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Abstract—Real-time localization is the underlying requirement
for providing context-aware services in the Internet of Things
(IoT). Although several methods have been proposed to pro-
vide indoor localization, most of them implement the running
algorithms locally in the mobile device to be located. However,
the limited computational resources of mobile devices make it
difficult to run complex algorithms. As an alternative, Multi-
Access Edge Computing (MEC) as a promising paradigm extends
the traditional cloud computing capabilities towards the edge
of the network. This enables accurate location-aware services.
In this work, we present an indoor tracking system based on
the MEC paradigm for ultra wide band devices. Our tracking
algorithms fuse machine learning-based zone prediction, Ultra
Wide Band (UWB) radio ranging, inertial measurement units,
and floor plan information into an enhanced particle filter. The
localization process is hosted in an Edge server, which performs
the resource-demanding calculation that is offloaded from the
client devices. Moreover, the client devices are also equipped
with certain processing power to handle sensor data processing.
Our system includes also a Cloud layer, which enables data
storage and data visualization for multiple clients. We evaluate
our system in two complex environments. Experiment results
show that our tracking system can achieve the average tracking
error of 0.49 meters and 90% accuracy of 0.6 meters in real-time.

Index Terms—Internet of Things, Indoor localization, MEC
computing, Cloud computing, particle filter.

I. INTRODUCTION

The rising interest around IoT and context-aware applica-
tions has introduced a variety of technologies to deal with all
the produced data in the field of the IoT and context-aware
applications [21]. Context-aware applications must be able to
timely react to the current physical context (i.e., environment)
of mobile users. Thus, real-time localization becomes the un-
derlying requirement of these applications. However, real-time
indoor localization requires significant computation, which is
typically running on the mobile devices with limited resources.
Offloading the heavy computation to a third party server could
resolve the problem, but the data transmission between the
mobile devices and centralized server could lead to increased
latency and unreliable performance, which is not tolerable for
real-time applications.

Multi-Access Edge Computing (MEC) technology [17] has
been proposed as an alternative solution to bring cloud com-
puting capabilities to the network edge to meet application re-
quirements of short latency and high resource-demanding. By
deploying the indoor tracking system on the MEC paradigm,
heavy computation tasks can be offloaded from client devices
to near edge servers, while the short device-server distance
could reduce the data transmission time to guarantee real-
time localization performance. Therefore, by eliminating the
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distance and the time it takes to send data to one distributed
server, performance of the indoor localization system can be
improved.
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Figure 1: MEC-based Indoor Tracking System Architecture.

Due to the growing ubiquitousness of the IoT and the
importance of context aware services, indoor localization has
become an important research topic. Several indoor local-
ization methods have been proposed. Radio Frequency (RF)
technology is one of the promising solutions to provide real-
time indoor localization. Compared to other RF technologies,
ultra wide band (UWB) has received increased interests due
to its capability to reduce the localization errors to lower
than one meter. UWB is robust to multi-path effects because
UWRB radios are able to differentiate pulses reflected from dif-
ferent objects. Thus, UWB-based localization achieves better
accuracy and reliability than other wireless technologies such
as Wi-Fi or Bluetooth, which normally achieves localization
accuracy of several meters [20].

Fingerprinting-based indoor localization systems usually
consist of two phases: training phase (off-line) and localization
phase (on-line). In the off-line phase, the fingerprint database
is built by collecting various types of radio signals in the
target indoor environments. The earth magnetic field (MF) in
indoor environments presents distortions over space due to
the presence of ferromagnetic materials. These MF distortion
patterns can also be used to identify indoor locations [1].
MF and RF observations can be used as fingerprints to
detect unique locations in indoor environments. In the on-
line phase, the observed fingerprint at an unknown location
is compared with the stored fingerprints in the fingerprint
database to determine the closest match. Any single learning
model can be applied. However, ensemble learning models
usually allow better predictive performance compared to single
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models [13]. Fingerprinting-based methods that build the clas-
sification model exclusively based on previously observed data
(i.e., fingerprint database) are called discriminative learning
methods.

