modeling, IoT, Sensors, Reliability

I. INTRODUCTION

In recent years, a growing focus has been on incorporating

the Internet of Things (IoT) into various systems. This is due

to the ability of smart things (e.g., sensors, cameras, etc.)

to gather valuable data about system operations, empowering

us to make more informed decisions toward more efficient

systems. Nevertheless, with the increasing reliability of these

systems, sensors have garnered a reputation for being the

”weak link.” The system’s performance could suffer and

potentially lead to a complete system breakdown due to any

sensor malfunction [1]. Hence, to minimize the consequences

of abnormal events, it is essential to have a good insight into

how sensors fail and behave to detect them promptly [2].

Fig. 1: Illustration of a faulty humidity sensor behavior when

sensing material is degraded over time.

While extensive research has addressed fault detection and

diagnosis in various IoT applications, there is a notable lack of

endeavors specifically centered on formulating realistic fault

models and systematically categorizing sensor faults [3], [4].

This gap primarily arises from the difficulty or impracticality

of gathering adequately large and diverse real faulty data.

Consequently, developing an accurate model for detecting

anomalies can be notably affected by these limitations.

In this context, due to the limited availability of data

from real faulty sensors, current literature on classification-

based fault detection simulates and injects faulty data into

their datasets, assuming that a fault may fall into one of the

following categories: bias, drift, noise, gain, outliers, or being

stuck [5]–[7]. Characterizing sensor responses under fault

conditions can be simplified by simulating a single fault at a

time, such as a bias, to reproduce faulty sensor behavior. This

has benefits for theoretical modeling. When using these models

in real-world situations, it’s important to be aware of their

limits. Although these models perform well in controlled or

theoretical environments, they might not be able to handle the

complexities and variances found in real-world applications.

For instance, Figure 1 illustrates a case from our dataset, where

humidity data collected by a degraded old sensor exhibits

intricate behavior that cannot be accurately represented by a

single fault, like bias or drift. These observations highlight the

need for further study in relation to modeling the behavior of

faulty sensors so that it can be used to identify sensor behavior
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in real-world applications more effectively.
Our research focuses on overcoming the limitations of

current fault modeling techniques to achieve more realistic rep-
resentations of faulty sensor behavior. These fault models play
a crucial role in generating synthetic datasets for establishing
fault detection models. Following a thorough assessment of
existing fault models, we describe a novel composite technique
for modeling faulty data that treats faulty data as a multi-
cause phenomenon, resulting in a more accurate capturing
of real-world sensor behavior. Our assessment is centered on
comprehending how these fault models, including our pro-
posed one, affect anomaly detection algorithms’ performance
in practical settings. We assess the algorithms trained on
synthetic data derived from various fault models, emphasizing
their effectiveness in identifying real-world faulty data. Our
proposed approach allows us to avoid biases in evaluating fault
detection performance established in controlled environments
and strives to emulate real-world conditions as closely as
possible. This experimental validation highlights the value of
our approach in real-world applications where the possibility
of gathering real faulty data is challenging, impractical, or
costly. The rest of the paper is structured as follows. We
present our use case and the rationale behind the research
in Section II. Sensor fault modeling is covered in detail in
Section III, which also establishes the foundation for the
analysis of fault modes and the subsequent introduction of
a new fault model. The methodology and experimental results
for evaluating the efficacy of our approach in enhancing fault
detection model performance are delineated in Sections IV and
V. Lastly, in Section VI, we outline the future work.

II. USE CASE SCENARIO AND PROBLEM STATEMENT

Without loss of generality, this investigation focuses on an
air monitoring system that measures temperature, humidity,
and CO2 levels. The consequences of irregular system oper-
ation can include increased energy consumption, lowered air
quality, and decreased productivity. We have selected this use
case for several reasons: the application is well known and
understood; the employed sensors are very broadly used also
for other applications; and the sensors are diverse enough to
exhibit different behaviors when failing or degrading.

To address the complexities arising from potential faults
and refine our understanding for more precise sensor fault
modeling, we delve into the fundamental operating principles
of these sensors and gain insight into prevalent fault mecha-
nisms. In the following subsection II-A, we will go over this
issue in-depth and provide a thorough understanding of sensor
properties. The existing restriction in modeling the behavior
of the sensor is then explained in subsection II-B.

