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Abstract—Smart applications in vehicular networks, such as
highly-automated driving, require knowledge to support complex
decision making which is highly dependent on the current driving
context, for example, through machine learning based object
recognition. Unlike information, the pertinence of a knowledge
model depends on its context of use, rather than its date of
creation. In turn, the existing information sharing mechanisms in
vehicular networks, optimized for fast information delivery, must
be adapted to support rich contextual queries, and let vehicles
discover the right knowledge for the right context. Moreover,
networking of knowledge models has the potential to alleviate the
redundant transmission and computation of similar information.
Through a case of vehicle exit probability knowledge distribution
in a roundabout, we show the impact and potential of a context-
based dissemination of knowledge in terms of accuracy, delay,
and overhead compared to context-agnostic approaches.

Index Terms—context,distribution,knowledge,vehicular

I. INTRODUCTION

VEHICULAR networking has originally been defined as
an enabler of information sharing between vehicles,

infrastructure, and connected road users. Information storage
and dissemination mechanisms have been defined to support
infotainment and safety applications on board vehicles. For
example, the ETSI CAM [1] was standardized to convey in-
formation about the kinematics of a vehicle. Due to the highly
dynamic topology of the vehicular environment, such safety
messages quickly expire and must be stored and disseminated
with critical delay constraints.

On the other hand, knowledge can be defined as an ab-
stracted model obtained from the analysis of information
and defined using Artificial Intelligence (AI) technologies,
of which Machine Learning (ML) is a popular instance.
Knowledge has been increasingly used by Connected and
Autonomous Vehicles (CAVs) to support smart applications,
which require complex decision-making based on a form of
experience. For example, after receiving the information of the
presence of a conflicting vehicle on the road from a CAM, how
should a CAV react to avoid the associated risk? Depending
on the context, e.g., the location of the vehicle or the current
traffic conditions, the decision of which evasive maneuver
to perform requires complex and highly context-dependent
processing, which we refer to as knowledge.

The existing information storage and dissemination mecha-
nisms for vehicular safety applications are optimized for low
delay delivery. On the contrary, the relevance of a knowledge
model depends on its context of use rather than its age. For
example, let us consider a model to recognize and classify
objects on the road from camera images and LiDAR point
clouds, as defined in [2]. If the model has been trained from
images and point clouds sensed in clear weather, it will lose
accuracy when applied in rainy weather, as discussed in [3]. As
an alternative example, the accuracy of models to predict the
exit probability pattern of vehicles on roundabouts may vary
based on the geometrical shape of the considered roundabout.
Due to the highly mobile topology of vehicular networks, the
driving context of each vehicle is likely to evolve dynamically.
As such, rather than critically low delay, a key factor of
knowledge distribution in vehicular networks is to ensure that
the right knowledge is delivered in the right context.

In turn, knowledge networking has the potential to reduce
redundancy, both by mitigating the independent computation
of similar models by distinct organizations, and by favoring
the transmission of precomputed knowledge rather than larger
sets of source information. Existing works have considered the
networking of knowledge in vehicular networks. [4] described
the concept of a knowledge networking architecture involving
knowledge composition, storage, and distribution. [5] defined
a knowledge networking framework specialized for the com-
position and exchange of deep learning models. Yet, to the
best of our knowledge, no mechanism has been defined which
considers a generic context-based distribution of knowledge in
vehicular networks, such that the context of use of knowledge
can be defined and used to provide knowledge in the right
context.

In [6], we introduced the Vehicular Knowledge Networking
(VKN) framework. It describes an architecture for knowledge
description, storage and dissemination in vehicular networks.
In this paper, we use the VKN framework to evaluate the
potential impact of context-based knowledge networking in
vehicular networks. Through the case of roundabout exit
probability estimation knowledge, we define a packet-level
simulation in which vehicles can request for the creation of
knowledge which is adapted to their current driving context.
The contributions of this paper are as follows:



Fig. 1: The Exit Probability Knowledge Creation Case Study

• A packet-level networking simulation is contributed
which implements context-based knowledge distribution
over existing vehicular networking protocols. It imple-
ments the complementary aspects of knowledge descrip-
tion, storage, and dissemination mechanisms.