Range-based approaches need to convert the measured RF
parameters into range values. This process is called ranging.
After ranging, multilateration methods can be adopted to
derive the absolute position of the target. However, some RF
technologies such as Wi-Fi are highly affected by multi-path
effects especially in Non-Line of Sight (NLOS) conditions.
Thus, in such technologies, range-based localization methods
present high localization errors.

Recently, UWB technology has become popular for accurate
indoor localization. Its main feature is the use of a large
frequency band (500 MHz). UWB radios are able to precisely
differentiate between pulses that are reflected from different
objects. Thus, UWB is highly robust to multi-path effects.
Therefore, using UWB technology assures high performance
in dense multi-path environments.

In this work, we present a MEC-based indoor tracking
system (InTrack) for UWB devices that is implemented based
on the paradigm of MEC. MEC extends traditional mobile
cloud computing capabilities towards the edge of the network
and enables accurate location-aware services. Fig. 1 shows
the architecture of the system. We provide high indoor track-
ing performance by fusing machine learning zone prediction
information, UWB radio-based ranging, inertial measurement
units (IMUs), and floor plan information in an enhanced
particle filter. We define a zone as any subarea in the area
of interest. The zone detection method is designed with an
ensemble learning algorithm by combining Hidden Markov
Models (HMM) and discriminative learning methods. Further,
we integrate zone prediction results with an UWB radio-based
ranging and floor plan information in a particle filter approach.

The rest of the paper is organized as follows. Section II
presents related work. The architecture of our proposed track-
ing system is reviewed in Section III. Section IV presents the
implementation of the MEC-based tracking system. Section
V discusses the performance evaluation results. Section VI
concludes the paper.

II. RELATED WORK

Multi-Access Edge Computing (MEC) has been introduced
to bring the cloud services and resources closer to end users
by leveraging the available resources in the network edge [17].
MEC aims to enable resource-limited mobile devices to exe-
cute the real-time computation-intensive applications directly
at the network edge [2]. Compared to cloud computing, the
distinguishing features of MEC are its closeness to end-users,
location awareness, mobility support, and low latency.

Indoor localization has attracted significant attention in re-
cent years. Many localization solutions have been investigated,
mostly using RF technology or IMU movement information.
Due to the the fast development of IMUs in modern commod-
ity mobile devices, Pedestrian Dead Reckoning (PDR) meth-
ods have attracted research interest. IMUs can be leveraged to
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detect pedestrian movement (i.e., heading orientation and step
recognition, and stride displacement) [19]. PDR systems esti-
mate the new location based on the previous location. Authors
of [11] compute the heading orientation based on gyroscope
measurements, whereas the displacement is estimated from
accelerometer readings. Since PDR systems measure position
changes rather than the absolute position, PDR positioning
results in an accumulation of sensor errors over time. Thus,
some additional information must be considered to deal with
this cumulative errors.

RF technologies are often used to provide indoor localiza-
tion. In [28], the authors proposed to use Wi-Fi received signal
strength indicator (RSSI), whereas in [15] time information
related to radio propagation is applied. Radio-based indoor
localization can be classified as range-based and range-free
methods. Range is defined as the propagation distance from the
target to Anchor Nodes (AN). The first stage in range-based
localization methods is to calculate the propagation distances
(i.e., ranges). Then, different positioning algorithms can be
used to estimate the absolute locations of the targets [14]. In
some RF technologies such as Wi-Fi, range-based methods
do not work well in indoor environments because of the
multi-path effects produced by the presence of obstacles [9].
Therefore, range-free methods such as fingerprinting are often
used. However, it is very time consuming to build up a radio
map, which is required to locate the targets in fingerprinting.
In [10], the localization systems achieve around 1 meter
accuracy by relying on radio frequency identification (RFID)
technology. However, many RFID ANs must be deployed to
provide such localization performance. UWB technology is
used in [8] to overcome limitations of other technologies and
achieve high localization accuracy. Authors claim to achieve
localization accuracy lower than 0.2 meters. However, the
localization approaches were tested only in small areas of
interest.