A. Sensing Process Characterization

Sensors are designed to measure various phenomena by
leveraging specific physical properties or behaviors of ma-
terials. With the appropriate setup, these properties can be
utilized to sense different factors. For example, resistance
can be employed to measure values like temperature, strain,

force, light intensity, or gas concentrations, depending on the
specific application. This illustrates how sensors are versatile
tools capable of capturing a wide array of data. However,
the effectiveness of these sensors in delivering precise and
reliable measurements is significantly shaped by their distinct
physical designs. These designs, in turn, influence the type and
frequency of sensor faults that may arise. The current research
discusses sensor mechanisms corresponding to three different
sensors mostly used in air monitoring systems, as follows:

1) Non-dispersive infrared sensor (NDIR): Co2 sensor
2) Polymer-based capacitive sensor: humidity sensor
3) Negative Temperature Coefficient(NTC) thermistor: tem-

perature sensor

The list is undoubtedly not comprehensive, but it represents
the multiple commonly used sensors in air monitoring appli-
cations. It is essential to mention that this research explicitly
addresses errors arising from the failure of the sensing mech-
anism itself and doesn’t investigate other factors like circuitry
or software responsible for sensor output processing.

1) Non-dispersive infrared sensor (NDIR): The mid-
infrared (mid-IR) spectral range (wavelength λ ∼ 2 to 20
µm) is often referred to as the ’molecular fingerprint’ region,
characterized by distinct vibrational and rotational patterns
in gas molecules. NDIR spectroscopy, a mid-IR gas sensor,
employs an Infrared Light Source, typically an infrared LED
or lamp, emitting light at a specific wavelength corresponding
to the gas’s absorption band [8]. Within the NDIR sensor, an
Optical Gas detection Chamber allows infrared light to pass
through ambient air. As the light interacts with CO2 molecules,
the Infrared Detector component of the sensor quantifies the
amount of absorbed light, providing a direct measurement of
CO2 concentration. The accuracy of the NDIR sensor depends
on the intensity of the Infrared Light Source, the Optical Gas
detection Chamber, and the Infrared Detector configuration.
The common NDIR sensor faults include:

1) Degradation, deterioration, or complete failure of the
infrared light source leading to bias, gain, drift, and stuck
faults. In this situation, the decreased emission intensity
of the infrared light causes the accurate measurement of
gas concentration to be affected [9].

2) Spectral Shift in the infrared light source spectral char-
acteristics due to the temperature fluctuation or high
temperature resulting in bias and drift [10].

3) Contamination of the optical components or gas detection
chamber can affect the sensor’s sensitivity and lead to bias
or drift in its readings.

4) Thermal Expansion of the gas detection chamber due to
the high temperature affects the interaction of IR light
with the CO2 molecules and leads to bias and gain.

5) Water vapor interference occurs when the presence of
water vapor in the gas sample affects the sensitivity of
the gas concentration and can lead to bias [9].

6) Interference from multiple gases in the sample can cause
inaccurate readings, resulting in bias or noise [11].
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2) Polymer-based capacitive humidity sensor: A capacitive
humidity sensor employs a humidity-sensitive capacitor to
measure relative humidity. These sensors utilize a humidity-
sensing layer, which can be made of various materials like
electrolytes, ceramics, or polymers. In this study, we specifi-
cally address polymer-based sensing layers. The sensor oper-
ates on the principle that changes in the dielectric properties of
this humidity-sensitive layer lead to variations in the sensor’s
capacitance. These capacitance changes are then used to
measure relative humidity in the surrounding environment.

1) Exposure to chemicals or contamination with dust, oils,
or other particles can lead to the intrusion of external
substances into the polymer, occupying the spaces nor-
mally captured by water. It leads to the degradation of
the polymer film’s ability to amplify the number of water
molecules, especially in high and low-humidity situations.
In this regard, bias, drift, and stuck can happen [12].

2) Aging or degradation of polymer materials, either through
prolonged use or exposure to high temperatures, can
result in problems like gain, bias, and drift [13].

3) Extreme low humidity can lead to a decrease in the
sensor’s capacitance sensitivity. The dielectric properties
of the polymer material between the sensor’s plates may
change less significantly, resulting in reduced capacitance
changes and less sensitivity [14].