• The obtained results show that context-based knowledge
networking can significantly improve the accuracy of
knowledge, and that context-aware knowledge caching
reduces the overhead and delay of knowledge access.
This opens perspectives on future context-aware vehicular
knowledge networking.

The rest of the article is organized as follows: Section II
introduces the considered roundabout exit probability use case.
Then, Section III describes the implementation of knowledge
description, storage, and dissemination through VKN for this
use case. Section IV describes the packet-level simulation
setup to evaluate the VKN context-based knowledge distri-
bution. Lastly, Section V discusses the obtained results, while
Section VI summarizes the article.

II. RISK-BASED ROUNDABOUT ENTRY

The assessment of risk by CAVs is a key enabler of safe
highly automated driving. As considered in [7], several factors
may jeopardize self-driving abilities and cause slow downs or
a human take-over. The unexpected behavior of human road
users is listed as a key risk factor, especially when negotiation
is required, as in unsignalized intersections. For example,
entering a roundabout may require estimating the intentions
of vehicles which are already in the roundabout, to avoid a
collision between circulating and entering vehicles.

A report by the Transportation Research Board indicated
that roundabout entry conflicts involve, respectively, 36.6%,
50.8%, and 71.1% of roundabouts crashes in France, Queens-
land (Australia), and the United Kingdom [8]. In turn, to eval-
uate the accuracy of context-based knowledge networking in
vehicular networks, we consider the networking of roundabout
risk knowledge for safe CAV entry.

Fig. 2: Flow Chart of the Roundabout Entry Procedure

A. Scenario Definition

Figure 1 illustrates the considered scenario. The red-colored
CAV va approaches an entry of a roundabout R, but senses
a blue-colored incoming vehicle vb, which is a traditional
human-driven vehicle and, as such, cannot share information
about its future trajectory. To enter the roundabout safely while
avoiding the formation of queues at the entry, the entering
CAV va aims to obtain the knowledge of the probability of
the incoming vehicle vb to exit the roundabout.

Models to estimate exit probability values are stored in
remote nodes, i.e., a central Mobile Edge Computing (MEC)
unit, or infrastructure nodes accessible through multihop wire-
less communication. Yet, no exit probability estimation model
was trained specifically for the roundabout R. In turn, va
wishes to express a request for the creation of exit probability
knowledge using a model which, albeit not trained directly on
tracks extracted from R, was trained in a similar context.

The safe roundabout entry use case, as described in Figure 2,
is leveraged to implement and evaluate a packet-level simula-
tion of the dissemination of context-relevant knowledge among
vehicular nodes. Three scenarios are compared to evaluate the
performance of context-based knowledge networking:
• In context-based knowledge networking with knowledge

caching, roundabout exit probability models which have
been trained in a relevant context are cached in the MEC
unit in the center of the roundabout.

• In context-based knowledge networking without knowl-
edge caching, models with relevant contexts are not
cached in the central MEC unit. As such, context-based
knowledge creation requests must be forwarded to other
infrastructure nodes which possess the right knowledge
through multihop communications, as shown in Figure 1.

• In context-agnostic knowledge networking, i.e., the base-
line approach, models which were not trained in a rele-
vant context are cached in the central MEC unit. This is
because, in this case, the context of usage of roundabout
exit probability models is not taken into account, as it
has not been studied or defined. As such, there is no
clear better option considering which model to cache.