Hidden Markov Models can be considered to support in-
door localization. In [26] authors employed HMM and radio
propagation models to reduce calibration efforts. The system
utilizes a discrete probability distribution to derive probable
positions. Then, the position is estimated from the most prob-
able estimated positions. In [16], authors propose to fuse IMU
measurements with wireless signal readings. Then, the new
candidate position is derived by determining the pedestrian
motion pattern and the most probable wireless signal reading
at that position. Although authors report good accuracy, the
method to determine the transition probabilities is not ex-
plained. Moreover, the applicability of the solution is restricted
to the fidelity of the pedestrian motion pattern recognition
method. In [22], authors include movement measurements
(e.g., heading orientation) in the proposed HMM. Thus, the
reported accuracy is improved compared to [26]. In [27],
authors propose to fuse a RSSI pattern recognition method
and HMM to provide indoor localization. Then, the transition
probabilities of the HMM are derived from the pedestrian
trajectories and the pattern recognition method. The pattern
recognition method relies on a beforehand built radio map
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database. Thus, some reference locations are defined through
the indoor environment in an off-line phase to collect reference
samples. Such collection process could take several hours or
days for small or big areas, which is very labor expensive and
time consuming.

III. SYSTEM ARCHITECTURE

This section presents the design details of the proposed
MEC-based indoor localization system. Figure 1 summarizes
the system architecture, which includes three layers: Cloud
layer, Edge layer, and Client layer. Details of each layer are
described below.

A. Client Layer

The client layer includes mobile devices (MD) that are to
be located. The mobile devices constantly collect data from
on-board sensors, such as inertial measurement units, Wi-Fi
or UWB radio interfaces, etc. Instead of sending raw data to
the Edge layer directly, mobile devices process them locally
to derive meaningful insights (i.e., movement directions and
speeds, Wi-Fi and UWB fingereprints, and ranges) through
three modules of PDR-velocity, fingerprint acquisition, and
UWB-ranging. The derived information are then sent to the
Edge layer via the data transmission module for further
processing. This architecture leaves all the device-dependent
data processing, such as Wi-Fi or UWB signal processing,
to happen at the Client layer. A significant advantage of this
design is that the Edge layer is completely independent of the
client device specifications, which makes the system capable
to support different device types. For instance, a smartphone or
Rasperry Pi can be easily integrated into the system, without
any modifications at Edge and Cloud layers, as far as relevant
information can be generated from the raw data. Figure 2
shows the client layer architecture, whose core subcomponents
are described below.

1) PDR-velocity: In order to estimate the velocity of mobile
devices, we use the accelerometer gyroscope, and the magne-
tometer sensors, from which the heading direction and the
speed can be computed. To estimate the heading direction, we
rely on a digital compass developed from the magnetometer,
gyroscope, and accelerometer sensors embedded in the MD.
Digital compass measures the clockwise angle between the
magnetic north and the Y axis of the smartphone at time {.
This value is called Azimuth (a;). Therefore, the heading ori-
entation (6;) in the local coordinate system can be determined
as follows:

0y = Xopf — v, (D

where X, r is the clockwise angle between the X axis of our
local coordinate system and the magnetic north.

To estimate the speed of the MD, we use the accelerometer
sensor. Thus, the speed is computed by using Equation 2

ty
5:/ a-dt, 2)
t

0
Since accelerometer data contains huge non-zero mean noise,
accelerometer data is smoothed by using low pass filters.
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Figure 2: Client layer architecture

2) Fingerprint acquisition: Through the embedded Wi-Fi
and UWB interface, the mobile device collects Wi-Fi and
UWB RSSI values from surrounding Wi-Fi and UWB anchor
nodes. Afterwards, this data is passed to the Edge layer as
inputs for the zone recognition process.

