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Abstract—Cooperative Vulnerable Road User (VRU) collision
avoidance aims at preventing potential accidents between VRUs
and vehicles by exchanging context information. In this paper, we
present a Multi-access Edge Computing (MEC)-based VRU safety
system as an alternative to earlier purely ad-hoc communication-
based ones, in which VRU smartphones utilize the cellular
connection to frequently send context messages to a MEC server.
However, in such safety systems, calculating context information
on smartphones, which are already resource-restricted, could lead
to reduced battery lifetime and, thus, to poor user experiences.
To deal with this issue, we propose an adaptive approach for
VRU context information calculation, which considers the use
of computation offloading when needed in order to save energy
while still ensuring timeliness. As a baseline, we use our machine
learning application for determining pedestrian activities. Both
experimental and simulation results suggest that it is worth to
offload context information computation to the MEC when the
updating interval or the sensor sampling frequency is low, i.e., the
amount of raw data collected is small; otherwise, local execution
is preferable. We see our results as a basis for designing more
energy-efficiency calculation models for VRU safety systems.

I. INTRODUCTION

According to the latest report from the World Health
Organization (WHO), 49 % of all road traffic accidents involve
VRUs like pedestrians, bicyclists, or motor-cyclists [1]. Various
approaches have already been introduced and are still being
researched to reduce the number of these accidents. Existing
solutions utilize vehicle sensors like cameras, laser scanner, and
RADAR to detect VRUs and to avoid potential collisions [2].
However, those solutions only work in limited ranges and are
usually dependent on a direct Line-Of-Sight (LOS) between
vehicles and VRUs, which can be visually obstructed, for
example by a parked vehicle. One idea to overcome this
limitation is to track the movement and activities of a VRU
beforehand for estimating whether a collision is possible. More
recent research pursues a cooperative approach, in which VRUs
are equipped with mobile devices like smartphones, which are
able to exchange movement information with nearby vehicles.
This approach offers many advantages; most importantly the
VRUs can be detected even in Non-Line-Of-Sight (NLOS)
scenarios.

Figure 1 depicts the general concept of a VRU safety system
(extending our earlier work in [3]), in which VRUs carrying
smartphones and vehicles, so called User Equipments (UEs),
exchange their respective contextual information. Today, we can
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Figure 1: General concept of a VRU safety system.

distinguish two common communication architectures for VRU
safety systems. One option is to use direct Device-to-Device
(D2D) communication without the need of infrastructure and
the alternative is an infrastructure-based approach. For D2D,
existing technologies allow messages to be directly transferred
from sender to receiver like WiFi Peer-to-Peer (P2P), Dedicated
Short Range Communication (DSRC), or the more recent
LTE Direct. DSRC has been commonly assumed for Car-to-
Car (C2C) communication, but it is still in the trial phase,
particularly when considering smartphones [4], [5]. Similarly,
LTE Direct is considered having a high potential in Vehicle-to-
Everything (V2X) [6]; yet, integration with smartphones is not
yet clear. So, at the moment, the most promising approach is
to rely on infrastructure. Considering cellular communication,
UEs participate in a larger network of a mobile communication
system. Following the current evolution from LTE to 5G, the
technology has many advantages for VRU safety systems –
and it is also considered for V2X communication [6], [7].

For collision prediction, beacons transmitted by VRU smart-
phones should comprise some basic information like current
position, heading direction, and speed [8]–[11], and maybe
some additional ones like current distraction and motion
states [4], or weather condition, time of day, and age [12],
which could help improving the prediction of impending
collisions. While some information (e.g., position or direction)
can be obtained directly or through simple calculations from
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smartphone sensor data, others (e.g., motion states) require
more extensive data handling like pre-processing, extraction
of features, and training machine learning models [13], [14].

However, restricted resources are one of the biggest issues
facing smartphones. The more context information and com-
plex algorithms are used, the greater computing burden on
smartphones and, therefore, the shorter their battery lifetime.
To address this bottleneck, in addition to efforts to lighten the
applications, we propose an adaptive approach for calculating
VRU context information. The core idea of our approach
is to try to reduce local execution as much as possible by
offloading tasks to a remote server. Besides, we suggest taking
the advantages of MEC, i.e., ultra-low latency, high bandwidth,
and real-time access to radio network information, for road-
safety applications.