B. Exit Probability Models

The considered knowledge networking scenarios require the
definition of semantics to describe the interface and context
of usage of the considered roundabout exit probability models



Fig. 3: Input and Context Description of the Considered Exit
Probability Models

in an interoperable language shared by nodes. In this section,
we describe a semantic description of the inputs, outputs, and
context of usage of such models, based on existing works.
In [9], we originally defined the interface of a model to assess
the probability of a vehicle to exit a roundabout. ML models
were trained to associate the kinematics of a vehicle with its
probability of exiting at the next available exit. As illustrated
by Figure 3 in dark green underlined text, the inputs to predict
the probability of a vehicle to exit at the next exit are:
• The heading of the vehicle, relatively to the curvature of

the roundabout, relative_heading ∈ [−180, 180]◦.
• The straight-line distance to the next exit, normalized

by the distance between the next and the previous exit,
exit_distance ∈ [0, 1].

• The lateral position of the vehicle in the round-
about, normalized by the width of the driveable area,
lateral_position ∈ [0, 1].

In [9], an exit probability model with 91% vehicle exit
prediction accuracy was trained from vehicle tracks in a single
roundabout, extracted from the RounD dataset [10]. In turn,
to evaluate the accuracy of exit probability models in other
roundabouts, i.e., other driving contexts, a more complex
analysis was performed in [11].

On the one hand, a roundabout exit probability model was
trained for multiple distinct roundabouts: The three round-
abouts of the RounD dataset [10] and the five roundabouts of
the INTERACTION dataset [12]. On the other hand, through
an information theoretic similarity-based analysis as detailed
in [11], we determined the contextual features which influence
the similarity of exit probability models: (i) The number of
entry legs, (ii) radius, and (iii) width of their roundabouts of
training, as illustrated by the light blue italic text in Figure 3.
For example, the bottom-right roundabout features a non-
similar context to the main roundabout, due to a differing
number of entries. Table I summarizes the roundabouts for
which an exit probability model was trained and their associ-
ated context.

TABLE I: Considered Roundabouts and Associated Contexts

Dataset / Roundabout Entry Legs Radius (m) Width (m)
Interaction / CHN_LN 4 23 9
Interaction / DEU_OF 3 8.75 4.5
Interaction / USA_EP 4 6.75 6.75
Interaction / USA_FT 7 9 9
Interaction / USA_SR 4 13.5 4.5
RounD / 0 4 15 9
RounD / 1 4 8 4.5
RounD / 2 3 (see [11]) 6.75 4.5

Fig. 4: Sequence of the Knowledge Dissemination Procedure

III. VEHICULAR KNOWLEDGE NETWORKING
INTEGRATION

In this work, we implement the roundabout entry procedure
as shown in Figure 2 through VKN. VKN is a framework
which allows the description of AI-based knowledge models
to, in turn, support the definition of interoperable knowledge
creation, storage, and dissemination mechanisms. In this sec-
tion, we define VKN-supported (i) knowledge description,
(ii) storage, and (iii) dissemination mechanisms to support
the distribution of exit probability knowledge in an unknown
roundabout, using existing exit probability models trained in
similar contexts. In turn, we describe the implemented (iv)
knowledge creation and (v) utilization approaches.

Figure 4 shows the implemented knowledge distribution
aspects. It illustrates the overall flow of the exit probabil-
ity knowledge networking through VKN. Namely, entering
vehicles formulate requests to compute the exit probability
of any incoming vehicle. The request is forwarded to a
knowledge producer which takes the driving context of the
crossed roundabout into account to produce the knowledge.

A. Knowledge Description

To allow the storage and dissemination of exit probability
knowledge between vehicles in an interoperable manner, well-
defined semantics must be defined such that the nodes which
consume the knowledge share a common understanding of its
structure and context of use with the nodes which produce it.
In turn, nodes can discover and use new knowledge without
requiring hard-coded updates for their on-board computing
units to apprehend it. As part of VKN, we divide the semantic
description of knowledge in four complementary sections to
efficiently describe the exit probability knowledge models:

1) Ontology Description: To begin with, we provide a
description of the variables which are used to describe the
input, output, and context description elements of a knowledge



model. Table II defines the list of named objects which are
used as part of the exit probability model descriptions, as
introduced in Section II.

