
A Smart Self-Organizing Node Deployment
Algorithm in Wireless Sensor Networks

Mahsa Sadeghi Ghahroudi, Alireza Shahrabi, and Tuleen Boutaleb
School of Computing, Engineering and Built Environment

Glasgow Caledonian University, Glasgow, UK
{Mahsa.Sadeghi, A.Shahrabi, T.Boutaleb}@gcu.ac.uk

Abstract—Node deployment is one of the fundamental issues
in Wireless Sensor Networks (WSNs) which has not only a
direct impact on the effectiveness of other operations, such as
routing and data fusion, but also on the appropriateness of the
provided coverage expected in many applications such as national
security, surveillance, military, health care, and environmental
monitoring. In mobile sensor networks, the resource-constrained
move-assisted sensor nodes are used in an area to maximise the
coverage within a reasonable time and energy cost. Recently, a
family of algorithms, inspired by the equilibrium of molecules,
have been proposed to address the coverage issue. However,
these solutions lead to high energy cost and latency due to two
major issues. First, almost all the nodes in the network try to
move to a new position at each stage. Even worse, the decision
made at each node on to which point to move at each stage is
purely based on obsolete information, i.e. the current locations
of moving neighbouring nodes. In this paper, we propose a
new distributed algorithm, called SSND, to efficiently provide
the maximum coverage for WSNs that use mobile nodes. SSND
avoids to collectively, and blindly, move sensor nodes at each step
but to apply an eligibility function to elect a few nodes to move
using the valid information to obtain the maximum effect. Our
extensive simulation study under various operational conditions
shows not only a higher percentage of area coverage by SSND
but with much lower power consumption and latency than those
of the other protocols recently reported in the literature.

Index Terms—distributed wireless sensor network, energy
efficiency, smart node deployment algorithms, Self-Organizing

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have recently gained
significant attraction in different areas of science due to their
widespread applications. Such applications range from health
surveillance to battlefield surveillance and environmental mon-
itoring [1], [2]. One of the problems in WNSs is the sensor
nodes deployment. Deployment of sensor nodes influences
the coverage, uniformity, and connectivity of the network. An
optimised sensor deployment algorithm provides a maximum
area coverage which is the goal of most applications [3].

The WSN algorithms for sensor nodes deployment are
categorised as centralised or distributed [4]. The centralised
method includes a node, i.e. sink, that controls the whole
sensor nodes’ locations whereas the distributed method does
not rely on a centralised node to decide on all the sensor
nodes’ locations. In the distributed method, a sensor can
communicate with its neighbouring nodes and determine its
location at every time step based on its local information.
The distributed method is fault tolerance, scalable, and cost-

efficient and, hence a more popular approach in wireless sensor
networks [5], [6].

The coverage problem in distributed sensor nodes deploy-
ment algorithms in WSNs has been widely studied [7]–[10].
Many WSNs, consist of fixed sensor nodes where mobile
sensors only cover the holes in the area [11]–[13]. However,
the full area coverage is also provided with the iterative
movements of identical mobile sensor nodes [14], [15]. In a
mobile sensor network, all sensor nodes move at every time
step, and this iterative action continues until the sensor reaches
its stable state [14], [15].

Inspired from the field of biology and chemistry, some
algorithms have been proposed to utilise the local information
for the collective movement of mobile sensor nodes, which
are categorised into two groups, animal aggregations and
equilibrium of molecules. Natural phenomena such as schools
of fish, flocks of birds or swarms of bees are some of the
examples of animal aggregations [16], [17]. The behaviour
of these phenomena likes, schools of fish is mathematically
presented [8], and used to improve the coverage in WSNs [9].