This architecture was shown to have noticeable benefits
in many areas, such as gaming, image/video processing,
object/face recognition, or web accelerated browser [15];
however, its applicability in the context of VRU safety systems
is still an open question. We investigate this issue by studying
various computational schemes on the smartphone with regard
to energy consumption and latency. Moreover, these costs also
depend on many other parameters, such as the machine learning
algorithm, the sensor sampling rate, the window size, and the
sending interval of messages on the smartphone, which are also
taken into account in our measurements. We see the results
of this paper as an important step towards energy-efficient
VRU safety systems. To be more specific, in this paper, we
focus on Car-to-Pedestrian (Car2P) systems, a typical case of
VRU systems, in which the safety for pedestrians is the main
objective of our investigation.

Our main contributions can be summarized as follows:
• We propose an adaptive approach for calculating VRU

context information used by collision avoidance services.
• We measure and analyze the energy consumption and pro-

cessing time of a lightweight machine learning application
for determining pedestrian activities.

• We integrate the experimental results into the simulation
framework Veins LTE to evaluate the end-to-end perfor-
mance and scalability of our adaptive approach.

II. RELATED WORK

Research towards collaborative, smartphone-based collision
avoidance has received much attention over the last two decades.
In [3], [16]–[18], the architectures for Car2P safety system
have been proposed, in which pedestrians are equipped with
smartphones that enable the exchange of necessary information
with nearby vehicles. Generally, the collision risk is anticipated
using position and movement information obtained from Global
Positioning System (GPS) and sensors on the phones.

Some previous works [4], [19], [20] pointed out the disadvan-
tages of positioning-based information for detecting pedestrian
risk due to the positioning error and the frequent changes of
walking people trajectories. Therefore, beside the movement
vector, the authors suggested to incorporate a pedestrian activity
identifier and a distraction monitor on smartphones to provide

additional information for collision prediction. Depending on
the current motion of pedestrians, e.g., stopping, walking or
running, and distracting activities, e.g., texting, listening to
music, or talking on the phone, safety algorithms or warning
strategies could be adjusted to enhance their accuracy and
reliability. However, there was no evaluation of the influence
of these modules on energy consumption of smartphones, so
the feasibility of these algorithms was unclear.

More recent publications [8], [9], [21] considered the use
of contextual information to improve the efficiency of network
communication. Basically, this context-aware approach requires
smartphones to integrate additional detection modules for
motion state, surrounding environment (indoor, outdoor, or
in-vehicle), and degree of risk (approaching road, crossing
road, or near vehicles). Smartphones of pedestrians, who are in
higher risk situations, are given higher priority on the channel
to reliably send their messages to the vehicles in the same
context. Besides, it was also suggested that the smartphones
could turn off network communication or at least reduce the
transmission frequency when the pedestrian is stationary or
not in danger. This way, the traffic load could be significantly
reduced and thus, improve the network performance. Again, it
was not mentioned in the paper how each mechanism affects
the battery life of smartphones.

The work presented in [10] is most closely related to
ours. Here, the authors evaluated the energy consumption
of smartphones when applying different beaconing schemes
according to the risk level of pedestrians. Additionally, the
limitation of battery lifetime has been tackled from architectural
perspective. Unlike other systems where predicting accidents
is performed on smartphones or vehicles, a cloud-based server
is employed for the calculation. Cellular connections (3G and
LTE) are used for the communications between cars/pedestrians
and the server. This method releases the computational burden
on smartphones, thus, saving more energy. Using the similar
approach, in this paper, we further improve the energy efficiency
of smartphones by considering the offloading problem at
the data level, i.e., context information calculation. We also
examine a more general problem, in which both local and
offload schemes are investigated, since only offloading to
servers is not always beneficial. The basis for such concepts is
an accurate measurement and estimation of energy consumption
profiles for computation and communication tasks [22], [23].

Regarding simulation-based performance evaluation, most
existing papers focused on safety systems for vehicles [24],
[25]. Some recent works developed simulation models for
pedestrians [9], [10]. The general idea is to combine a discrete-
even simulator (OMNeT++ or ns-3) with the Simulation of
Urban MObility (SUMO) framework. In the same manner, in
this paper, we conduct a simulation study with the Veins LTE
framework [26], [27]. The road network and the movement
patterns of vehicles and pedestrians are generated by SUMO.
To our best knowledge, our work is the first simulation study
integrating person objects into the Veins simulator.
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Figure 2: MEC-based Collision Avoidance.