2) Meta Model Description: The named objects defined in
Table II provide a basis for the description of the generic
class of exit probability models. We refer to this aspect as
the exit probability meta model description. The meta model
description defines the input and output interface of a class
of exit probability models, as listed in the ’Role’ column of
Table II. It provides a list of named objects which can be
used to describe the context of usage of models which are
part of this class of models, here, (i) the number of entries, (ii)
radius, and (iii) width of the roundabout of training. Moreover,
the meta model description defines a condition of context
similarity which outputs whether two contexts are similar.
For example, Equation 1 is a condition of similarity which
was considered in our preliminary work [11], and illustrated
in Figure 3. Following Equation 1, RounD/2 and DEU_OF
were trained in contexts which are similar. On the contrary,
due to a differing number of entries, the contexts associated
with USA_FT and CHN_LN are not similar.

(∆Entries = 0) ∧ (∆Radius ≤ 6.0m) (1)

3) Model Description: Several models may belong to the
class of exit probability models as defined by the exit probabil-
ity meta model description. For example, an exit probability
model trained in DEU_OF and another trained in CHN_LN
share the same input/output interface, and variables to describe
their context of use. As such, they implement the exit probabil-
ity model meta-description. Yet, they each feature a different
context of usage, as shown in Table I.

As such, exit probability model descriptions implement the
exit probability meta-model in a specific context. Namely,
the exit probability meta-model states that the context of
usage of exit probability models can be described using the
entry number, radius, and width of a roundabout. In turn, the
description of the model associated with DEU_OF states that
it has been trained in a 3-entry roundabout of radius 8.75m
and width 4.5m. Figure 5 summarizes the semantic description
of exit probability models, exposing the relationship between
ontology, meta-model, and model descriptions.

4) Model Bytecode: Finally, the bytecode associated with a
model description is the machine code which can be executed
to perform output creation from well-formed input. In this
study, the exit probability models are executed in a Python
environment and stored as Python pickle files. They contain
the exit probability logistic regression models trained using
the scikit-learn library [13].

B. Knowledge Storage

1) Generic Architecture: To store knowledge in vehicular
networks, we define a VKN knowledge base module, which
matches the architecture of the knowledge description defined
in Section III-A. Namely, four distinct KBs are defined and
interconnected:

Fig. 5: Exit Probability Knowledge Semantic Description

1. The definition of ontologies and named objects is con-
tained in an ontology knowledge base.

2. The description of meta-models, e.g., the exit probability
meta-model as defined in Figure 5, are contained in a
meta knowledge base. Meta models refer to the ontology
knowledge base to describe their interface and context.

3. The description of models is stored in a model description
base. Each model description implements a specific meta-
model described in the meta knowledge base.

4. Model bytecodes are stored in specific database. Each
model is connected with its semantic description in the
model description base.

2) Application to Roundabout Exit Knowledge: In this
paper, which implements context-based exit probability knowl-
edge distribution as described in Section II, both the vehicles
and infrastructure units are provided with a KB module,
containing the aforementioned databases. In the KB module of
the simulated vehicles, the ontology KB contains the ontology
description as defined in Table II and the top-right corner of
Figure 5. What is more, the exit probability meta-model, i.e.,
rd_exit_proba_estimator as defined in the left side
of Figure 5 is contained in the meta KB of vehicles. Yet, the
vehicles are not aware of the description nor bytecode of any
model implementing the rd_exit_proba_estimator
meta-description.