In the equilibrium of molecules, the optimal location of
sensors for the required coverage mapped to the location of
molecules where molecules have the lowest energy and are
in the equilibrium state [14], [18], [19]. Recently, a family
of algorithms, inspired by the equilibrium of molecules, have
been proposed to address the coverage issue [14], [18], [19].
Every sensor node uses the locations of its neighbouring nodes
to calculate the partial force in order to determine to move to
which point. However, these solutions lead to high energy cost
and latency due to two major issues. First, almost all the nodes
in the network try to move to a new position at each time step.
Even worse, the decision made at each node on to which point
to move at each stage is purely based on obsolete information,
i.e. the current locations of moving neighbouring nodes.

In this paper, we aim to develop a distributed deployment
algorithm, called Smart Self-organization Node Deployment
(SSND) for mobile sensor networks. Our main intention is
to achieve maximum coverage within an optimise energy
consumption and time cost. SSND addresses the collectively
and blindly movement of sensor nodes limitation by moving
one sensor in every neighbourhood by an eligibility function
which is inspired by the equilibrium of molecules while using
valid information from sensor nodes. The smart movement
of the sensors is the superiority of the SSND where reduces
the total sensor movements, latency and power consumption
significantly under various operational conditions.
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The rest of the paper is organised as follows. Section
II introduces the related work followed by the collective
movement limitations in Section III. The SSND algorithm is
introduced in Section IV that includes the motivations, node
movement criteria and SSND algorithm. The performance
evaluation section to describe the simulation specification and
results is under Section V while our conclusions are drawn in
Section VI.

II. RELATED WORK

In the sensor nodes deployment algorithms the communi-
cation of sensor nodes is an important concept. The com-
munication between neighbouring nodes in distributed sensor
networks has been studied from different perspectives [6],
[14], [15], [20]. In some algorithms, the procedure that sensors
communicate with each other is inspired by natural phe-
nomenon behaviours. For example, neighbourhood movement
theory which is seen in the animal aggregation movements,
like birds migration, is applied in sensor nodes deployment
problem in WSNs [16], [17]. In neighbourhood movement
theory every sensor moves based on its neighbour’s positions.
A sensor makes an average of its neighbours’ positions and
moves towards the calculated point. The distributed movement
of the sensors creates an uniform sensor placement with the
required coverage.

In another group of studies, the sensor movement is sim-
ulated from the equilibrium of molecules, which molecules
reach their balance and stable location after some time. In
the stable state, the molecules are in their lowest energy
point and almost equal distance from other molecules. The
dispersion of the molecules with equal distance from their
neighbours results in a uniform distribution of the molecules.
The uniform distribution has resulted from the equilibrium of
molecules that is used in Distributed Self-Spreading Algorithm
(DSSA), to cover an area with sensor nodes [14]. A sensor
node in every time step moves based on the partial force
that is applied from other sensor nodes as the result of the
equilibrium of molecules concept. Although in the DSSA the
required coverage is achieved, the adequate coverage depends
on the initial locations of sensor nodes and specific level of
coverage during the initial deployment while suffering from
the long transition from chaos to order state.

Another study introduced Self-Organizing node Deployment
Algorithm (SODA), that is an algorithm based on the equi-
librium of molecules concept [19]. In SODA, despite DSSA,
the weakness of initial dependent dependency, sensitivity to
the initial coverage and long transition from chaos to order
state are resolved. The effective parameters in the environment
adjust the irrespective partial force that results in non-uniform
deployment in many scenarios, and provide an adjusted partial
force in SODA. The partial force is adjusted by the number
of sensors in the neighbourhood and the expected density (µ)
parameters. The adjustment of partial force based on the local
network density improves the sensitivity to initial coverage
and as the result final coverage. The density-aware algorithm,
SODA that is based on the collective movement of sensor
nodes reduces the power consumption and improve the final
coverage in comparison to DSSA.

Despite the improvements that are achieved by SODA
concerning the area coverage, its energy cost is still high due to
collective movement of the nodes and also using the obsolete
information when calculating the next point to move at each
node. Besides, the chaos that happens by moving the nodes
collectively may cause many physical sensor collisions and
false movement in the area.

