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Abstract—The research challenge of current Wireless Sensor
Networks (WSNs) is to design energy-efficient, low-cost, high-
accuracy, self-healing, and scalable systems for applications
such as environmental monitoring. Traditional WSNs consist
of low density, power-hungry digital motes that are expensive
and cannot remain functional for long periods on a single
charge. In order to address these challenges, a dumb-sensing and
smart-processing architecture that splits sensing and computation
capabilities among tiers is proposed. Tier-1 consists of dumb
sensors that only sense and transmit, while the nodes in Tier-2
do all the smart processing on Tier-1 sensor data. A low-power
and low-cost solution for Tier-1 sensors has been proposed using
Analog Joint Source Channel Coding (AJSCC). An analog circuit
that realizes the rectangular type of AJSCC has been proposed
and realized on a Printed Circuit Board for feasibility analysis. A
prototype consisting of three Tier-1 sensors (sensing temperature
and humidity) communicating to a Tier-2 Cluster Head has been
demonstrated to verify the proposed approach. Results show that
our framework is indeed feasible to support large scale high
density and persistent WSN deployment.

Index Terms—Three-tier Architecture, Sensor Networks, Ana-
log Joint Source Channel Coding, Shannon Mapping, Wireless
Communications, Prototype, Measurement

I. INTRODUCTION

Overview: The research and engineering objective of con-

tinuous monitoring of the physical world through minuscule

“smart dust” motes in the ‘90s helped spur nearly two decades

of exciting research in Wireless Sensor Networks (WSNs).

Some of that research has been successfully commercialized,

while some other has been a precursor to recent advances

in the “Internet of Things.” Still, the vision of a large-scale

WSN comprising tens of sensors per square meter while being

robust to sensing/communication/computation failures remains

far from a reality. Indeed, even though Hewlett-Packard’s

much touted Central Nervous System for the Earth project

hopes to deploy billions of sensors all over the planet [1], its

first commercial partnership with Shell for seismic monitoring

still relies on motes that require VHS-sized enclosures [2].

The fundamental reason for this large gap between vision

and reality of WSNs is that the design and production of

motes combining sensing, communication, and computation

capabilities into a single, miniature platform (the cornerstone

of traditional WSN paradigm) that can remain operational for

months, if not years, on a single charge, that can self heal

from internal failures, and that are still cheap is an extremely

difficult engineering challenge.

Motivation: Nowadays motes are composed of digital

processors, multiple Analog-to-Digital Converters (ADCs) and

wireless transceivers. These digital motes sense the environ-

ment but also carry out digital communications and compu-

tations, both of which also require high bit resolution for

high precision and dynamic range. Digital motes as a result

tend to be power hungry. On the other hand, sensing and

basic communications can be carried out by power-efficient

analog sensors. Moreover, the spatio-temporal characteristics

of the underlying phenomenon being monitored by a Cyber

Physical System (CPS) are seldom, if ever, known in advance.

In order to support low-cost, high-confidence, and scalable

CPS’s, therefore, it is desired that today’s digital sensor motes

adapt their temporal resolutions and bit precisions during the

operation of the WSN. However, the reality is that state-of-

the-art motes are “monolithic” due to various cost and design

considerations. Consequently, a careful and often irreversible

choice of design parameters for digital motes is made prior

to the WSN deployment, resulting in either over- or under-

provisioning: the former leads to heavy under-utilization of

motes, while the latter results in low sensing resolution and

accuracy. Due to the cost of digital sensors, it would not

be feasible to deploy thousands of such sensors to monitor

the environment. Hence, these questions are raised: can we

have a low-cost and low-power solution for the sensing, and

meanwhile being able to compress the sensing source and

perform coding to combat against the distortion in the wireless

channel?

Our Vision: To address these questions, we propose a

modularized sensing architecture (Fig. 1) that represents a

paradigm shift from the traditional two-tier WSN architecture

(with monolithic sensing and computing digital motes report-

ing to a “sink”) to a three-tier architecture. In this architecture,

while the “sink” tier—consisting of powerful fusion center(s)

to perform central processing and higher control—still exists,

we split the traditional “digital motes” tier into two tiers

consisting of low-cost, energy-efficient, analog sensors at tier-

1 (to support the sensing and communication functionalities)

