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Abstract—Smart city projects aim to enhance the management
of city infrastructure by enabling government entities to monitor,
control and maintain infrastructure efficiently through the deploy-
ment of Internet-of-things (IoT) devices. However, the financial
burden associated with smart city projects is a detriment to
prospective smart cities. A noteworthy factor that impacts the
cost and sustainability of smart city projects is providing cellular
Internet connectivity to IoT devices. In response to this problem,
this paper explores the use of public transportation network nodes
and mules, such as bus-stops as buses, to facilitate connectivity
via device-to-device communication in order to reduce cellular
connectivity costs within a smart city. The data mules convey
non-urgent data from IoT devices to edge computing hardware,
where data can be processed or sent to the cloud. Consequently,
this paper focuses on edge node placement in smart cities that
opportunistically leverage public transit networks for reducing
reliance on and thus costs of cellular connectivity. We introduce an
algorithm that selects a set of edge nodes that provides maximal
sensor coverage and explore another that selects a set of edge
nodes that provide minimal delivery delay within a budget. The
algorithms are evaluated for two public transit network data-sets:
Chapel Hill, North Carolina and Louisville, Kentucky. Results
show that our algorithms consistently outperform edge node
placement strategies that rely on traditional centrality metrics
(betweenness and in-degree centrality) by over 77% reduction in
coverage budget and over 20 minutes reduction in latency.

Index Terms—smart cities, opportunistic networks, delay tol-
erant networks, internet of things, gateways, edge computing,
wireless

I. INTRODUCTION

Development of smarter cities has been proposed as a means
of combating the challenges arising from the increasing rate of
urbanization within many cities in the world [1]. One major
characteristic of most smart city designs is the deployment of a
vast number of IoT devices/sensors across the city to monitor
and sometimes control the state of public infrastructure such
as water and gas pipes [2]. These IoT devices, which include
weather sensors, traffic monitors, parking meters/monitors, gen-
erate large amounts of data that need to be forwarded to the
Cloud for processing and storage. To achieve this, deployed IoT
devices typically rely on cellular connectivity. However, the
additive operating costs incurred from each sensor’s cellular
subscription plans is expensive [3]. For example, cities such
as San Diego, New Orleans, London, and Songdo have either
proposed or invested in smart city projects that cost between
$30 Million and $40 Billion. The costs of deploying and
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maintaining smart city projects is a huge deterrent for city
officials, especially when the sustainability and impact of
such projects are uncertain [4]–[6]. In addition, since sensors
generate large amounts of data and connect to the same base
stations that facilitate cellular connectivity for personal mobile
devices, solely using cellular networks for smart city data can
quickly lead to network congestion and poor user experience.
Though 5G has been proposed as a viable solution, projections
show that 5G will not be able to support the load of billions
of IoT devices coming online [7]–[9]. Hence, there is need for
cost-effective smart city communication networks that reliably
and efficiently forward sensor data to the cloud without over
burdening cellular infrastructure. In response to aforementioned
needs, various researchers have historically explored delay
tolerant networks (DTNs) or opportunistic networks for smart
city applications that can tolerate high latency [10]–[13].

Opportunistic networks are attractive because of their ability
to persist data with minimal infrastructure. Such networks
leverage the already existing mobility of nodes within a city to
retrieve data from IoT devices and either disseminate data to
other devices in the network or act as intermediate data carriers
which forward the data to specific locations that have edge
computation, cloud connectivity, and storage resources [10],
[14]. The research community has investigated the use of public
transit vehicles — such as buses, trams, and light rail — for
opportunistic networks; however most of the research has been
limited to routing and forwarding schemes [15]. Messages are
delivered with some delay which is directly correlated with the
layout, density, and mobility of nodes in the network [16], [17].
Consequently, a question that has been marginally addressed is:
where should edge nodes be placed in a low-cost smart
city that leverages public transit networks to improve
connectivity?