III. LIMITATIONS OF COLLECTIVE MOVEMENT
ALGORITHMS

In this section, the limitations of the two proposed sensor
deployment algorithms, DSSA [14] and SODA [19] are dis-
cussed. Both of the algorithms are inspired by the equilibrium
of molecules and are based on collective movement.

A. DSSA limitations

The major limitations of DSSA are dependency to the initial
deployment, sensitivity of the final coverage to the initial
coverage of sensors, the requirement of a non-single-point-
deployment and also the long time transition from chaos to
order state. The details of each limitation is further described
in the following sections.

1) Initial deployment dependency: In DSSA, the perfor-
mance of the network varies for the same number of sensor
nodes. Using the same number of sensors, this algorithm
generates different figure for the final coverage by varying the
initial locations of sensors. The unknown performance for a
specific number of sensors makes the DSSA an unpredictable
and uncertain algorithm.

2) Sensitivity to the initial coverage: In order to be able
to distribute sensors evenly in the area a minimum initial
coverage is required by DSSA. If the initial coverage is below
a certain percentage, a full coverage is not achievable. In
most of the cases, the initial coverage requirement after initial
random deployment of nodes, given that there are sufficient
number of nodes, is about 90%. Obviously, this requirement
is not possible in so many applications.

3) non-single-point-deployment: The partial force that in-
fluences the movement of the sensors to the new location,
S = {s1, s2, ..., sn}, where N = |S| is presented in Equation
1. The communication range and sensing range of the sensors
are CR and SR, respectively and µ represents the expected
density. The location of sensors is specified using a 2D vector
at time step k, pki = (xk

i , y
k
i ) and the distance between s

k
i and

s
k
j is P

k
ij =

q
(xk

i � xk
j )

2 + (yki � ykj )
2. The partial force at

step k for sensor i and its neighbouring sensor j is a repulsive
force calculated as:

f
k
ij =

|Dk
i |

µ2
(CR � |pki � p

k
j |)

p
k
j � p

k
i

|pkj � pki |
(1)

where, pki is the position of sensor i at time step k, and D
k
i =

{sm|8sm 2 S, Pim < CR, i 6= m} represents the local density
(i.e. the set of neighbours) of sensor i at step k. The new
location of the si is p

k+1
i = p

k
i +

X

sj2Dk
i

f
k
ij .
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Considering all the principles, for a si 2 S in a dense
area at time step k the local density has the greatest value,
D

i
k = {s1, s2, ..., sm}, that si /2 D

i
k. In addition, the

CR� |pki � p
k
j | section of the partial force in dense local area

where si 2 S and sj 2 D
k
i are very close to each other and

limski !skj
|pki � p

k
j | = 0 becomes limski !skj

CR � |pki � p
k
j | =

CR. Therefore, as the distance in between sensors reduces,
the partial force increases. The large partial force scatters all
the sensors towards the edges and corners of the area and
breaks sensor connectivity. Therefore, a single-point-initial-
deployment in DSSA that creates a dense area does not lead
to a full coverage of the area.

4) long transition from chaos to order state: As it is
mentioned in the above sections, the initial deployment of
sensors is one of the parameters that can significantly affect the
partial force. A non-accurate partial force results in many false
movements which causes chaos in the area. However, every
sensor node stops its movement at the specific time step, and
decreases the number of false movements. Therefore, the chaos
state diminishes when sensor nodes reach their stable state and
transit to order state. This happens very late in DSSA during
the last steps of the algorithm where almost the full coverage
has been achieved.

B. SODA limitations
Some of the limitations of DSSA is addressed in SODA. The

density-adjusted partial force in SODA makes it independent
to initial location of the sensor nodes. Also, the need to a
minimum initial coverage is lifted, and the long transition
from chaos to order state is significantly shortened. Addressing
those issues while still relying on the equilibrium of molecules
idea makes SODA a reasonable solution to achieve an opti-
mal coverage. However, for many applications, incurring the
long delay and high energy consumptions due to collective
movements of sensors are not sustainable.