The KB modules of the infrastructure units contain the
same ontology and meta KB as vehicles. Additionally,
their model description KB and model bytecode KB con-
tain descriptions and bytecodes of models implementing the
rd_exit_proba_estimator meta-model:
• In context-based knowledge networking with knowledge

caching, models with relevant contexts are cached in the
KB of the MEC unit in the center of the roundabout. For
example, if the considered roundabout is DEU_OF, the
rd_exit_RounD_2 model is integrated, as it has been
trained in a similar context.

• In context-based knowledge networking without knowl-
edge caching, models with relevant contexts are not
stored in the central MEC unit but in several remote
infrastructure nodes. In turn, knowledge creation requests



TABLE II: Semantic Description of the Exit Probability Model Variables

Named object Type Role Description
relative_heading float ∈ [−180, 180] (deg) Input The heading of a vehicle relatively to the curvature of a roundabout.
exit_distance float ∈ [0, 1] Input The relative distance to the next exit.
lateral_position float ∈ [0, 1] Input The relative lateral position in the roundabout.
exit_probability float ∈ [0, 1] Output A value of exit probability.
entry_number int > 0 Context The number of entry legs of a roundabout.
radius float > 0 (m) Context The radius of a roundabout.
width float > 0 (m) Context The total width of the driveable circular lanes of a roundabout.

from vehicles need to be routed to knowledge producers
in the right context through multi-hop communications.

• In the baseline context-agnostic knowledge networking,
models trained in a non-relevant context are added to the
KB of the central MEC unit. They are used to produce
knowledge, as context is not considered in this approach.

Vehicles are provided with a meta-model description of the
exit probability class of models. In practice, it can be obtained
through a VKN knowledge discovery request, e.g., to fetch the
description of available meta models which produce a round-
about exit probability as an output. Additionally, mechanisms
are required to let vehicles express and route requests for the
creation of exit probability knowledge to remote infrastructure
nodes, which own relevant models in a context which is similar
to that of the crossed roundabout.

C. Knowledge Dissemination

As illustrated by Figure 4, each vehicle is provided with
the knowledge of the rd_exit_proba_estimator meta-
model. In turn, entering CAVs sensing the presence of an
incoming vehicle can formulate a request for the creation
of exit probability knowledge (i) using the input sensed
from the incoming vehicle, (ii) in the context of the crossed
roundabout. The request is wirelessly forwarded to a remote
knowledge producer, which owns a model implementing the
rd_exit_proba_estimator interface. After it was pro-
duced, the knowledge is returned to the entering vehicle.

In this case study, entering CAVs are not aware of the
exact location and host address in which relevant knowledge
models are stored and available. In turn, we make the choice
to implement networking operations using Information-Centric
Networking (ICN). ICN is a paradigm in which content is
uncoupled from its host. As such, rather than addressing a
specific host which is known beforehand to host relevant
knowledge, entering vehicles directly disseminate a knowl-
edge creation request to neighboring nodes. Named Data
Networking (NDN) is an implementation of ICN, which uses
hierarchical names to refer to content, and routes ’interests’
for named content from consumers to producers.

To formulate knowledge creation requests to be dissemi-
nated over NDN, we encapsulate VKN knowledge creation
requests in a NDN interest name. As illustrated by Figure 6,
we set the /vkn/model_apply prefix to indicate that the
interest is a knowledge creation request. Then, two keywords
are integrated to the interest name, i.e., __input__ and
__context__ to indicate the upcoming definition of slash-
separated (key, value) elements describing, respectively, (i)

Fig. 6: Knowledge Creation Requests over NDN

the inputs to use, and (ii) the driving context which should be
matched when selecting the models to use.

D. Knowledge Creation

As a knowledge producer receives the request, it creates
the exit probability knowledge as illustrated in Figure 4, and
following the procedure described in Algorithm 1. From line
7 to 13, the model KB is searched for exit probability models
which have been trained in a similar context than the requested
context of application. In turn, in line 11, matching models
are used to predict values of exit probability based on the
provided input. Lastly, in line 14, the obtained probabilities are
averaged. This technique is an instance of ensemble voting, as
surveyed in [14]. It alleviates the impact of potential outliers in
the obtained probability values, as discussed in the preliminary
study in [11]. If no model with the right context is found, the
algorithm fails, or falls back to using a model with a non-
similar context in the baseline context-agnostic approach.