III. SYSTEM ARCHITECTURE

Basically, our proposed Car2P safety system relies on the
centralized architecture, where MEC as a back-end server,
offers data processing and computation for potential accidents.
The overall architecture is depicted in Figure 1. Communication
within the system is established via LTE. Direct Car2P
communication is beyond the scope of this paper.

A. MEC-based Collision Avoidance
Figure 2a shows the baseline approach for a MEC-based

Car2P safety system. In general, the collision avoidance service
works as follows: while a UE (a vehicle or a pedestrian carrying
his/her smartphone) is moving on the road, it frequently sends
Cooperative Awareness Messages (CAMs), which contain its
context information, to a base station (eNodeB) using the LTE
interface to report its existence. All the data from different
UEs is processed by a MEC server deployed at the base
station to predict the likelihood of crashes between UEs. If
risky situations are detected, Decentralized Environmental
Notification Messages (DENMs) are then sent to all concerned
UEs to trigger collision avoidance actions. To some extent,
performing prediction at the server rather than at UEs helps to
cope with the limited resource issue of smartphones.

Taking a closer look at the smartphone side, we can
see that this approach requires context information to be
calculated locally beforehand. This could be a drawback for
smartphones in terms of energy consumption, especially when
more sophisticated and computationally intensive algorithms
are needed to calculate context information.

B. Adaptive Approach for Context Information Calculation
We therefore propose an improvement to the baseline

approach, in which smartphones consider the possibility of of-
floading pedestrian context information calculation to the MEC

server. An overview of the data processing and communication
flows of our adaptive approach is given in Figure 2b. In more
detail, smartphones periodically collect raw data from different
sensors. This data is then fed into a decision engine, which
takes various parameters like current network condition and
historical data as inputs and applies a certain logic to decide
whether the computation for current context information should
be offloaded to MEC server or not. If local computation is
selected, the smartphone performs the calculation itself and then
uploads the results to MEC. In the case of remote execution,
the smartphone transmits raw sensor data to the server and
here, context information is computed before being used as
the inputs for collision prediction.

The condition for selecting operation schemes to save energy
can be formulated as follows. Let Elocal and Tlocal be the
energy and time consumed by calculating context information
on the smartphone; ECAM and TCAM be the energy and
time for sending a CAM to the server; Edata and Tdata be
the energy and time for transferring raw sensor data to the
server; TDENM be the time for sending a DENM from the
server to an UE; and L be the maximum allowed end-to-end
delay of the safety system. We assume that the server has
unlimited computing resources, i.e., the remote execution time
can be neglected. First, it should be noted that an algorithm for
context information calculation is only acceptable if it satisfies
the following timing constraint

Tlocal + TCAM + TDENM  L . (1)

The offloading scheme is then preferable, i.e., a better option
to save energy, when we have

Edata < Elocal + ECAM (2)
and Tdata + TDENM  L . (3)

Getting into more details, Edata and Tdata are closely related
to the amount of raw data collected, while Elocal and Tlocal

are highly dependent on the algorithm used. Generally, each
operation scheme (local or offload) has its own pros and cons.
To make appropriate offloading decisions to improve the energy
efficiency of smartphones while still assure the timeliness
of messages received by the MEC server and vehicles, it is
essential to have a good understanding of the performance of
context information computation on smartphones as well as
the overhead for data transfer to/from the server.

As a prime example, we study the performance of the ma-
chine learning application for determining pedestrian activities.
The general algorithm of our application can be described
as follows: the program first collects raw data from the
smartphone accelerometer and gyroscope for a chosen window
length and sampling frequency. In the preprocessing phase,
a sliding window approach is applied on the raw data for
features extraction. We chose time domain features including
mean, variance, minimum, and maximum, which yielded good
results in prior works [13] and can be calculated with low
computational effort. The features extracted from the sensor
data are fed to a classifier to discriminate pedestrian activities.
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In order to investigate the energy and time efficiency
of our machine learning algorithms and adaptive approach
for calculating pedestrian context information, we study the
following operation schemes on smartphones:

1) LOCAL: the current pedestrian activity is determined
locally on the smartphone without updating the server;

2) LOCAL++: the current pedestrian activity is determined
locally on the smartphone and the result together with
other context information (e.g., positions) are encapsu-
lated in a CAM to be sent to the server;

3) OFFLOAD: raw sensor data is collected for a specific
duration (window length) and sent to the server, where
the classification for pedestrian activity is performed;

4) STREAM: this is a special case of the OFFLOAD scheme,
in which every sample of raw sensor data is immediately
streamed to the server for the classification without
waiting for enough data for the selected window length.