1) Energy consumption: In SODA, every sensor moves in
every time step until it is stabled. In every time step, almost all
the sensors move and consume energy, where is not necessary
for all the sensor nodes to move. The collective movement of
sensors reduces the energy level and lifetime of all sensors.
The consumed energy can be saved by smartly moving only
a few nodes to obtain the maximum effect at every time step.

2) Decision-making using obsolete information: In the
SODA, sensor nodes exchange their locations information
prior to their movement in every time step. However, as the
location-calculation process happens for all the sensor nodes
in every time step at the same time and the sensors all move
afterwards, the used information are obsolete.

C. Motivation
Motivated by the shortcomings of the collective movement

deployment algorithms discussed in the previous section, the
SSND algorithm is proposed to overcome those issues. Our
proposed algorithm also uses the concept of the equilibrium
of molecules described by Coulomb’s law, for the applied
forces between sensor nodes. The Coulomb’s law states that
the electrostatic force in between charges with the same sign

is repulsive and is proportional to the charge’s distance. In
SSND, sensor nodes are considered with the same charge,
and the applied force to sensor si from sensor sj has a direct
relation with the distance between them, which is the same
as the partial force in DSSA [14]. The key factors of SSND
are the accurate movement of sensors in every step to avoid
false and collective movement and also the reduction of the
consumed energy. Despite collective movement algorithms, in
SSND only the node that has the highest eligibility value in
its neighbourhood moves to the new location. The eligibility
value is calculated in every time step based on the parameters
affecting the sensor nodes movement.

The affecting parameters in every movement, are described
in the next section.

D. Node movement criteria
To address the blind and collective movements of sensor

nodes, we set two criteria to identify an eligible sensor node
for movement in each neighbourhood. At each time step,
only one node moves to a new location and the other nodes
remain in their places. The new location of the moving
node is calculated based on the locations of other nodes in
the neighbourhood, which are not yet moved and, hence,
their information are still valid. The local force eligibility
and local density eligibility are the criteria applied in each
neighbourhood to control the movement of sensors at every
time step.

1) Local Force Eligibility: Let F
k
i represents the total

amount of force applied between si and its neighbouring nodes
(Equation 1), which can be calculated by:

F
k
i =

X

sj2Dk
i

f
k
ij (2)

Definition: N k
ilf represents the set of neighbouring sensors of

sensor i, si, whose their total force is lower than that of si:

N k
ilf = {sm|8sm 2 D

k
i , F

k
i � F

k
m} (3)

Definition: The j
th member of the D

k
i at time step k is shows

D
k
i�j . Therefore, sm 2 N k

ilf can also be shown as D
k
i�j .

Definition: For each sensor si, si 2 S, let’s Mk
i represents

the number of times that si is elected as an eligible sensor to
move up to time step k,( 0 Mk

i  k ).
Mk

i is a crucial influencing factor on the eligibility of a
sensor for movement. The higher the value of Mk

i the less
probability of being elected, i.e. to be eligible, for movement
in a neighbourhood.

Now, using these definitions we can define the local force
eligibility of sensor i, si, at time step k, F k

ielig :

F
k
ielig = N k

ilf �Mk
i (4)

It should be noted that the value of F k
ielig can be negative or

positive. A negative value may be obtained when, for instance,
si has the minimum force in its neighbourhood at one time
step while has already been elected, at least once, as an eligible
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node to move. The maximum value of F
k
ielig happens when

si has the maximum force in its neighbourhood and has not
been elected to move. Therefore,�k � F

k
ielig � |Dk

i |.
A node with a higher value of local force eligibility has a

higher chance to be elected as an eligible node to move at a
given time step.

2) Local Density Eligibility: When calculating the force
between si and sj , the value of D

k
i can directly influence

the value of f
k
ij . However, when prioritising the sensors to

move the value of the local density is less important and the
difference between µ and D

k
i should be bold.