Algorithm 1 Knowledge Creation Request Processing
1: KB_meta←MetaKB() . The Meta KB.
2: KB_model←ModelKB() . The Model KB.

3: . Treat an exit probability knowledge creation request encoded as a NDN interest.
4: procedure treat_request(interest_name)
5: matching_models_predictions← list()
6: (meta_model, inputs, context)← parse(interest_name)

7: for each model in KB_model do
8: if model.meta_model = meta_model and
9: meta_model.is_similar(model.context, context) then

10: matching_models_predictions.add(model.apply_to(inputs))
11: end if
12: end for

13: if not matching_models_predictions.empty() then
14: return matching_models_predictions.average()
15: else
16: return no matching model
17: . In the context-agnostic knowledge networking case, the knowledge creation falls

back to selecting a non context relevant model
18: end if
19: end procedure



TABLE III: Simulation Parameters

Parameter Value
Considered Roundabouts Table I, except USA_FT and CHN_LN
Infrastructure Nodes 1 (Local MEC) + 50 (Remote Static Nodes)
Node Placement Area 200× 200m2

Protocol stack IEEE 802.11p & IEEE 1609.4 & NDN
Three Log Distance Model Distance=(1, 200, 500)m, Exponents=(1.9, 3.8, 3.8),

Reference Loss=46.67dB
Nakagami Model Distance=(80, 200)m, Exponents=(1.5, 0.75, 0.75)
NDN Hop Limit 10

E. Knowledge Utilization

As illustrated by Figure 4, CAVs receiving the exit probabil-
ity knowledge could use it in real applications to take routing
or entering decisions. Yet, as this study aims at demonstrating
the impact of context-based knowledge networking, the mo-
bility of vehicles is not modified as a result of the received
exit probability, which is left as future work. Rather, at the
end of the simulation, the exit probability values received by
vehicles are scored.

Namely, accuracy scores are computed for the exit proba-
bility values obtained by CAVs. Probabilities exceeding 0.5
are associated with a prediction of exit. In turn, the exit
predictions are compared with the actual observed behav-
ior of incoming vehicles. We consider (i) accuracy, i.e.,
number of correct predictions

number of predictions , and (ii) precision, i.e., TP
TP+FP ,

with TP and FP the number of true and false positives.

IV. SIMULATION SETUP

We run several ns-3 simulations of vehicles crossing a
roundabout R which request the creation of exit probability
knowledge to remote knowledge producers, based on the
driving context in that roundabout. Simulations are run for
each roundabouts listed in Table I which feature at least one
other roundabout with a similar context, according to the
similarity condition of Equation 1, i.e., excluding USA_FT
and CHN_LN. Namely, in each simulation, we consider that
no exit probability model has been trained for the considered
roundabout R. In turn, existing models which have been
trained in other roundabouts listed in Table I must be used.

A. Topology

A MEC unit is placed in the center of the roundabout.
Moreover, a set of 50 additional static nodes are generated in
a square area of 200m side centered on the roundabout. They
represent infrastructure units or static connected objects. Their
position are uniformly sampled, following the condition that
each added infrastructure node must be located within 30m
of at least one other infrastructure unit. Then, the mobility of
vehicles is replicated from real vehicle tracks extracted from
the RounD and INTERACTION dataset recordings.

B. Protocol Stack

Communications between the vehicles and infrastructure
units are wireless, implemented in ns-3 using existing proto-
cols adapted to the vehicular environment. The physical layer
implements the IEEE 802.11p standard [15]. Specifically, it
uses a 10MHz frequency band of the licensed 5.9 GHz band of

Intelligent Transportation Systems (ITS). In turn, the Medium
Access Control (MAC) layer uses IEEE 802.11p, with the
WAVE IEEE 1609.4 extension [16]. Moreover, a Three Log
Distance propagation loss and Nakagami fading model are
added to the physical IEEE 802.11p channel, with the default
ns-3 parameters as listed in Table III.