The opportunistic use of transportation networks is not
intended to perform better than 5G or other centralized com-
munication schemes, but instead offer a low-cost alternative
for delivering time-insensitive data, enabling municipalities to
become smart cities at a fraction of the cost. In this paper
we: (i) introduce the Maximal Sensor Coverage (MSC) edge
node placement optimization problem, and explore the Minimal
Delivery Delay (MDD) problem; (ii) formulate the Maximal
Sensor Coverage (MSC) as a set cover problem; (iii) develop
approximation algorithms for solving the optimization prob-
lems highlighted; and finally; (iv) compare the results of our
algorithms with traditional network centrality measures.
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The rest of the paper is structured thus: Section II discusses
related work; Section III introduces the network model; Section
IV defines the MDD problem and describes its solution; Section
V explains the simulation design and environment; Section
VI offers the numerical evaluation; and finally Section VII
discusses and concludes the work.

II. RELATED WORKS

Various researchers have investigated the opportunistic use of
vehicular transportation networks for data forwarding in smart
city communication networks. The network architecture often
consists of a set of vehicular data mules (e.g. buses, boats,
train, etc) that encounter IoT devices, opportunistically collect
sensed data and deliver the data to edge nodes with wired
Internet connectivity [18], [19]. However, the vast majority
of research in this area have focused on the design of data
forwarding schemes. Some works have proposed new routing
schemes that harness the quasi-deterministic nature of public
transportation networks and utilize metrics such as intercontact
times to reduce latency and improve delivery [10], [11]. Others
have explored routing in the context of different wireless
communication media such as, LoRa and WiFi [18]. Some
others have investigated routing and forwarding schemes in
the context of preserving privacy [13]. Nevertheless, none of
the aforementioned works addresses the question of edge node
placement.

While placement algorithms are typically unique to the
network, certain techniques from other network domains are
relevant to this problem. Some previous works on placement
optimization for networks similar to ours include [20] which
exploits the principle of submodularity to tackle the problem
of sensor placements in water distribution networks. In [21],
the authors explore several optimization techniques for access
point placement in wireless mesh networks. Additionally, [22]
looked at optimizing coverage and cost-efficiency in a smart
parking network. Unlike prior research, this work proposes an
edge node placement algorithm for low-cost smart cities that
leverages opportunistic networks and evaluates it using GTFS-
data derived from real transits from multiple cities.

A. Classic Centrality Analysis
The problem of edge node placement is similar to finding the

most significant stops in a transit network. In the field of net-
work analysis, there exist several popular centrality measures.
These centrality measures are usually computed by a real-
valued function and reflects a node’s significance or importance
within the respective network [23]. Centrality measures have
been used in many kinds of networks including the Internet, so-
cial networks, biological networks, and transportation networks.
Unfortunately, centrality measures work best with simple static
networks [24] and not dynamic networks. Since our network
model is more complex, containing not just nodes (stops)
and edge nodes (trips), but also vehicle schedule information
across each node, centrality measures may not provide the
best solutions for optimizing edge node placement. Hence, for
the optimization problems considered in this work, we explore
other solutions.

B. Evaluation of Opportunistic Networks

A number of test-beds and simulation tools have been de-
veloped by the research community and presented in literature
to facilitate research in the field of vehicular communication
networks and vechicular opportunistic networks. In [25], the
authors create the DOME testbed, to give researchers access
to transit buses already furnished with necessary equipment,
so that external researchers can upload their communication
protocols to the buses remotely and conduct experiments within
a real-world environment without having to invest in addi-
tional infrastructure. In [26], the authors also design an ad-
hoc testbed using buses. Although real-world deployments of
various network architectures provide the most accurate results,
oftentimes these results are not sufficiently generalized due to
insufficient geographic diversity as well as the limited scale
of the experiments. In addition, real-world deployments are
typically financially expensive.

One popular alternative to real-world evaluations has been
the use of mathematical models and simulations. Some of the
advantages of this approach include: minimal financial costs,
the ability to easily scale up experiments, and the heterogeneity
of geography and hardware parameters during experiments.
Examples of some widely used open-source generic simulators
in the field of vehicular communication and DTN include
the ONE simulator [17] and ns-3 [27]. However, it can be
difficult to fully incorporate real-world data into simulation
environments, or adapt the environment to match the designed
network model. Hence, several works in literature use custom-
built simulators for their models.