The absolute value of the difference of µ and |Dk
i | shows the

distance that si has eliminate in order to achieve its perfect
density, µ. Therefore the parameter, local density eligibility,
D

k
ielig is introduced as one of the eligibility factors when

electing a sensor in sensor si neighbourhood to move at time
step k:

D
k
ielig = µ� |Dk

i | (5)

The value of local density eligibility in the best case is zero.
By increasing or decreasing the difference between µ and
|Dk

i |, the eligibility of the sensor increases linearly.

IV. SMART SELF-ORGANIZATION NODE DEPLOYMENT
(SSND)

A. Smart Self-organization Node Deployment (SSND)
The main goal of the Smart Self-organization Node Deploy-

ment (SSND) algorithm is to elect a node in each neighbour-
hood to move at each time step. Therefore, instead of moving
almost all nodes at each step, only a low percentage of nodes
are elected across the whole area to move. The description of
SSND algorithm is shown in Algorithm 1.

The sensors in the specified area start their process by
executing the initialize procedure in the beginning. After
that, every sensor node si 2 S runs SSND procedure every
time step until the sensor stops its movement. The SSND
procedure calls the Eligibility(si) function that returns the
Elig

k
i , D

k
i , and F

k
i values. At each time step k and after

one-hop exchanging of information, including their eligibility,
Elig

k
Dk

i
, the eligible node, with the highest eligibility value can

find out itself as the only node in the neighbourhood which
has to calculate a new location to move. By moving one node
from each neighbourhood at each time step and repeating this
over the next time steps, all local densities tend to converge
toward the expected density, µ. The sensor stops the movement
and marks itself as a stable sensor when one of these two
conditions are satisfied [14]:
• Oscillation Check: A sensor ends the process of partial

forces calculation when it reaches its Olim. The back and
forth, movement of a sensor in a defined distance is called
oscillation. Ocount represented the number of the time that
the sensor moves back and forth within a specific distance
is called, threshold1. A sensor stops its movement when it
reaches the oscillation limits Olim. A sensor is finally stabled
when Ocount ⌘ Olim.
• Stability Check: Stability check recognises the sensors

that have reached their stable state. A sensor that moves within
threshold2 distance for a certain number of times becomes

Algorithm 1 SSND Algorithm
1: procedure INITIALIZE
2: µ = N ⇤ ⇡ ⇤ CR

2
/A

3: Mk
i , Scount, Ocount = 0

4: CR = 4
5: SR = 2
6: threshold = 0.1522
7: p

0
i  (x0

i , y
0
i )

8: end procedure

9: procedure SSND

10: (Elig
k
i , D

k
i , F

k
i ) Eligibility(si)

11: Eligset
k
i  ;

12: for j=1 to |Di
k| do

13: (Elig
k
j , D

k
j ) Eligibility(Dk

i�j)
14: add�member(Eligset

k
i , Elig

k
j )

15: end for

16: if Elig
k
i > Max(Eligset

k
i ) then

17: p
k+1
i  p

k
i + F

k
i

18: Increase Mk
i

19: end if

20: if Oscillation then
21: Increase Ocount

22: if Ocount > Olimit then

23: p
k+1
i  p

k
i + p

k�1
i

2
24: si is stable
25: end if
26: end if

27: if Stability then
28: Increase Scount

29: if Scount > Slimit then
30: p

k+1
i  p

k
i ;

31: si is stable
32: end if
33: end if
34: end procedure

stable. This number is defined as Stability Limit, Slim, and a
sensor is stable if Scount ⌘ Slim.

The Eligibility(si) function in Algorithm 2 finds the si’s
sensor nodes neighbour, D

k
i , and after calculating the total

force applied to si, F
k
i , builds the N

k
ilf

set. This function
returns the total force, F k

i , local density, Dk
i , and the eligibility

factor, Elig
k
i values. Elig

k
i is the eligibility value of si at time

step k that includes the two node movement criteria, local
force eligibility ,F k

ielig , and local density eligibility D
k
ielig .