The networking layer of vehicles and infrastructure units
implements the NDN protocol, which we simulate in ns-3
through the ndnSIM 2.8 library [17]. On the one hand, entering
vehicles are consumers for exit probability knowledge content,
and express interest messages for its creation. On the other
hand, depending on the scenario, a specific set of simulated
infrastructure nodes are defined as producers of exit probabil-
ity knowledge. Interests are routed from entering vehicles to
producers through multicast and potentially multihop wireless
communications, with a limit of 10 hops.

In this work, no changes are applied to the networking
and lower layer protocols. Instead, context-aware knowledge
networking is implemented as an overlay application. Knowl-
edge producers leverage their KBs to create exit probability
knowledge as described in Algorithm 1.

C. Evaluation

Finally, we evaluate the performance of context-based
knowledge networking considering the (i) delay, (ii) average
hop count, and (iii) overhead associated with exit probability
knowledge dissemination, as well as (iv) the accuracy of the
obtained knowledge. These metrics are compared for the three
knowledge networking scenarios introduced in Section II-A:

• In context-based knowledge networking with knowledge
caching, exit probability models with a relevant training
context are cached in the central MEC unit, close to the
vehicles, and defined as the only knowledge producer.

• In context-based knowledge networking without knowl-
edge caching, a set of 5 infrastructure units, distinct
from the central MEC unit, are randomly selected as
knowledge producers and provided with relevant context
knowledge. In turn, multiple hops may be required to
route knowledge interests from vehicles to producers.

• In context-agnostic knowledge networking, only the cen-
tral MEC unit is defined as a knowledge producer. Yet, its
KB is populated with models which were not trained in
a relevant context for the considered roundabout R. As
such, while the exit probability can be computed close
to the vehicles, the accuracy of the obtained knowledge
may be reduced compared to the proposed context-aware
approaches.

V. RESULTS & DISCUSSION

In this section, we present and discuss the obtained results
through two main aspects, i.e., the accuracy of context-based
knowledge creation and the networking performance of knowl-
edge dissemination.



Fig. 7: Accuracy Score on RounD/0 Exit Predictions using
Context-Based Knowledge Networking

A. Knowledge Accuracy

To begin with, we evaluate the impact of context-based
knowledge networking on the accuracy of the knowledge
which is disseminated in vehicular networks. For each vehicle
track recording of each considered roundabout, the accuracy
of knowledge produced through the two context-based ap-
proaches, i.e., the proposed approach, is compared with the
context-agnostic alternative, i.e., the baseline approach.

Figure 7 illustrates, for each vehicle track recording of the
RounD/0 roundabout, the accuracy of predictions obtained
through the proposed context-based knowledge networking
in blue, i.e., when remote infrastructure units have produced
knowledge using models which have been trained in a relevant
context, similar to that of RounD/0. It is compared with the
accuracy of predictions obtained through the baseline context-
agnostic knowledge networking in red, which are bounded by
95% confidence intervals, obtained by considering accuracy
scores related to the various models trained in a non-similar
context to that of RounD/0. The recordings are ordered by
average accuracy improvement of the context-based approach.

In RounD/0,1,2 and DEU_OF, significant accuracy im-
provements are obtained for the proposed context-based
knowledge networking. Even in a context-agnostic approach
where knowledge is created from a random model implement-
ing the right interface, the spread of the confidence intervals
would force vehicles to take conservative entering decisions,
based on the lower bounds of the prediction accuracy.