3) NTC thermistor: temperature sensor: An NTC ther-
mistor is a temperature sensor with nonlinear resistance-
temperature characteristics. Its resistance decreases as temper-
ature rises due to its negative temperature coefficient. This
nonlinearity can make converting resistance measurements
into accurate temperature values more challenging because
the resistance-temperature relationship follows an exponential
curve. The common faults that can happen are:

1) The thermistor’s resistance decreases as temperatures
increase, leading to higher power consumption. Raised
power levels, in turn, trigger self-heating within the
thermistor, a consequence of the heat generated by the
flowing current. This self-heating can introduce measure-
ment inaccuracies, leading to bias or drift, especially in
scenarios when the temperature changes quickly [15].

2) Prolonged exposure to high temperatures or repeatedly
subjecting the thermistor to temperature fluctuations can
cause a thermistor’s resistance to change from its initial
value, leading to drift [16].

B. Summary and problem statement

In this section, we have explored diverse sensor tech-
nologies, including NDIR, capacitive, and thermistor, while
addressing potential fault scenarios for each. These scenarios
encompass a spectrum of failures, including bias, drift, out-
liers, and other deviations, which can be traced back to factors
such as contamination, aging, and various environmental and
operational variables. Notably, it can be seen that a single
factor, like contamination or aging, can lead to different
types of faults that may occur simultaneously, contributing

to the complex behavior of faulty data [17]–[19]. However,
the scarcity of real-world faulty data records has limited the
insight into modeling faults, especially where multiple fault
types may coexist, resulting in complex sensor behaviors.
This crucial point is often neglected in existing research,
where fault detection models are built using simulated faulty
data and subsequently tested on controlled simulated datasets,
overlooking the complexities inherent in real-world sensor
behaviors. Hence, in the next section, we investigate the
modeling of sensor behavior and then propose our approach
to model faulty data, which can more effectively capture real-
world sensor behavior compared to established ones.

III. SENSOR FAULT CLASSIFICATION AND PROPOSED
FAULT MODELING APPROACH

In the context of modeling sensor data, the data originating
from a sensor is denoted as s(n, i, f n

i). Here, n represents
the node id, i corresponds to the index of measurements, and
f n

i captures the ith measurement by node n. The f n
i can be

represented by a linear regression model denoted in Eq.1 [6]:

f n
i = β + α.xn

i + η (1)

where β is a constant offset termed Bias, α represents a
multiplicative factor called Gain, where the waveform remains
unchanged [3], xn

i denotes a faultless ith sensor reading, and
η is a random variable denoted as Noise. Dunia et al. [6]
demonstrated that the noise can be effectively captured as
Gaussian white noise, as outlined in Eq. 2. This exhibits a
probabilistic distribution with a mean of zero and a variance
of non-faulty data denoted as δ2.

η ∼ N (0, δ2) (2)

A. Current sensor fault modelling approaches in Anomaly
Detection context

The state-of-the-art study in the fault detection domain
shows that modeling faults in time-series data is widely
applicable, offering a structured approach for simulating fault
scenarios and then assessing their anomaly detection algo-
rithms’ performance [3]–[7]. To the best of our knowledge,
current studies usually defined six different faults based on
Eq. 1, namely drift, spike, bias, precision degradation, gain,
and stuck. Table I provides an overview of all addressed faults,
along with their definitions, established calculation formulas,
and potential causes. In sensor output, bias introduces a con-
stant offset (β). Precision degradation, characterized by noise
(η) with zero mean and high variance, reduces measurement
precision. Gain fault involves a scaling factor (α) applied
to sensor measurements. Drift occurs when sensor data is
gradually influenced by a linearly increasing bias (β). A
stuck fault keeps the sensor output constant, whereas a spike
represents an abrupt departure in data. Several studies [3], [4]
model bias, drift, and gain by including Gaussian noise (η) to
provide fluctuations when modeling these faults.
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TABLE I: Overview of the sensor faults, their definitions and causes

Fault type Definition Cause Literature

Bias

Shifting readings higher or lower by a fixed offset:

fn
i = β + xn

i (3)

Degradation of sensing material, Calibration
issues, Environmental factors such as high

temperature, Sensor-to-Surface interface
issues, change the magnetic properties

[3], [12],
[20]–[22]

Precision degradation

The variance and covariance of the measured data
exhibit deviations beyond their typical range,
resulting in heightened variability within the

measurements:

fn
i = xn

i + η, η ∼ N (0, δ2) (4)