However, the local force eligibility has more influence on
Elig

k
i . The priority factor of the F

k
ielig in the equation Elig

k
i

is specified by the cofactor ↵. Therefore, the Elig
k
i for si at
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Fig. 1: The distribution of sensors (a) The initial sensor distribution. (b) The final location of sensors after DSSA simulation.
(c) The final location of sensors after SSND algorithm.

time step k is:

Elig
k
i =

↵⇥ F
k
ielig � |Dk

ielig |
N

(6)

Algorithm 2 Eligibility Function
1: function ELIGIBILITY(si)

2: N k
ilf = ;

3: D
i
k  FindNeighbours(si)

4: for j=1:|Di
k| do

5: f
k
ij =

|Dk
i |

µ2
(CR � |pki � p

k
j |)

p
k
j � p

k
i

|pkj � pki |
6: end for

7: F
k
i =

X

sj2Dk
i

f
k
ij

8: for j=1 to |Di
k| do

9: if F k
i � F

k
j then

10: add�member(N k
ilf , D

k
i�j)

11: end if
12: end for

13: F
k
ielig = N k

ilf �Mk
i

14: D
k
ielig = µ�D

k
i

15: Elig
k
i =

↵⇥ F
k
ielig � |Dk

ielig |
N

16: return (Elig
k
i , D

k
i , F

k
i )

17: end function

V. PERFORMANCE EVALUATION

A. Simulation Setup
The DSSA, SODA and SSND algorithms are simulated in a

10 x 10 region using Matlab. The initial coverage of the area
is not limited to any specific deployment, and for every run, a
random deployment of sensors with different initial coverage
is considered. The SR and CR are assumed 2. The threshold

for oscillation and stability is considered to be 0.1522, the
same as those used in DSSA performance study [14]. The the
new introduced parameter, Priority factor ↵ is considered 2 in
the simulation.

B. Results
In Figure 1, an initial deployment of 40 sensor nodes is

shown under section (a). The final sensor deployments of the
DSSA and SSND algorithm for this initial deployment are
presented in Figure 1 (b) and (c), respectively. The distribution
of the sensors in the Figure 1 (c), is more uniform in compare
to Figure 1 (b). The uniform deployment of SSND algorithm
has achieved by 12 sensor movements, while the DSSA
deployment needed 54 sensor movements. Therefore, SSND
algorithm resulted in more coverage and efficient energy usage
even with sufficient number of sensor nodes for both DSSA
and SSND algorithm.

A comprehensive study of SSND algorithm for average
results of 60 runs is reported in the following area coverage,
energy consumption, and total number of moved sensor sec-
tions.

1) Area Coverage: The simulated results of final area
coverage of DSSA, SODA, and SSND algorithm are shown in
Figure 2. The final coverage of an area for all the algorithms
is based on the same initial deployment. As expected, the
percentage of coverage increases by increasing the network
size (i.e. the number of sensors). However, the incremental
behaviour of the final coverage descends as the network size
increases. In Figure 2 a leap is seen from 10 to 30 sensors in
DSSA, SODA and SSND algorithm.

In the SSND algorithm, an angle of the coverage function’s
slope (the leap from 10 to 30 sensors) is ⇡ ⇡

4
while in SODA
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Fig. 2: The area coverage in a 10 x 10 region

Fig. 3: Total energy consumption in a 10 x 10 region

and DSSA is ⇡ ⇡

7
and

⇡

18
, respectively. The slope of this leap

in SSND algorithm is almost as twice as SODA that shows
a faster improvement in coverage percentage. The SSND
algorithm overtakes the 10% improvement of the SODA, in
compare to DSSA, with 25% improvement in total coverage
percentage.