On the other hand, the accuracy of context-based and
context-agnostic approaches remained stable for the USA_SR
and USA_EP roundabouts, potentially because of an overly
permissive similarity condition in Equation 1. Nonetheless,
for these roundabouts, the precision score associated with the
proposed context-based knowledge networking was improved
significantly compared to the baseline context-agnostic ap-
proach. Precision is relevant in this use case as it penalizes
false positives, i.e., when a vehicle was predicted to but did
not exit the roundabout, which may induce collisions.

B. Networking Performance

In parallel, we consider the impact of the proposed context-
based knowledge networking on networking performance met-
rics, i.e., the delay, number of hops, and overhead required to
distribute knowledge in the considered wireless topology. As

Fig. 8: Networking Performance Evaluation

these network metrics are independent from the specific exit
probability model which is used to produce the exchanged
knowledge, we focus on a recording extracted from the
DEU_OF roundabout, as a case study. Figure 8 compares
network performance indicators for the three considered sce-
narios, i.e, the proposed context-based knowledge networking,
with and without caching, and the baseline context-agnostic
knowledge networking. For each scenario, the considered
DEU_OF recording is simulated 20 times with different ran-
dom infrastructure unit locations. Four metrics are compared:

• The average delay between the sending of an interest
and the reception of the knowledge with 95% confidence
intervals, as well as the average associated hop count.

• The average accuracy of the exit probability knowledge
over a simulation with 95% confidence intervals, as well
as the average overhead associated with a simulation.

While the baseline context-agnostic approach allows knowl-
edge delivery with a lower delay and overhead than the
context-based approach without caching, it significantly de-
creases the accuracy of the produced knowledge, as discussed
in Section V-A. Namely, in the baseline context-agnostic
approach, models have been cached in the central MEC unit,
yet without considering context-relevant knowledge. In turn,
due to the proximity of entering vehicles, the knowledge can
be disseminated with a relatively low hop count, delay, and
overhead. On the other hand, it is significantly less accurate
than approaches which route knowledge requests to producers
possessing context-relevant models.

The simulated topology ensures the presence of a knowledge
producer in the vicinity of the entering vehicles, i.e., within
a few hops at most. In a setup featuring a more scarce distri-
bution of knowledge producers, the deterioration of network
performance could increase due to the lack of caching. To
conciliate both high networking performance and knowledge
accuracy, the proposed context-based knowledge networking
with caching stores knowledge where its context is relevant.
Then, accurate knowledge can be accessed efficiently.



The obtained results illustrate the potential and impact of
context-based knowledge networking, and open perspectives
on the need to take context into account for every aspect
of knowledge networking in vehicular networks. Namely,
knowledge should be cached in locations which feature a
context in which it can be applied, such that it can be accessed
by vehicles in a relevant context. Similarly, knowledge is
typically built by an organization for the exclusive use of its
fleet of vehicles. Through semantic-supported dissemination
mechanisms which allow the transmission of requests for the
creation of knowledge in a specific context, knowledge net-
working could be opened to all nodes of vehicular networks,
while maintaining the accuracy of models.

VI. CONCLUSION

Existing content caching and dissemination approaches in
vehicular networks take various parameters such as the popu-
larity or age of content into account. While this is adapted for
safety information delivery, which has strict delay constraints
and local relevance, knowledge is relevant indefinitely as long
as it is applied in the right context. As such, mechanisms are
required which take the context of usage of knowledge into
account for knowledge networking operations. Through rich
knowledge semantic description, vehicles can describe their
driving context, as well as the relevant context of usage of
knowledge models. In this paper, we showed the potential and
impact of context-based knowledge networking in a packet-
level simulation, where vehicles request the creation of round-
about exit probability knowledge in various roundabouts, i.e.,
driving contexts. This opens perspectives for context-based
knowledge networking applied to other types of vehicular
knowledge, which would make the knowledge accessible to
a greater number of vehicles, while maintaining its accuracy
by ensuring it is cached and used in the right context.
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