Electronic interference, Degradation (aging
effect), Environmental factors, Vibrations

and shock
[3], [21], [23]

Gain

The readings are transformed by amplification or
improper scaling factor, where the waveform itself

does not change:

fn
i = α.xn

i (5)

Sensor-to-Surface interface issues, Wiring
problems, Environmental factors causing

sensing material deterioration and
degradation, Electronic interference

[3], [20]–[22]

Drift

Measurements gradually change over time, even
with constant conditions. Non-faulty data is
affected by a linearly increasing bias, added
incrementally to each data point based on its

position in the sequence:

fn
i = β(

i− j

TR
) + xn

i, (6)

TR=Duration of the ramp, j=Fault starting position

Degradation of sensing material, Wiring
issues, Vibration and shock, Environmental

factors (e.g. high temperature, chemical
exposure), Calibration issues

[12], [18],
[22]–[25]

Stuck

The measurements remains persistently fixed at a
constant value, such as zero/null or at a specific
level, indicating a lack of response to changing

conditions:

fn
i = β (7)

Power supply failure, Disconnection of
wires, Strong magnetic fields, Connection

problems, Environmental factors (e.g.
extreme weather condition, harsh external

activities)

[1], [3], [7],
[21]

Spike Intermittent high-amplitude deviations that disrupt
normal readings, appearing unpredictably

Voltage variation, Environmental factors,
Unstable electrical contact [3], [7], [26]

While focusing on simulating individual fault modes, such
as bias, in a controlled environment can enhance our under-
standing of these specific faults and aid in the development
of anomaly detection models, it is essential to recognize the
complexities inherent in real-world sensor scenarios.

B. Proposed fault modeling approach

Unlike controlled simulations for producing synthetic sensor
data, real-world sensor measurements might be characterized
by noise, irregularities, and multiple fault modes occurring
simultaneously, posing significant challenges for fault detec-
tion. Our empirical data collected from various faulty sensors
supports the observation that a complex characteristic, such
as faulty sensor behavior in real-world applications, can be
a multi-causal phenomenon. Therefore, it is crucial to strike
a balance between controlled simulations and real-world data
to develop robust and effective fault detection models. Un-
fortunately, although considering the combination of multiple
fault factors in modeling faulty sensor scenarios is straight-
forward, till now, literature has not considered this approach
for modeling the faulty scenario. Based on our examination
of real-world data and our understanding of potential threats
to sensor failure, including their impacts like contamination

leading to diverse fault modes (as detailed in Section II)), we
strongly recommend incorporating all three factors—noise (η),
bias (β), and scaling (α)—when modeling faulty data. This
inclusive approach aims to enhance the simulation of sensor
behavior by accounting for the distinct effects each fault factor
has on sensor data. By taking into account all three factors, our
approach can provide a better answer for the complex nature
of faulty data in the real world than using only one factor,
such as bias, in modeling faulty data.

IV. METHODOLOGY AND EVALUATION PROCEDURE

Our methodology follows a well-structured series of steps
in our pursuit to model the faulty sensor behaviors that provide
the possibility to produce a synthetic dataset that effectively
captures the intricacies of sensor behavior in real-world appli-
cations. Firstly, we collect data from various sensors, including
normal and abnormal readings, providing a required reference
for comparative analysis. Subsequently, guided by Eq. 1 for
simulating synthetic faulty data, we create a range of datasets
that exhibit different types of failures, including our proposed
one. Finally, we proceed with training the anomaly detection
model and its subsequent evaluation using real-world data,
including normal and abnormal samples in section V.
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A. Data collection from real-world IoT applications

This work conducts several experiments to prepare four
datasets containing sensor data from real-world implemen-
tations, encompassing both healthy and faulty sensor read-
ings. The initial experiment utilized three SCD30 carbon
dioxide measurement sensors employing NDIR technology.
These sensors began in a normal operational state, and their
measurements were compared to those obtained from a refer-
ence device. Subsequently, one of the sensors was subjected
to elevated temperatures to accelerate the degradation of its
sensing material and potentially deform the optical chamber,
both known factors associated with sensor faults under ex-
treme stress conditions [10]. Data were recorded at 12-minute
intervals over ten days. The datasets were labeled according
to the SCD30 datasheet with an accuracy of +/-50 ppm.