3) UWB-ranging: The ranging process is conducted by the
Two Way Ranging method (TWR). TWR determines the time
of flight of the UWB radio frequency signal and then computes
the distance between the nodes by multiplying the time by the
speed of light [23].

4) Data transmission: When the PDR-velocity, fingerprint
acquisition, and ranging processes are completed, the output
data from these processes must be transmitted to the Edge
layer for further processing. The transmission is conducted by
using UWB technology.

B. Edge Layer

The Edge layer is responsible for running the computation-
heavy localization algorithm to calculate the indoor locations
in real-time. It includes three sub-modules and two interfaces.
The zone prediction module is to estimate the indoor zone
information using the received fingerprints. The space repre-
sentation module is to constrain the location estimation ranges.
The data fusion module is to apply advanced particle filter to
fuse multiple inputs to estimate locations. The required infor-
mation to feed the zone prediction and data fusion modules
are periodically received from the Client layer via the UWB
interface. Calculated indoor locations are sent to the Cloud
layer via a web-socket. Figure 3 summarizes the processes of
the Edge layer. Details of each components are given below.

1) Zone Prediction: We propose an ensemble learning
method for zone prediction. The key idea of this method is
to combine conceptually different individual machine learning
algorithms in a HMM. Thus, the zone prediction method is
also based on the concept of Markov localization [7], which
can be described by estimating the state of the system with
controllable state transitions. In HMM systems, the state is
not directly visible. However some observations, dependent on
the state, are visible. The sequence of observations generated
by a HMM gives information about the sequence of states.
In our zone prediction method, we define as observations
the zone detection outputs given by the individual machine
learning algorithms. Thus, the elements of the HMM of the
zone prediction method are as follows:
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o The set of n states Z = {z1, 22, ..., 2 }- Thus, the discrete
random variable s; € Z represents the hidden state at
time .

o The transition probability matrix A,

A= a1,1,01,2y -+, 0n 1.+, Ann

where a;; is the probability of moving from zone z; to
zone z;. Therefore, A can be written as follows:

A={ajj = P(st41 =2 | 8t = 2i) }, (3)

where A is a n X n matrix, a;; represents the transition
likelihood between zone z; to zone z;.
o The set of observations O,

(01)02"'077’7,)7“}’ (4)

where o; is the zone detection output of the ¢-th individual
machine learning method. Thus, ¢; € O represents an
observation at time ¢.

e The emission probability matrix B,

bi,r, .

0= {(01702, -~-Om)17

B:b1,17b1,27"'7 '7bn,T

where b;; is the likelihood of an observation
(01,02...0m,) ; being generated at zone z;. BB contains the
likelihoods of producing a particular set of observations
g;j at zone z;. Thus, B can be written as follows:

B = {bij = P(Qj ‘ zi)},qu €eONz €7, ®))

P(g; | z;) can be computed assuming conditional inde-
pendence among the prediction outcomes o; given z;. Our
assumption is that the probability of obtaining the outcome
o; becomes independent if the value of z; is known. The
individual machine learning methods that constituent the en-
semble zone prediction method are conceptually different
and independent of each other. Therefore, it is reasonable
to assume that their outcomes are conditionally independent
given z;. Thus, b;; can be written as follows:

H (05 | 2i)ns (6)

where P(o; | z), is the probability of predicting o; at
zone z; by the n-th individual discriminative learning method.
Therefore, P(o; | z;), represents the prediction performance
of individual predictors given the knowledge of the ground-
truth class label (i.e., zone). Thus, P(o; | 2;), value can
be obtained from the confusion matrix of the n-th individual
machine learning algorithm part of the zone prediction method.
Finally, the HMM of the zone detection method can be solved
by applying the Viterbi algorithm [6].