In [28], the authors designed a simulation environment
for VANETS and intelligent traffic lights to notify vehicles
of traffic and warning messages using Ad-hoc On-Demand
Distance Vector (AODV). In [29], the authors conduct a feasi-
bility study by setting up a simulation framework that relies
purely on opportunistic interactions between taxi cabs. The
lower accuracy of simulation environments, when compared
to real-world environments is a factor that often undermines
the integrity and validity of results. An additional contribution
of our work is the development a simulator for our network
model that closely emulates the movement of real world transit
vehicles, hence we are able evaluate the performance of our
network across many cities, while also maintaining high result
accuracy.

III. MODEL

The entities within the smart city are depicted in Figure 1
and described below

1) Bus routes: Every public transit network has a list of
predefined routes on which buses move/operate. Every route is
primarily defined by the list of stops on which the route passes
through. A route also contains a list of trips which specifies the
arrival and departure times for buses operating on that route,
as well as the sequence of stops the bus moves through during
each trip. Note that a stop may service more than one route.
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Figure 1. Network Architecture

2) Sensors: Sensors are located at select bus stops. Each
sensor generates data at a specific periodic rate around-the-
clock. The data is stored locally until it can be forwarded to
a bus. Every sensor is equipped with a device that allows it
to opportunistically connect to a bus when the bus is within
a specified geographic range of the sensor. In addition, we
are only considering sensors whose generated data packets are
small enough to justify an assumption of transmitting to a bus
in a short duration. Local storage of a sensor is considered to
be infinite, since data is expected to be picked up by a bus
within a couple of days, thereby eliminating the need for a
policy for dropping packets. Also, it is assumed that the data
generated by these sensors is delay tolerant and is not relied
upon to make real-time decisions.

3) Edge nodes: These are stationary and when “active (on)”
are considered always-connected devices that forward data
directly to remote servers via the Internet for post processing
and analysis. They act as the destination for all data generated
by sensors. Not all bus stops are edge nodes, rather edge nodes
are placed at selected bus stops. Similar to sensors, edge nodes
are assumed to always be within transmission range of buses
traveling on routes for the stop on which the edge node is
located. Each edge node is also equipped with a device that
allows it to opportunistically connect to a bus when the bus
is within a specified geographic range of it. Edge nodes are
equipped with edge computing and pre-processing capabilities.

4) Buses: These move along predefined routes on a fixed
schedule. Hence, the specific geographic position of buses
moving on a specific route at any time can be estimated. Each
bus is equipped with the necessary hardware to connect to
sensors, retrieve, store sensor data packets, and forward the data

to edge nodes. We currently do not consider the buffer/queue
sizes of data in buses and so buses are assumed to have
buffer/queue sizes of infinity since they are expected to deliver
data to at least one gateway within a day (buses park at transit
stations which are expected to have an active gateway), so a
drop-policy for stored data is not necessary.

IV. EDGE NODE SELECTION PROBLEM

In this section, the edge node selection problem is rep-
resented as two optimization objectives and corresponding
algorithmic solutions are provided. It is assumed that the cost
associated with installing or activating a gateway is constant
regardless of the location being considered.

A. Maximal Sensor Coverage (MSC)

The objective, Maximizing Sensor Coverage (MSC), is to
find the minimum/smallest set of locations to install or activate
gateways such that there is at least one direct path in the
network from all possible sensor locations to an edge node.
This would ensure that all sensors, regardless of where they
are placed on the transit network will have a chance of having
its data delivered.