The second experiment involved two DHT11 sensors,
utilizing thermistor technology for temperature measurement
and polymer-based capacitive technology for humidity mea-
surement. One of these sensors had experienced aging, leading
to performance degradation over time [18], while the other
was a new unit verified against a reference device. Data from
both sensors were collected over a week every 10 minutes.
The datasets were labeled based on the DHT11 datasheet,
which specifies an accuracy of ±2 for temperature and ±5%
for humidity measurements. The third experiment commenced
with both DHT11 sensors operating in a healthy state. How-
ever, over a period of four days, one of the sensors became
contaminated due to the infiltration of foreign particles, leading
to the accumulation of soil and debris on its surface.

In the fourth experiment, three DHT11 sensors were em-
ployed. Initially, two sensors were in a normal operational
state and underwent calibration against a reference device,
while the third sensor had experienced aging due to prolonged
use. Subsequently, one of the healthy sensors was exposed to
high-temperature conditions, resulting in an alteration of its
operational characteristics and the generation of faulty data
for both temperature and humidity measurements. The data
was collected over a one-month period at 10-minute intervals
and labeled based on a DHT11 datasheet.

The obtained faulty data exhibited complex behavior in all
four experiments, revealing the inadequacy of modeling faults
with a single fault factor. As a result, a thorough understanding
of sensor faults is required, given the possibility that a hazard,
such as degradation, may produce multiple faults concurrently.

B. Synthetic dataset generation

In our study, we systematically generated synthetic datasets,
incorporating various types of sensor errors using Eq. 1.
These datasets were derived from normal data collected during
experiments outlined in subsection IV-A, with simulated errors
injected. The errors include bias, precision degradation, gain,
and drift, obtained from equations 3, 4, 5, 6, and our proposed
model, encompassing all three error factors—noise, bias, and
gain. Furthermore, we have examined diverse combinations of
fault factors to conduct a comprehensive comparative analysis,

including integrating gain and bias, combining drift and noise,
considering gain and noise, and simultaneously incorporating
bias and noise factors.

C. Preparing the training and test sets

To assess the effectiveness of our fault modeling approach,
we generate multiple training sets incorporating diverse fault
types to evaluate their ability to replicate real-world faulty data
behavior. To generate synthetic training datasets for CO2, tem-
perature, and humidity, we followed the methodology outlined
in subsection IV-B, resulting in nine distinct synthetic training
sets for each of them. We ensured that each synthetic training
dataset had a balanced distribution of normal and abnormal
data points to help the model learn from both classes equally.
We generated several training sets for each fault type by
changing its fault factors, like varying bias values, to evaluate
the dataset’s efficacy in capturing the sensor behavior in real-
world applications. Also, we provided a training set using
real data to have a basis for comparison. For each sensor, all
training sets are of uniform size, sharing the same normal data
while varying only in terms of abnormal data. This approach
ensures facilitating fair comparisons and evaluations. Figure 2
displays a subset of our training sets, representing a selection
of the humidity, temperature, and CO2 data. The test datasets
for CO2 and temperature incorporate real sensor readings
obtained during the first and second experiments, while for
Humidity, two distinct test sets are derived from the third
and fourth experiments, each portraying unique fault scenarios
(i.e., contamination with an external factor and degradation).
To mitigate over-fitting risk, we ensure a balanced distribution
of normal and abnormal data points in all test sets.

D. fault detection model

In this demonstration, we utilize our previously developed
anomaly detection model, outlined in [19], to illustrate the
influence of various fault modeling approaches on the effec-
tiveness of fault detection algorithms. We used two classifiers
in our anomaly detection model, specifically the Support
Vector Classifier (SVC) and Convolutional Neural Network
(CNN), to evaluate their performance in classifying the given
data. The CNN model consists of three convolutional layers
with batch normalization and ReLU activation, followed by a
max pooling layer, a global average pooling layer, and a dense
output layer with softmax activation.