2) Space Representation: To minimize the algorithmic
complexity, our system defines a discrete structure to replace
the conventional floor map. All the system states (i.e., indoor
positions) are represented by a discrete set of locations by
converting from a continuous state space to a discrete state
space. Therefore, we consider the physical environment as a
spatial data structure that defines space as an array of cells
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Figure 3: Edge layer architecture

arranged in rows and columns. Thus, each cell (i.e., location)
belongs to a zone. We define two types of zones, enabled zones
and not enabled zones. In the enabled zones the target object
is allowed to move (i.e., corridors, offices, etc.). In the not
enabled zones the target object is not allowed to move (i.e.,
walls, furniture, etc.). Therefore, the Space Representation
component computes the map likelihood (i.e., allowed areas
to spread particles), and the transition model (i.e., connections
among zones).

3) Data Fusion: We consider indoor localization as a
filtering problem, in which the position of the target can
be computed from several noisy environmental observations.
Thus, this work focuses on a particle filter approach to provide
indoor localization.

In a particle filter approach, a belief of the target position is
computed based on the observations, (i.e., posterior probability
distribution). The posterior probability can be represented as a
set of weighted particles. Particle filters estimate the posterior
probability distribution of the system state based on some
measurements ¢; at time t [3]. At time ¢, the system state
vector X; is defined as:

Xt - [xtvytvetvgtvth (7)

where (x:,y;) are the Cartesian coordinates of the target
object, 6; is the heading orientation, ¢; is the displacement
length and z; is the zone in which the target is located.

Since locations belong to a zone, the zone z; can be
computed from the current Cartesian coordinates (xy,y:).
Therefore, function z; = f(x¢,y:) derives the current zone
z¢. Thus, z; can be written as:

2z = f(wi—1 + ;- cos(0r), yi—1 + £ - sin(6;)) (8)

Therefore, the particle filter prediction function can be

written as:
xp—1 + Ly - cos(6y)

Ye—1 + by - sin(6y)
Xy = 0y )
4y
2o = f(ze,yt)
Both #; and /¢; values are calculated by PDR methods,
whereas z; is a discrete random variable that identifies the
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zone where the particle is located at time ¢. State vector X7
of each particle is updated from the particles at the previous
time interval Xf_l based on Equation (9). Thus, the new set
P, is calculated from P;_;. Particles are allowed to move only
through non-restricted areas, (e.g., movement through walls is
not allowed).

After updating particles using Equation (9), the associated
weight w! of the propagated particles must be corrected. The
associated weight update is based on the likelihood of the ob-
servations conditioned on each particle state P(q; | X}) at time
t. The observation vector is defined by the estimated ranges
to different ANs and the estimated zone information. Thus,
the observation vector at time ¢ is defined as ¢; = [cft,ét],
where d; contains ranges to different ANs and §; contains the
observations related to the predicted zone.

Since the ranging method (i.e., the method to estimate
ranges) and the zone prediction method are different, we
assume that range and zone prediction information are inde-
pendent of each other. Therefore, the probability P(q; | X})
can be determined as follows:

Plg | Xi) = P(de | Xi) - P(se | X7)
Hereafter, we refer to P(d; | X}) as the ranging likelihood,
and P(s; | X}) as the zone likelihood. The associated weight
w; of each particle is given by the ranging and zone prediction
information. The particle at the absolute position (z;,;) with
low probability to observe d? will be assigned a small ranging
likelihood. Particles positioned at zones with low probability
of observing s; will be assigned small zone likelihood values.

Since ANs are programmed to operate independently, we
can assume that the ranges to different ANs are independent
from each other. Therefore, the ranging likelihood can be
defined as follows:

(10)

M

P(d; | X}) H

dji | X}), (1)

where czj,t is the measured distance to AN j at time ¢.
Hereafter, P(d;; | X;) will be referred as the individual
ranging likelihood, which can be further written as:

/@ w2 (i -y )P

exp , (12)

1
o;V2m

where (x;,y;) are the coordinates of the jth ranging AN.