IV. EXPERIMENTAL STUDY

In this section, we present our experiments to measure the
energy consumption and processing time of the machine learn-
ing application for determining pedestrian activities running on
smartphones. We discuss our measurement results in relation
to the operation schemes presented in Section III-B as well as
the following parameters: window length, sampling frequency,
and classifier. All the plots presented show the average values
with 95 % confidence intervals.

A. Experiment Setup

Our experiments were performed on a NEXUS 6 smartphone
running Android v7.1.1. To measure energy consumption
of a smartphone, two possible options could be considered,
i.e., using external devices and self-measurement using the
Smart Battery Interface [22], [23]. In our case, the NEXUS
6 smartphone integrates a Maxim MAX17050 battery fuel
gauge, which provides measurements of instantaneous current
and remaining charge. The power/energy consumption of the
smartphone can be determined by this in-system chip with
acceptable accuracy and there is no need to connect external
devices to the phone [23]. To make use of this functionality,
we implemented an Android background service to record
the information related to the power properties of the battery
at runtime. To measure the execution time, we compute the
difference between the system time values recorded at the
beginning and at the end of the calculation process. All logging
data are stored in the local memory of the smartphone for offline
statistics.

For online pedestrian activity recognition, our application
performs the calculation based on smartphone sensor data,
which detects whether a pedestrian is currently sitting, standing,
walking, or running. Since the pedestrian’s current activity has
to be detected as quickly as possible so that the resulting data
can be promptly given to the crash prediction application in
the collision avoidance system, we implemented a lightweight
version for Android smartphones.

A configuration for our algorithm is characterized by three
parameters: window length, sensor sampling frequency, and
classifier. We selected window length values of 0.2, 0.5, 1.0, 1.5
and 2.0 s. For sampling sensor data, we chose frequencies of
10, 16, 32, 50 and 100 Hz. As shown in [28], a sampling
frequency of 32 Hz is sufficient for tracking simple body
movements based on the Shannon theorem. However, we
deliberately chose higher frequencies as well in order to
obtain enough data points when using smaller window sizes
and to be able to detect faster or more complex activities,
which may require a higher sampling rate. Our application
supports three different classifiers, namely C4.5/J48, Naive
Bayes, and K-Nearest Neighbors (KNN). For each classifier,
we used the implementation from the Waikato Environment
for Knowledge Analysis (WEKA) toolkit.1 We trained each
classifier for each pair of a certain sensor sampling frequency
and window length beforehand and selected the appropriate
classifier model according to the chosen configurations.

For experimentation, we set up a simple server for receiving
packets from the smartphone. Data transmission between the
smartphone and the server is performed using the UDP over an
LTE connection. We put our smartphone at a fixed location with
excellent LTE signal quality to minimize its effect on energy
consumption of the smartphone during network communication.
In order to improve the accuracy of the measurements, we
disabled all unnecessary background services and the WiFi
interface on the smartphone during the experiments. We also
kept the screen brightness of the phone at a fixed level. Finally,
we repeated the experiment for each configuration 10 times to
improve statistical confidence.

B. Local Processing Time

Figure 3a shows our measurement results of the local
processing time needed to perform one classification using
C4.5, Naive Bayes, and KNN for varying window lengths and
sampling frequencies. Most notably, the KNN classifier needs
a higher processing time in almost cases when compared to the
other algorithms due to its higher computational complexity for
classifying. In details, the KNN classifier uses a lazy learning
method, which only requires a little training time (offline)
but is rather computationally expensive in the testing phase.
Every new instance obtained has to be compared with all
individual data points of the training set in order to determine
the most probable class (i.e., activity). Naive Bayes, on the other
hand, represents a lightweight classifier, which shows a near
constant evaluation time due to the assumption that all input
values (i.e., features) are normally distributed and conditionally
independent from each other. C4.5 trains a decision tree, in
which classification is only performed on input features with
the highest information entropy.