2) Energy consumption: Figure 3 shows the total energy
consumption of the sensors. The energy consumption is cal-
culated based on the total distance that sensors take from their
origins location to their final location. Considering every unit
of the distance takes 1j energy, the total energy consumption
is equal to the total distance of sensors.

Figure 3, shows that the total energy consumption increases
linearly by the network size (i.e. the number of sensors).
However, the increase rate of the total energy consumption for
the SSND algorithm is much lower in comparison with DSSA
and SODA. The improvement of the SSND algorithm is more
than 75% in compare to DSSA while SODA has achieved 25%
less energy consumption.

The linear behaviour of Figure 3 shows the possibility of the
same energy consumption for a sensor in different number of
sensors scenario. In Figure 4 the mean distance of sensors for

Fig. 4: Mean distance of sensor movement in a 10 x 10 region

DSSA, SODA and SSND algorithms are shown in different
number of sensors scenario to investigate the energy usage of
a sensor in different number of sensors in the area. In DSSA,
and SODA the mean distance of a sensor node increases as the
number of sensors in the area increases. However, in SSND
algorithm, the mean distance for a sensor increases to the
point (saturated point) that the environment is saturated by
the sufficient number of sensors. After the saturated point,
the increase of the number of sensors does not affect the
coverage as sufficient number of sensors can cover the area
with their smart movements. Therefore, the mean distance
decreases as more number of sensors can cover an area more
quickly and with less distance to be taken by every sensor
nodes in compare to collective movement algorithms.

3) Total number of moved sensors: The total energy con-
sumption does not specify the number of moved sensors that
move in the whole process. Therefore, the consumed energy
can be used by a sensor that takes a long distance or equally
distributed to all the sensors. The number of moved sensors
shows the distribution of energy usage in the network which
is vital to monitor the stability of the network. In Figure
5, as increasing the network size, the number of moved
sensors increase in DSSA and SODA. Accordingly, in DSSA
and SODA, all the sensors move, even when the area is
saturated, and there is no need for all the sensors to move.
Whereas, in the SSND algorithm the number of moved sensors
remain the same by increasing the number of sensors. The
intelligent behaviour of SSND shows that a sensor moves only
if its movement improves the performance of the network,
coverage, and the chances for a sensor to move and improve
the coverage decrease as the number of sensors in the area
increase. Therefore, only needed number of sensors move to
cover the area.

VI. CONCLUSION

Area coverage is one of the most fundamental issues in
WSNs. The coverage is influenced by the sensor technical
specification, the network topology, and most importantly
by the sensor deployment algorithm. An optimal coverage
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Fig. 5: The number of moved sensors in a 10 x 10 region

provided by a deployment algorithm in any WSN can lead
to high overall performance of the network.

Inspired by the equilibrium of molecules, a family of
deployment algorithms, such as DSSA and SODA, have been
recently proposed to maximise the area coverage. However,
the achieved coverage is very costly in terms of the energy
consumption and incurred latency. This is mainly due to the
movement of almost all nodes at each step and also because
of using obsolete information to calculate the next point of
movement by each node.

In this paper, we proposed a Smart Self-organization Node
Deployment (SSND) for mobile sensor networks to overcomes
the collective movement algorithms limitations. The SSND
algorithm provides full coverage independence of the initial
location of sensors, and the initial coverage with significant
decrease in energy consumption. The improved performance
is achieved by avoiding the collective movement of sensors
while smart sensors use reliable information to decide about
their next locations.

In our performance study, the DSSA, SODA and SSND
algorithms have been simulated using Matlab, and their final
percentage of coverage, the total energy consumption, and the
number of moved sensors have been compared against each
other. The obtained simulation results confirm the advantages
of SSND to achieve a more uniform distribution of nodes
after applying the algorithm and hence a better coverage. The
SSND solution has improved the final percentage of coverage
by 25% and the energy consumed is reduced by more than
75%. This is mainly attributed to the fact that one node at
each neighbourhood is enough to move while using reliable
information at each time step.
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