Recall that the bus transit network consists of several routes
through which vehicles move, each route comprises of a set of
stops and two or more routes may share a stop. Therefore, we
can define our MSC problem as such: Given a set of routes R,
and a list of stops, S, each with a subset of routes, Rl ⊆ R, that
use that stop (each element of R is associated with at least one
stop), find the minimal set of stops required to cover all routes.
This problem can be reduced to a minimal set cover problem. In
the set cover problem, we are given a universal set U, such that
|U |= n, and a family of subsets L1, ..., Lk ⊆ U . A set cover
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is a collection C of the subsets L1, ..., Lk whose union is the
universal set U . Formally, C is a set cover if

⋃
Li∈C Li = U .

To find the minimal set cover, the objective is to minimize |C|.
The reduction is fairly intuitive. In our case the universal set

is the set of all routes R = U , and the family of subsets are
the set of routes each stop services, S = L. Given a decision
variable, xl ∈ {0, 1}, which indicates whether a stop in L is
picked, the ILP formulation is thus:

minimize
∑
l∈L

xl st (1)

∑
l:r∈L

xl ≥ 1 ∀ r ∈ R (2)

xl = {0, 1} ∀ l ∈ L (3)

The problem of finding the optimal set cover solution is
NP-Hard. Nevertheless, the greedy approach is able to find a
solution close to the optimal set cover. It is bounded above by
a O(logen) approximation to optimal solution of the set cover
problem, where n is the number of routes in the network. The
greedy MSC algorithm is described in Algorithm 1. At each
iteration, we find the gateway candidate that provides the largest
increase in the number of routes covered, and add it to the
gateway set. This process is repeated until all routes have been
covered by the gateway set.

Algorithm 1 Maximal Sensor Coverage (MSC)
Input — routes R, route subsets S
Output — selected gateway set G

1: procedure GREEDY-MSC(R,S)
2: X ← R
3: G← ∅
4: while X 6= 0 do
5: Select an Si ⊆ R that maximizes |Si ∩
X|

6: X ← X \ Si

7: G← G ∪ Si

8: return G

B. Minimal Delivery Delay (MDD)

The objective of MDD is to select the set of locations,
G ⊂ S, to place edge nodes such that the average network
latency for data generated across the network is minimized,
without exceeding a budget constraint, k. Where the budget
constraint refers to the number of edge nodes that can be added
to the network and S is the set of stops. In considering network
latency, we account for both delivered and undelivered data.
We also assign a penalty value to data that is undelivered.
The penalty value is selected in such a way that it indicates
that the message was not delivered within the time window
of the simulation. In our evaluation, we picked a fixed value
outside the range of simulation window. Further, the edge node
selection process is conducted without prior knowledge of the
stops in which the sensors will placed in the city.

The problem is formulated as an Influence Maximization
(IM) problem, which is defined: Given a network with n nodes
and given a propagation process on that network, choose a set
of nodes called the seed set D of size b < n that maximizes
the number of nodes in the network that are ultimately influ-
enced [30]. However, our problem differs from the traditional
IM problem because the set of nodes we want to select are not
seed/source nodes, but destination nodes. Hence, we consider
each potential edge node location, s ∈ S, to possess an
influence value, σ(s), which describes its impact on the network
latency if it is added to an existing set of edge nodes. Thus, our
problem objective is to select a set of edge nodes, G, below
a specified cardinality, k < |S|, that together decreases the
network latency the most. Since, G = D, k = b and |S|= n, the
problem can be defined as an influence maximization problem.

Current IM algorithms require an influence function that sim-
ulates the propagation process and computes the marginal in-
fluence that each potential seed has on the overall propagation.
Therefore for our algorithm, we develop an influence function
(σ) that computes the expected latency across the network for
any potential set of edge nodes. Given an undelivered messages
time penalty - T , the minimum time it takes to get from stop,
v, to stop, u - τ(u, v), and the lag between the time at which
data is generated and the time at which the next bus for the
route arrives at the stop where the sensor, s, is located - t(s, s),
the influence function for a set of edge nodes, G is defined as:

σ(G) = T − 1

|S|−G
∑

s∈S,s6∈G

min(T(G, s)) (4)

Where,

T(G, s) = {(τ(g, s) + t(g, s)) | ∀ g ∈ G} (5)

Each element in the set, T(G,S), is the sum of the time it
takes for a vehicle to forward data to an edge node and the
time it takes for the vehicle to get to the sensor. The influence
function makes use of “data delivery delay” (Algorithm 4), to
calculate the network latency. This function is submodular and
its proof can found in a previous work [31]. Even though
finding the set of edge nodes that maximize influence is NP-
Hard, since the influence function is submodular, the solution
can be approximated using the Greedy and Cost-Effective Lazy
Forward (CELF) algorithms [32].