Besides, for higher frequencies and window lengths, the
KNN classifier shows a decrease in processing time, while
the C4.5 and Naive Bayes exhibit a slight linear increase in
local time with the increasing these two parameters. This can

1https://www.cs.waikato.ac.nz/ml/weka/
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Figure 3: Experimental results.

be explained due to the fact that both Naive Bayes and C4.5
classifiers have more constant computational complexity for
different window lengths and frequencies. The increase in total
processing time of both algorithms is because of the increasing
amount of collected raw data, i.e., more time is needed to
extract features. This is not the case with the KNN classifier
since its processing time depends on the K variable, whose
value is picked to get the best possible fit for each data set
corresponding to the pair of window length and frequency. In
our application, for smaller window lengths and frequencies, the
KNN has to compare more data points to make classification
decisions, which leads to higher processing times.

C. Energy Consumption vs. Classifiers
To investigate the energy consumed by each classifier, we

conduct the experiments for our application in LOCAL scheme.
We turned off the LTE interface during the experiments since
there is no need for network communication in this scheme.
The measurement results are given in Figure 3b. First, it can
be seen that the C4.5 classifier consumes the least energy,
followed by the Naive Bayes and KNN. This is because the
C4.5 algorithm spends the least time on computation while the
KNN requires the most. However, an interesting observation
here is that the energy consumed by the three algorithms is
not directly correlated to the local processing time needed.
The KNN classifier, for example, consumes only slightly more
energy than the Naive Bayes classifier, despite taking much
more time for local computation.

Second, all classifiers show a decrease in energy consumption
for higher window lengths. This is not surprising because
smaller window sizes imply that the classification algorithm
is called more often, and therefore consumes more energy.

Considering the relationship between sampling frequencies and
energy consumption, we can see that there are slightly increases
in energy consumed by C4.5 and Naive Bayes classifiers, while
the amount consumed by KNN does not change much.

D. Energy Consumption vs. Operation Schemes
To evaluate and compare the energy efficiency between

operation schemes, we chose the C4.5 classifier, which yields
classification accuracies of more than 95.13 % and the lowest
computation time, as a representative to perform our experi-
ments. In Figure 3c, we show the distribution of the energy
measurements for this classifier in all 4 operations schemes with
varying window lengths and sampling frequency. Generally,
the LOCAL scheme consumes much less energy than the others
because in this scheme, the smartphone only performs the
classification and no network operations is carried out. This
fact proves that our machine learning algorithm is lightweight
enough to be deployed for smartphones. The LOCAL++ and
OFFLOAD schemes show a comparable energy consumption for
large window lengths and a bit more with LOCAL++ scheme
for small ones. The difference in energy consumption between
these two schemes can be explained as follows: small window
lengths mean the amount of raw sensor data collected is also
small, and thus, the energy consumption for uploading this
data to the server is rather slight compared to the quantity
for local computation, and vice versa. The LOCAL++ scheme,
therefore, needs more energy than the OFFLOAD scheme for
small window lengths.

For the STREAM scheme, the energy consumption is much
higher than the other schemes in most cases due to its high
frequency of sending messages to the server. Moreover, all
operation schemes except STREAM exhibit a decrease in
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Table I: Simulation Parameters.

Simulation Parameter Value

Simulated Area 1 km ⇥ 1 km
Layout Intersection
Simulation time 60 s
Repetitions 30
Other LTE UEs 25, 50, 100, 150, and 200
Background LTE traffic 1 kB + uniform(−0.5 kB, 0.5 kB)
Background LTE traffic interval 0.5 s + uniform(−0.25 s, 0.25 s)
Window length 0.2, 0.5, 1.0, 1.5 and 2.0 s
Sensor sampling frequency 10, 16, 32, 50 and 100 Hz

LTE Parameter Value

Bandwidth 5 MHz (25 RBs)
LTE scheduler MAXCI
UE transmission power 23 dBm
eNodeB transmission power 45 dBm

energy for higher window lengths. This is because the data
sending frequency in the STREAM scheme is determined by the
sampling frequency, while the invocation frequency in other
schemes is decided by the window length.