Zone likelihood refers to the probability of observing s; in
the current particle state X. Therefore, P(s; | X;) can be
written as:

P(dAj,t | XZ) =

P(X{]5:) P(3)

13)

where §; _is the zone related set of observations_ at time t. Since
the P(X}) and P(8;) are constant, P(s; | X]) depends only
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on P(X} | 3;). Therefore, P(s; | X}) o< P(X] | 8;). Applying
Equation 8, P(X} | 3;) can be written as follows:
P(3 | Zzle) P(2)
P(z)

Since O is the set of observations related to the zone prediction
process (see Equation 4), we can define s, as an element of O
(8¢ € O). Therefore, P(2! | ;) is computed by zone prediction
method.

P(z) | 8) = (14)

Algorithm 1 Data Fusion

1: Spread particles:

rh =q(Xo),i=1,...,N;

W¢ =1/N;
2: Update X; based on Equation 9:
3: Calculate the ranging likelihood:

[d),6—+/ @22+ (i —y ;)22
5 ; o2

P(dj | xp) = %QXP 2 ;

4: Calculate the ZO(H)? lllk)e})ll(]og)d
P(s¢ | Xj) = #

5: Compute unnormalized weights:

~i ila M 7 i

Wy = P(X; | 8) - Hj:l P(djyt | X3)
Zg L wE’

N PR
Doim1 Wi T

Normalize weights: w{ =
Resample the particles;
Compute the estimated state: X; =
Go to step 2 for next iteration;

0L LD

C. Cloud Layer

The Cloud layer is responsible for the storage of historical
localization information. This information is related to users
and the localization process along multiple areas of interest.
The information is stored in a structured data base in the Cloud
server. Thus, the Cloud layer enables high-order queries over
the historical localization information to provide predictive
analysis and business control. Therefore, allowing data collec-
tion from multiple scenarios and mobile devices (i.e. clients)
and making this data accessible anywhere in the world are the
main advantages of the Cloud layer.

Client devices gather data from on-site, then they pass
this data to the Edge layer for processing (i.e., localization).
Processed data is then passed to the Cloud layer, which
is typically in a different geographical location. Thus, the
cloud layer benefits from client devices by receiving their
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Table I: Fog-edge localization components

Table II: Tracking performance summary.

data through the other layers. Figure 4 shows the internal
architecture of the Cloud layer.

IV. IMPLEMENTATION

Our MEC-based tracking system comprises five main com-
ponents: a client mobile device (MD), some commercial Wi-Fi
access points (Wi-Fi-AN), some UWB anchor nodes (UWB-
AN), a Edge server (ES), and a cloud server (CS). The MD is
the device to be localized. Positions of UWB-AN are chosen
to provide the maximum coverage inside the area of interest.
Table I summarizes the specification of each component.
Communication between the Cloud and the Edge layer was
implemented by using WebSocket technology. WebSocket is a
computer communication protocol, which allows two or more
connected devices to communicate with one another in both
directions through a single TCP connection. It is supported
by many platforms. WebSocket technology uses the HTTP
upgrade header to change from the HTTP to the WebSocket
protocol [5]. Thus, Tornado [24] was used to provide web
server and WebSocket server in the cloud layer.

The system requires information related with zones’ dis-
tribution and physical connections among zones (i.e., zone
transition information). Therefore, it is necessary to have
coarse-grained information about the area of interest. We
define 14 zones in our environment. Each zone is a wall
separated area (i.e., rooms, corridor).