1) Greedy Algorithm: Since the problem is reduced to the
maximization of a monotone submodular function, the greedy
algorithm provides a (1 − 1/e) - approximation [32]. Hence,
the greedy algorithm is theoretically guaranteed to choose a
gateway set whose network latency will be at least 63% of
the network latency of the optimal gateway set. Our greedy
algorithm is described in Algorithm 2. It starts with an empty
gateway set S = ∅. In each iteration, the greedy heuristic
chooses a new gateway u from the non-gateway nodes V \ S
with largest (marginal) influence gain σ(S∪u)−σ(S) and adds
u to S. The algorithm terminates after selecting k gateways.

2) CELF-MDD Algorithm: Although the greedy algorithm
is much quicker than a brute-force approach, the greedy
algorithm is still very slow when considering the size of
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Algorithm 2 Greedy Minimal Delivery Delay
Input — network graph N, influence function σ, budget k
Output — selected gateway set G

1: procedure GREEDY-MDD(N, σ, k)
2: G← ∅
3: while |G|< k do
4: u← arg max v∈V \G σ(G ∪ v)− σ(G)
5: G← G ∪ {u}
6: return G

actual transit networks. Therefore, we use the cost-effective
lazy forward (CELF) approach. CELF significantly reduces the
running time by exploiting the submodular property of our
influence function while still providing the same solution set as
the Greedy algorithm [33]. It eliminates the need to compute
the marginal influence value of all potential edge nodes at each
iteration.

In the first round, we calculate the influence for all stops
(like Greedy), select the stop with the greatest influence, and
store the influence values of the other stops in a max heap.
In subsequent iterations, the marginal influence of the top stop
in the heap is computed and added back to the heap. If the
stop remains at the top of the heap, then it must have the
highest marginal influence of all remaining stops, due to the
submodular property of the influence function. If a different
stop is on top of the heap, the process continues until a stop
remains on top after two iterations, after which that stop is
added to the edge node set. This process is repeated until the
edge node budget has been met.

Algorithm 3 CELF Minimal Delivery Delay (CELF-MDD)
Input — graph N , influence function σ, budget k
Output — selected edge node set G

1: procedure CELF-MDD(N, σ, k)
2: G← ∅
3: Q← ∅
4: for v ∈ N.nodes do
5: u← v
6: u.gain = σ({v})
7: add u to Q in descending order

8: while |G|< k do
9: u← Q.top

10: if u.flag = |G| then
11: G← G ∪ {u}
12: Q← Q \ u
13: else
14: u.gain← σ(G ∪ {u})− σ(G)
15: u.flag ← |G|
16: Re-sort Q in descending order

17: return G

V. SIMULATION DESIGN

We developed a simulation tool1 that models a vehicular
communication network consisting of sensors, buses and edge
nodes within any real-world city, by directly using real transit
network information provided in the General Transit Feed
Specification (GTFS) format [34]. GTFS handles information
on transit routes, stops, and timetables [34]. By building a
simulation tool that incorporates GTFS information, we are
able to evaluate the performance of our low-cost smart city
model for hundreds of cities around the world.

1) Transit feed to graph conversion: The GTFS transit feed
data for a transit agency is converted into a directed graph.
The conversion is done using an open-source library called
peartree [35]. The graph contains: (i) Nodes representing stops,
with each node containing the departure times for all vehicles
from that stop, and (ii) Edges representing a bus path from one
stop to another. The weight on each edge is the average time
it takes for a bus to get from one stop to a neighboring stop
on a trip.