V. COMPARATIVE ANALYSIS AND DISCUSSION

In this section, we conduct a detailed comparison of dif-
ferent fault models to assess their ability to replicate real
sensor behavior when used to establish fault detection meth-
ods. The evaluation relies on datasets and fault detection
models discussed earlier in section IV. Also, to provide a
basis for analysis, we train fault detection models with real
normal and abnormal data to have a better insight into the
performance of synthetic data in establishing fault detection
models. For the sake of clarity, the performance evaluation
metrics, originally elaborated in our prior publication [19],
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Fig. 2: Illustration of a subset of training sets representing normal and faulty data for humidity, temperature, and CO2

are represented here as equations 8,9,10. True Positive(TP) and

True Negative(TN) represent the number of correctly identified

normal and abnormal samples. False Positive(FP) and False

Negative(FN) represent the number of misclassifications where

normal samples are incorrectly identified as abnormal or vice

versa. It’s crucial to note that, for each fault as anticipated, the

classification performance exhibited variation with changing

sensor fault magnitudes (e.g., different bias values) for each

fault. Consequently, a sensitivity analysis was conducted to

understand the impact of these variations. Here, we showcase

the optimal classification results achieved by fine-tuning the

fault magnitudes specific to each fault.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

F1− score =
TP

TP + 0.5 · (FP + FN)
(9)

Precision =
TP

TP + FP
(10)

Table II presents the results of our experiments, where we

trained fault detection models with various humidity training

datasets and tested them on real humidity data, including

both normal and abnormal values from a degraded sensor.

It demonstrates that generating a synthetic training set by

modeling fault that includes all fault factors (i.e., noise, bias,

and scaling) leads to an improved classification process in

a real-world application, allowing for a more precise under-

standing of sensor behavior. Similarly, Table III delves into the

results related to the classification of humidity data when some

sensor readings are inaccurate due to external factors causing

sensor contamination and malfunction. In this context as well,

the integration of all fault factors demonstrates effectiveness

in faithfully capturing sensor behavior. Table IV presents

classification outcomes on temperature data where the test set

encompasses normal and abnormal data from a degraded old

sensor. Here, it can be seen the combination of bias (β) and

gain (η) for modeling faulty data has the highest accuracy in

this case. However, when other parameters (i.e., precision, f1-
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TABLE II: Results of the First Test: Training with Real and
Synthetic Faulty Humidity Data, Followed by Testing on Real
Faulty Humidity Data (sensor degradation)

Fault
in training set

Classifier
method

Accuracy Precision F1-score

SVM CNN SVM CNN SVM CNN

Gain 79.34 83.51 0.7976 0.6151 0.8409 0.7586

Bias 70.48 42.31 0.9461 0.6141 0.6955 0.7573

Noise (Precision
degradation) 61.30 61.27 0.6130 0.6136 0.7600 0.7577

Gain+noise 79.132 86.44 0.8105 0.6151 0.8349 0.7583

Bias+noise 61.44 73.06 0.6139 0.6125 0.7601 0.7549

Bias+gain 74.43 63.22 0.7435 0.6130 0.81 0.7565

Drift 61.30 61.19 0.6130 0.6125 0.7600 0.7561

Drift+noise 61.30 61.27 0.6130 0.6130 0.7600 0.7573

Noise+gain+bias 84.41 75.30 0.8457 0.6130 0.8776 0.7566

Real faulty
humidity data 85.28 62.28 0.9070 0.6130 0.8758 0.7565

TABLE III: Results of the Second Test: Training with Real
and Synthetic Faulty Humidity Data, Followed by Testing on
Real Faulty Humidity Data (external interference)

Fault
in training set

Classifier
method

Accuracy Precision F1-score

SVM CNN SVM CNN SVM CNN

Gain 77.93 61.38 0.70 0.4386 0.7777 0.6053

Bias 79.31 43.45 0.925 0.4386 0.7115 0.6065

Noise(Precision
degradation) 44.13 44.14 0.4413 0.4441 0.6124 0.6116

Gain+noise 77.24 85.52 0.7012 0.4386 0.7659 0.6087

Bias+noise 44.13 52.41 0.4413 0.4441 0.6124 0.6115

Bias+gain 75.17 45.52 0.6666 0.4165 0.7567 0.5746

Drift 44.13 44.14 0.4413 0.4441 0.6124 0.6052

Drift+noise 44.13 44.14 0.4413 0.4441 0.6124 0.6147

Noise+gain+bias 83.44 77.24 0.7702 0.4386 0.8260 0.6093

Real faulty
humidity data 84.82 54.45 0.8281 0.4965 0.8281 0.6603

TABLE IV: Results of the third Test: Training with Real and
Synthetic Faulty Temperature Data, Followed by Testing on
Real Faulty Temperature Data