In the zone prediction method, we setup three conceptu-
ally different machine learning algorithms (KStar, Multilayer
Perceptron (MLP) and CART). Python Scikit-learn library
[12] was used to implement the individual machine learning
algorithms. To build the zone fingerprinting database, we
collected 9800 fingerprint instances, approximately 700 in
each zone. The structure of a fingerprint instance consists
of Wi-Fi and UWB RSS readings. Zone fingerprint database
entries were collected equally distributed over the whole area
in each zone. The data collection rate is only constrained
by computational capabilities of the Wi-Fi sensor of the
MT. Thus, in our experiments every fingerprinting entry was
collected at a rate of 3 entries/second. Since our approach does
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Layer Component Specifications Scenario | Tracking system | Mean error S.D 90% Acc.
Cloud | Cloud Server Model: HP EliteBook 1 InTrack 1.53m 1.09m 3.1m
CPU: 2.30 GHz Intel Core i5-5300U Commercial 1.69m 1.68m 3.1m
OS: Windows 10 Enterprise RAM: 8 GB InTrack 0.44m 0.14m 0.6m
Edge Edge Server Model: HP EliteBook 2 Commercial 0.47m 0.28m 0.8m
CPU: 2.30 GHz Intel Core i5-5300U Edge-based 1.42m 0.61m 2.1m
OS: Windows 10 Enterprise RAM: 8 GB
UWB Interface: Sequitur Pi (InGPS litle)
Client Device M‘(’:dlfll} RSSPEBETY Pill\élgli_[el B not need to predefine any survey point, the time needed to
+ Qua ore 1. z . o e . .
0S: Raspbian 4.14 build the ﬁng?rprlntmg datal.)as.e is proportlpnal to the numper
WLAN:WiFi b/g/n of collected instances multiplied by the instance collection
— h}ljvgﬁ'lglgi ie((gigspi g“gg’g ‘21;152) rate. Since hyperparameters have significant impact on the
1-Ir'1- odel: D-Lin - an - . . .
Client UWB-AN Model: Raspberry Pi Model B performance of. the. machme.: learmng. algorithm, we use a
e CPU: Quad Core 1.2GHz nested cross validation technique to adjust them [18]. Finally,
;)Vsijigs\?ﬁi;‘,nb‘t-ll“ to reduce the negative impact of environmental changes and
:WiFi b/g/n . . . N .
UWB: Sequitur Pi (InGPS litle) different hardware, we use differential Wi-Fi RSS instead of

absolute raw values.

V. PERFORMANCE EVALUATION

We tested our system in two office-like indoor scenarios
along complex trajectories. Experiments were conducted in
the third floor of the building of the Institute of Computer
Science at the University of Bern. In the first scenario, we
deployed 5 UWB-ANSs in an area of 702m? (39m x 18m).
In the second scenario we increased the UWB-AN density by
deploying 5 UWB-ANSs in an area of 342m? (19m x 18m).
To determine the localization error, some checking points are
defined along each trajectory. In the trajectory of scenario
1, we defined 9 checking points, whereas 8 checking points
are defined along the trajectory in scenario 2. Distribution
of the checking points can be seen in Figures 5a and 5b.
Experiments were repeated five times. Therefore, 45 checking
points were analyzed in scenario 1 and 40 checking points in
scenario 2. The localization error is computed by the Euclidian
distance between the position calculated by the system and
the ground truth position in each checking point. We compare
our indoor tracking (InTrack) approach to the commercial
solution Sequitur InGPS Lite [25]. Hereafter, we will refer
to Sequitur InGPS as the commercial approach. Additionally,
we compared InTrack with an client-based tracking solution
[4], which is referred to as client-based tracking.

A. Experiment Results

Figure 6 shows the CDF of localization error for the tracking
systems. InTrack and the commercial tracking system show
similar localization performance. However, as shown in Figure
6, InTrack approach achieves higher accuracy and more stable
performance compared to the commercial system. Table II
summarizes the average of tracking errors, standard deviation
and 90% accuracy.

In scenario 1, both InTrack and the commercial system
achieve around 3.1m for 90% accuracy. The mean error and
standard deviation are also similar for both systems in this
scenario. However, InTrack overcomes the commercial system
by 0.59m, and 0.16m by considering standard deviation and
mean tracking error respectively.
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Figure 5: Scenarios for experiments. Trajectories (black dotted lines), UWB-AN Bounding box (area inside the red dotted
lines), UWB-AN distribution (Diamond green points), checking points (numerated circles), and zone definition.