2) Sensor Placement: Sensors are placed at randomly se-
lected stops in the transit network. Each stop has a maximum
of one sensor and the total number of sensors to be placed in
the network is defined for each simulation. In addition, each
sensor is assigned a time value representing the frequency at
which it generates data. This frequency value is assigned to
each sensor based on a uniform random distribution.

3) Data Delivery Delay: For each data packet generated at
a sensor, the shortest duration it takes for the data packet to
get to an edge node is computed. First, a subgraph (consisting
of only stops in a single route) is extracted from the main
graph for each route. Next, we iterate through each route the
sensor is on and compute the shortest path length from the
sensor to any edge node on that route. Since the edge node
weight is the average travel time for vehicles between a node
pair, the computed shortest path length represents the estimated
time it takes for a vehicle to forward the data to an edge node
after departing from the sensor. The total estimated delay is
calculated by adding the shortest path length to the waiting
time (the lag between the data generation time and the time at
which the next vehicle associated with that route arrives at the
stop where the sensor is located).

After iterating through all routes for the sensor, the path
with the shortest total estimated delay is designated as the
path through which the data will travel. The path length of
the designated path is the estimated end-to-end delay for the
data packet generated. Algorithm 4 presents the pseudocode for
computing the delay for each data packet generated.

4) Storing results for analysis: For each simulation, im-
portant information such as generation time, delivery time,
delivery path, vehicle wait time, and vehicle travel time for
each data packet generated during simulation is recorded and
stored in JavaScript Object Notation (JSON) file. This helps
with carrying out post-simulation analysis after the simulation
has ended without having to re-run simulations.

1The code for the simulator is available on GitHub - https://github.com/
netreconlab/low cost smart city optimization
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(a) (b)

Figure 2. (a) Map of CHT bus-stop locations in Chapel Hill, (b) Map of TARC bus-stop locations in Louisville.

Algorithm 4 Pseudocode for Computing data delivery delay
Input — routes, R; sensor, E; time, t
Output — delay, D

1: procedure COMPUTEDELAY(R,E, t)
2: D ←∞
3: for r ∈ R do
4: Gr ← GETROUTESUBGRAPH(r)
5: for g ∈ r.gateways do
6: length← DIJKSTRASHORTESTPATH(Gr, E, g)
7: if length then
8: wait ← TIMETILLNEXTARRIVAL(E,R, t)
9: if wait then

10: D ← min(D, length+ wait)

11: return D

VI. NUMERICAL EVALUATION

A. Simulation Setup

In order to evaluate the performance of our algorithm, we
make use of the GTFS data of two bus transit agencies; Chapel
Hill Transit (CHT) in Chapel Hill, North Carolina, and Transit
Authority of River City (TARC) in Louisville, Kentucky [36].
Chapel Hill is a relatively small town, measuring 55 km sq
(21.3 sq miles) and an estimated population of about 60,988.
Louisville, on the other hand, is a much larger city with a
population of 620,118 and land area of 171.70 km sq (66.29
sq miles) [37]. The difference in city size also translates to the
differences in public transit networks present in both cities as
highlighted in Table I and Figure 2.

B. Maximizing Coverage

Figures 3a and 3d along with Table II give insight into
the performance of the MSC Algorithm described in IV-A

Table I
BUS NETWORK CHARACTERISTICS CHT AND TARC

Statatistics CHT TARC
Routes 26 46
Stops 571 4391
Total trips 1252 1917
Betweenness centrality avg. 0.04896 0.00829
In-degree centrality avg. 0.00210 0.00025

when compared two traditional graph centrality measures -
betweenness centrality (BC), and in-degree centrality (IC). For
the centrality measures, we greedily picked each gateway in
order of decreasing centrality, until all routes were covered.
Figures 3a and 3d show the rate of increase in route coverage
compared to the number of gateways selected. We see that MSC
outperforms BC and IC significantly for both CHT and TARC.
For CHT, MSC requires just 4 gateways to cover all routes in
the network, compared to 18 and 25 gateways in IC and BC,
respectively. For a larger network like TARC, MSC requires 13
gateways to cover all routes in the network, compared to 257
and 459 gateways in IC and BC, respectively.