V. SIMULATION STUDY

This section describes our performance evaluation for the
proposed Car2P safety system using the Veins LTE vehicular
network simulation framework [27] building upon OMNeT++.
The road network and the movement patterns of vehicles and
pedestrians are generated using SUMO.

A. Pedestrian Module in Veins
To our best knowledge, our work is the first simulation

study integrating person objects in the Veins simulator. In
SUMO, we can define a person2 as a vType object with
vClass=pedestrian. It is also possible to define dif-
ferent movements for a given person including ride, walk,
and stop. In Veins, we created a new node type, namely
Pedestrian, for person objects, which is defined as an
OMNeT++ module. Similar to the existing vehicle modules,
e.g., HeterogeneousCar, to retrieve information of person
objects from SUMO, we implemented a set of TraCI com-
mands3 for this type of module in Veins, which is managed
by TraCIScenarioManager.

B. Simulation Scenario and Setup
The simulation scenario represents a simple context at an

intersection between a highway and a road for pedestrians
without traffic lights. We varied the speed of the vehicles from
0 km/h up to 50 km/h and the speed of the pedestrians from
0 km/h (stop) up to 15 km/h (sprinting).

We assume that our scenario area is covered completely by
the LTE eNodeB. All vehicles and pedestrians are equipped
with an LTE interface. We installed a remote server, which
is connected to the LTE eNodeB using a dedicated line.
Therefore, the delay between the remote server and the base
station is set to zero in our simulations. In the application
layer, we implemented UDP-based modules for both pedestrian

2http://sumo.dlr.de/wiki/Specification/Persons
3http://sumo.dlr.de/wiki/TraCI/Person_Value_Retrieval

smartphones and the server. To simulate the background traffic
in the network, we deployed a number of LTE UEs with random
positions within the simulated area, sending messages with
random sizes and random intervals to the server. We varied
window length from 0.2–2.0 s and the sampling frequency
from 10–100 Hz as in the experimental study. Other simulation
parameters are summarized in Table I.

We performed simulation experiments for these schemes:
LOCAL++, OFFLOAD, and STREAM. In the LOCAL++ scheme,
we assume that the current activity of a pedestrian is determined
locally using the classifiers mentioned in the previous sections
and the result is then encapsulated into a CAM of 300 B to
be sent to the central sever. We simulated the timing of local
computation by delaying the operations of sending CAMs by
the time interval, retrieved from our measurement results of
local processing time presented in Section IV-B.

In the OFFLOAD scheme, the application sends messages,
which contain raw sampling data from sensors, to the server,
where the computation for pedestrian activities and the potential
of collision is performed. The size of messages sent by person
objects is calculated as

Smessage = nsensor ⇥ f ⇥ w ⇥m⇥ stype , (4)

where nsensor is the number of sensors; f is the sensor
sampling frequency; w is the window length; m is the number
of values for each sensor data; and stype is the size of data type.
In our simulation, we assume that the application only samples
the data from three sensors: accelerometer, gyroscope, and
Global Navigation Satellite System (GNSS). Each data sample
consists three float values, i.e., (x, y, z) for accelerometer
and gyroscope, (latitude, longitude, elevation) for GNSS.
In the STREAM scheme, the sending interval is decided by the
sampling frequency.

Assuming that the server has unlimited computing resources,
the execution time for offloaded tasks can be neglected. For
all schemes, when receiving a CAMs or a raw data message
from a pedestrian, the server immediately broadcasts a DENM
to all nodes in the network, which assumed to contain current
context information or warnings about potential collisions. For
our simulations, we set the size of broadcast messages sent
by the server of 500 B. All simulations are repeated 30 times
with an independent random seed for each run.

C. Simulation Results
We used end-to-end delay (latency) metric to evaluate the

performance of our proposed system. This metric is defined
as the delay from the time the raw sensor data is available on
smartphones to the time the broadcast message from server
is received by a car or a pedestrian. Figure 4 shows the
changing of average end-to-end-delay according to sensor
sampling frequencies, window lengths, operation schemes, and
the density of other LTE users.

As the first observation, the average end-to-end delays in
the LOCAL++ and STREAM schemes are less affected by the
window length, sampling frequency, as well as the density of
LTE users. The LOCAL++ scheme shows an average delay
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Figure 4: Average end-to-end delay vs. operation scheme, number of LTE users, window length, and sampling frequency.

from about 20–34 ms in all cases. This metric in the STREAM
scheme is almost stable with measured values ranging from
12–15 ms.