Fault
in training set

Classifier
method

Accuracy Precision F1-score

SVM CNN SVM CNN SVM CNN

Gain 61.44 62.29 0.6291 0.6029 0.7465 0.7477

Bias 38.55 50.85 0.5057 0.6159 0.3776 0.7611

Noise(Precision
degradation) 61.86 62.71 0.6186 0.6224 0.7643 0.7646

Gain+noise 61.86 42.37 0.6186 0.6289 0.7643 0.7686

Bias+noise 65.67 66.53 0.6431 0.6159 0.7828 0.7589

Bias+gain 61.86 66.95 0.6186 0.6029 0.7643 0.7484

Drift 61.86 62.71 0.6186 0.5964 0.7643 0.7392

Drift+noise 61.86 62.29 0.6186 0.6159 0.7643 0.7593

Noise+gain+bias 65.67 66.53 0.6431 0.6354 0.7828 0.7728

Real faulty
temperature data

63.13 61.86 0.6288 0.5964 0.768 0.7406

TABLE V: Results of the fourth Test: Training with Real
and Synthetic Faulty Co2 Data, Followed by Testing on Real
Faulty Co2 Data (sensor degradation)

Fault
in training set

Classifier
method

Accuracy Precision F1-score

SVM CNN SVM CNN SVM CNN

Gain 87.55 54.45 0.9197 0.4965 0.8688 0.6603

Bias 81.25 49.93 0.7632 0.5009 0.8290 0.6655

Noise(Precision
degradation) 50.07 50.07 0.5007 0.5014 0.6673 0.6627

Gain+noise 88.00 61.92 0.9440 0.5009 0.8709 0.6638

Bias+noise 50.07 52.47 0.5007 0.5003 0.6673 0.6635

Bias+gain 88.30 62.37 0.9705 0.5012 0.8712 0.6633

Drift 62.81 83.06 0.5757 0.5006 0.7250 0.6626

Drift+noise 86.35 80.06 0.8422 0.5012 0.8679 0.6626

Gain+bias+noise 88.60 63.27 0.9777 0.5003 0.8741 0.6620

Real faulty Co2
data 88.93 91.54 0.9128 0.4965 0.8864 0.6594
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score) are considered, it is clear that having all three factors
(i.e., noise, bias, and scaling) in fault simulation resulted in
better performance. Lastly, Table V presents the outcomes of
testing CO2 data gathered from both normal and degraded
sensors, and here, we observe similar trends in the results.

Our experiments reveal that we can markedly improve our
capacity to replicate real-world sensor behavior by including
multiple fault factors in modeling faults. It underscores the
idea that sensor behavior is not invariably straightforward
or consistent; rather, it can exhibit complexity in response
to different environmental and operational factors. Therefore,
our proposed approach suggests that it is important to con-
sider modeling faults by combining different fault factors in
addition to the conventional fault modeling approach. This
complementary approach can provide a more comprehensive
means of replicating real sensor behavior, particularly in
cases where sensor malfunctions, such as degradation over
time, may result in multiple simultaneous faults and complex
variations in sensor readings. Consequently, this can lead to
enhanced precision in detecting abnormal data points in real-
world sensor observations, which is of utmost importance for
maintaining IoT system reliability.

VI. CONCLUSION

In this paper, we have conducted an in-depth investigation
into the modeling faults within time series IoT data. The
ultimate aim was to facilitate the development of more efficient
and reliable IoT systems by providing an understanding of
faulty sensor behaviors (rather than treating them as un-
known entities), which, in turn, can lead to enhanced sensor-
related fault detection algorithms. Additionally, it facilitates
the generation of synthetic data that closely mirrors real-world
sensor behaviors, eliminating the need for time-consuming or
impractical real faulty data collection. The proposed approach
is adaptable to various sensor types and modalities, offering
flexibility for broader applications. As a prospective direction
for our research, the integration of deep learning techniques,
such as generative adversarial networks, into our model has
the potential to enhance the quantity and diversity of synthetic
data. Deep learning models can be trained using accurate data
to generate more high-quality normal data, contributing to the
augmentation of datasets. Furthermore, future investigations
could explore a broader range of sensors beyond the current
narrow domain, contributing to a more comprehensive under-
standing of the topic.
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