Table II also highlights the delivery ratio for each algorithm.
Since the three algorithms (MSC, BC, and IC) cover all routes,
the delivery ratio is essentially the same. Delivery ratio is less
than 100% because delivery also depends on a bus arriving at
a sensor within the simulation time window. This means that
for some data packets generated, especially in the later stages
of the simulation, there were no buses moving on that route
causing the data packets to remain undelivered.

C. Minimizing Latency

We evaluate the effectiveness of the CELF-MDD algorithm
(described in Section IV-B2) at minimizing the overall message
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Figure 3. (a) MSC performance for CHT, (b) Graph showing the number of lookups for Greedy-MDD and CELF-MDD, (c) Average network latency for CHT
(d) MSC performance for TARC. (e) Graph showing the number of running time for Greedy-MDD and CELF-MDD (f) Average network latency for TARC.

Table II
RESULTS OF MSC, BC AND IC

CHT TARC

Algorithms Cost Delivery
ratio (%) Cost Delivery

ratio (%)
MSC 4 86.0512 13 87.0903
BC 25 84.4760 459 87.8831
IC 18 85.9515 237 88.4032

delay in the network model. We first compare the difference in
run-time efficiency between Greedy-MDD and CELF-MDD.
Figures 3b and 3e show the average number of lookups and
running-times for a gateway budget of up to 15 when working
with the CHT network. The number of lookups for each budget
refers to the number of times the influence function needs
to be computed before a gateway was selected at that stage.
Greedy-MDD grows linearly because for each iteration, the
influence gain for all gateways that have not been selected
has to be computed. However for CELF-MDD, the number
of lookup grows much slower due to it leveraging results from
past computation as discussed in Section IV-B2.

The performance of CELF-MDD was compared to between-
ness centrality (BC) and in-degree centrality (IC) in terms
of network latency minimization. For each algorithm, the top
k stops generated were selected as edge nodes, where k is
the budget. The centrality metrics were computed on graph
weighted with latency. Simulations were run with the selected
edge node set using the simulation parameters outlined in
Table III. Consistent with the influence function, the upper

bound value specified in Table III is assigned as the penalty
value (delay) for undelivered data. Figure 3c and 3f show
the average network latency of various budgets using each
algorithm.

For CHT, we observe that CELF-MDD consistently outper-
forms both BC and IC by ≈ 20 minutes or higher. In addition,
there is very little decrease in delay after first 5 edge nodes have
been selected when using CELF-MDD. For TARC, we observe
that CELF-MDD consistently outperforms both BC and IC by
≈ 45 minutes or higher. There is also minimal decrease in
delay after the first 9 edge nodes have been selected when using
CELF-MDD. For CHT and TARC, the CELF-MDD algorithm
can effectively serve the whole network with 5 and 9 well
placed edge nodes, respectively.

Table III
SIMULATION AND SCENERIO PARAMETERS

Random generator seeds 0:1:100
Simulation start time 1:00:00
Simulation end time 24:00:00
Time penalty/maximum-latency (hours) 25
Number of sensors 30%× |stops|
Sensor data generation frequency (minutes) U(1, 120)
Number of sensor scenarios 5
Number of sensors for scenarios U(30, 40)

VII. CONCLUSION

This work addresses the problem of efficient edge node
placement in low-cost smart cities that opportunistically utilize
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public transit networks as data mules. We introduced sev-
eral optimization algorithms and compared them to traditional
network centrality measures. Experiments were carried out
using public transport networks in two cities in the United
States; Chapel-Hill and Louisville. The results show that our
algorithms outperform traditional centrality measures by reduc-
ing network latency and ensuring coverage at minimal cost,
indicating that our algorithms are effective in determining the
best locations to place edge nodes, minimize delivery delay and
minimize cost in low-cost smart cities that opportunistically
utilize public transit networks as data mules.
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