0.1+ —InTrack
0 ‘ ‘ ‘ ‘ —Commercial
0 1 2 3 4 5 6

Error(in meters)

(a) Empirical CDF of tracking error in Scenario 1.

—InTrack

0.1r —Commercial
‘ —Client-based
0 1 2

Error(in meters)

(b) Empirical CDF of tracking error in Scenario 2.

Figure 6: Tracking error performance in scenario 1 and scenario 2.

6 [+ InTrack
5 57 -+Commercial |
@ 4l ]
<
k=l
T3 1
N
T 2r 1
o
o
— 1+ 4
0

1 2 8 4 5 6 7 8 9
Checking point
Figure 7: Localization errors along trajectory in Scenario 1

Although localization approaches based on UWB ranging
present sub-meter localization errors, we observe that the
tracking errors of InTrack and the commercial systems are
higher than 1m in some checking points in the trajectory of
scenario 1. Figure 7 presents the observed mean tracking error
in each checking point in scenario 1. To find the reasons for
this low tracking performance, it is necessary to consider the
underlying implementation of the systems. Thus, two main
issues are identified:

o Trajectories outside the UWB-AN area defined by linear
straight connections among UWB-ANs. This area is

ISBN 978-3-903176-13-3 () IFIP

called the bounding box. Figure 5 shows the UWB-AN
bounding boxes in scenario 1 and 2.

o Failures in the UWB-based communication among UWB-
AN and the MD.

Errors in the ranging process lead to decreased localization
performance. Locating a position placed outside the bounding
box is prone to significant ranging errors. In scenario 1,
checking points 1, 4, 5, 6 are located either outside or close to
the border of the bounding box. These locations present higher
localization error than locations inside the UWB-AN bounding
box. It can be seen in Figure 7 that localization errors at these
points are higher than 1m.

Since the localization algorithms are running on the Edge
layer, InTrack’s performance depends on the quality of links
between client devices and Edge servers. Both, InTrack and the
commercial system, use UWB-based communication links to
transmit data. Therefore, a low quality UWB link connection
leads to increased tracking errors for InTrack and the commer-
cial system. This behaviour is evident in scenarios with low
UWB-AN density (i.e., low amount of UWB-AN in a big area
of interest), such as scenario 1, where we observe data UWB
communication problems due to long transmission distances.
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In scenario 2, InTrack and the commercial system show
similar performance. However, as it can be seen in Figure
6b and Table II, InTrack overcomes the commercial and
the client-based systems. To tackle the UWB communication
issues observed in scenario 1, we conducted the experiment in
scenario 2 by increasing the UWB-AN density. We increased
the UWB-AN density of 5 UWB-AN in an area of 702m?
to 5 UWB-AN in an area of 342m?2. Thus, the quality in the
UWB communication link was improved. As shown in Figure
8, the localization error in each checking point is significantly
reduced compared to scenario 1. It proves the importance of
the UWB-AN density in the localization performance.

Finally, we can observe in Figure 6b and Table II that
InTrack overcomes the client-based system by 69%, 77%, and
71% considering mean tracking error, standard deviation and
90% accuracy respectively. It is due to heavy computations
(i.e., localization algorithms) are offloaded from the client
device to one Edge server. Moreover, reducing the device-
server distance reduce the data transmission time. This allows
real-time localization performance. Thus, it proves that in real-
time localization applications, processing time influences the
accuracy performance of the localization system.

VI. CONCLUSIONS

This work exploits a MEC architecture to implement an
accurate real-time indoor tracking system. Our approach fuses
UWB radio signals, machine learning for zone prediction
information, inertial sensors and physical information of the
environment, to achieve high localization accuracy in complex
indoor scenarios. Experiments results show that our approach
can achieve an average tracking error of 0.44m and 90%
accuracy is 0.6m. It outperforms some commercial products
and client-based tracking systems. Thus, by bringing cloud
computing capabilities to the network edge, our MEC-based
approach is more accurate and robust than traditional and
commercial indoor localization methods.
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