Looking at the OFFLOAD scheme, we can notice that the
latency can vary from about 20–700 ms depending on the values
of the user density, window length, and sampling frequency.
For w = 0.2 s or f  16 Hz, this scheme always exposes
latency less than 65 ms, regardless of the user density. In the
remaining cases, when the product of the window length and
the sampling frequency reaches about 50 or more (i.e, the part
of Figure 4 below the red line), the end-to-end delay starts
to increase really fast as any of these parameters get higher
values. For example, with w = 0.5 s and f = 100 Hz, the delay
rises from about 22–176 ms with the user densities increasing
from 25–200.

The explanation for these observations mainly lies in the size
of messages transmitted in each scheme. While the message
sizes used in the LOCAL++ and STREAM are fixed and small,
i.e., 300 B and 36 B, respectively, this value grows rapidly
relative to the increases of the window length and the sampling
frequency in the OFFLOAD scheme, i.e., up to 7200 B for
w = 2.0 s and f = 100 Hz. Moreover, higher density of LTE
users mean higher connections to the server, which can cause
overload issues, and therefore increase packet latency.

VI. DISCUSSION

Based on the experimental and simulation results, we
derived some very interesting insights, which will help to
better optimize the Car2P safety systems in terms of energy
efficiency for pedestrian smartphones and packet latency as
well. First, even though the STREAM scheme offers stable and
very low end-to-end delay, it is inefficient for smartphones

regarding energy consumption. This scheme, therefore, is
not recommended for our proposed system, in which limited
smartphone battery life is a bottleneck. It is also evident that
the OFFLOAD scheme can save more energy on smartphones
especially for small windows lengths, while the LOCAL++
scheme produces comparable or lower average end-to-end
delays in all cases.

Applying these findings to our proposed Car2P safety
system, we can see that the OFFLOAD scheme outperforms the
LOCAL++ scheme for short window lengths (e.g., w = 0.2 s),
or in other words, when smartphones need to quickly update
their context information to the server. This situation can be
encountered when pedestrians are in high-risk scenarios like
reaching or crossing roads, in which the latest information from
their smartphones needs to be sent to the server as quickly
as possible for collision prediction. Besides, regardless of the
window length, the OFFLOAD scheme is still a better option
if the smartphone uses low sensor sampling frequencies (e.g.,
f  16 Hz). This circumstance occurs when the pedestrians
are in risk-free situations where the classification results are
not critical.

In other cases, with long window lengths and high frequency,
the LOCAL++ scheme consumes a similar amount of energy
or slightly higher than the OFFLOAD scheme, but in return, it
shows much better efficiency in terms of message end-to-end
delay. These conditions are appropriate for low-risk contexts,
in which pedestrian smartphones could reduce the updating rate
but still needs to provide accurate information for tracking and
prediction processes. This requires a huge number of raw data
collected by setting a high sampling frequency. In addition,
higher densities of LTE users lead to higher packet latencies.
The LOCAL++, therefore, is a better approach for these cases.
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VII. CONCLUSION

In this paper, we presented an adaptive energy-efficient
approach for smartphone context information calculation in
our proposed MEC-based Car2P safety system. Our approach
considers the possibility of sending raw data collected on
smartphones to the MEC server for the computation instead
of local execution. In order to evaluate the performance of the
suggested approach, first, we implemented a machine learning
algorithm for real-time recognizing pedestrian activities as a
target application for our investigation. Second, we conducted
experimental studies to measure the local processing time as
well as the energy consumed by the application in different
operation schemes. Finally, the integration of the time measure-
ments on the smartphone and, for the first time, person objects
into the Open Source vehicular network simulation framework
Veins LTE, allowed us to examine the message end-to-end
delay in our proposed safety system. Combining the obtained
results from both experimental and simulation studies, we are
now able to answer the question of when smartphones should
offload their context information calculation to the server to be
beneficial to the whole safety system. Our results indicate that
an offloading scheme is most suitable in case the smartphone
is requested to update context information with short periods
or to sample sensor data at low frequencies; otherwise, locally
performing the calculation is a better option.
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