and resource-rich digital cluster head nodes at tier-2 (to

support processing and control). Our architecture uses a large

number of low-cost/low-power/low-accuracy analog sensors

(≈ 130µWwithout radio power, $5) instead of a small number

of high-cost/power-hungry/high-accuracy digital motes. The

low-cost factor enables us to deploy these sensors in large

scale and high-density thereby providing high spatial accu-

racy. The low-power on the other hand means the sensors need

not be put to sleep thereby providing high temporal accuracy

unlike the current digital nodes which go to sleep occasionally

to conserve power. These vast number of analog sensors at

tier-1 do only task of sensing and transmitting (which we

call dumb-sensing), while the onus of processing (which we
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call smart-processing) this sensor data for extracting useful

information lies on powerful digital nodes at tier-2. This

paper mainly focuses on realizing this low-cost and low-power

analog sensing at tier-1. For this, we design sensor nodes with

Shannon-mapping capabilities. The Shannon mapping [21] is

a low-complexity technique for Analog Joint Source-Channel

Coding (AJSCC) [14]; it can compress two or more signals

into one (introducing controlled distortion) while also staying

resilient to wireless channel impairments. We have currently

used Frequency Modulation (FM), for the sensors to commu-

nicate to a digital cluster head in tier-2, due to its impressive

performance under low SNR conditions.
Our Contributions can be summarized as follows:

• We propose a dumb-sensing and smart-processing frame-

work for wireless sensor networks that splits sensing

and computational tasks between energy-efficient low

cost sensors (Tier-1) and powerful digital nodes (Tier-2)

respectively. We focus mainly on Tier-1 analog sensing

in this paper.

• We propose to use Analog Joint Source-Channel Cod-

ing (AJSCC) for Tier 1 to realize low cost and low-power

consumption;

• We verify the feasibility of our proposal through sim-

ulations and experiments using simple tier-1 prototype

developed by us.

Paper Outline: The remainder of this paper is structured

as follows. In Sect. II, we present our three-tier architecture

for WSNs and discuss its features. In Sect. III, we discuss

our solution to low-power and low-cost tier-1 sensing using

AJSCC and its parameter optimization. In Sect. IV, we discuss

the hardware prototype developed and present some system-

level results to study the feasibility of our proposal. Finally, in

Sect. V, we conclude the paper and discuss our future work.

II. THREE-TIER LOW-POWER SENSING ARCHITECTURE

Our architecture breaks away from the past design goal

of homogeneous WSNs comprising high-power, resource-rich

digital motes with integrated sensing, communication, and

computation capabilities. Instead, we advocate a three-tier

architecture (Fig. 1) that corresponds to a high density of

extremely low-cost and low-power “dumb” analog sensors

with limited communication capabilities in Tier-1 and a low

density of “smart” digital Cluster Heads (CHs) with advanced

communication and computation capabilities in Tier-2. Tier-3

consists of a fusion center (can be a server or a mobile drone)

having similar functionalities of a Tier-2 sink in traditional

WSN architecture. While the communication among digital

CHs in tier-2 can be digital, that between tier-2 and tier-3

can be delay tolerant as the fusion center may not be always

available. We would like to clarify that the general idea of

tiered architectures for WSNs is not new to the research

community; see, e.g., [20], [25], [27]. The main idea of this

paper lies in its use of dumb all-analog sensors for low-

power sensing and communication at Tier 1 which should, in

principle, enable large-scale, high-density wireless monitoring.
Signals from multiple analog sensors will be multiplexed

and detected at the digital CHs, which will be equipped

with high-rate, high-resolution Analog to Digital Convert-

ers (ADCs) and digital transceivers to communicate with

Fusion Center (Tier 3)

Precise Agriculture Body Area Nets

Digital Cluster Heads (Tier 2)

Infrastructure monitoring

Analog Sensor Nodes (Tier 1)

Digital
Comm.

Fig. 1: Tier-1 analog sensor nodes perform sensing and com-

municate with a digital Cluster Head (CH) via Analog Joint

Source-Channel Coding. Tier-2 digital CHs perform computa-

tion/processing and control, and digitally communicate among

themselves and with the Tier-3 fusion center.

neighboring CHs, and processors to run fault-detection/data-

fusion algorithms (“Smart Processing”). Finally, data pro-

cessed by the CHs will be retrieved through the fusion center

(e.g., a mobile node such as a drone)—which may not be

always connected to the network—that reconstructs the phe-

nomenon of interest and also possibly generates control com-

mands to support “closed-loop scenarios”. Our architecture

will help to simultaneously improve sensing resolution (spatial

and temporal), accuracy, and energy efficiency. Smart process-

ing techniques at tier-2 consist of detecting faulty sensors,

denoising, filtering, encryption (if needed), compression and

other techniques needed to process “big-data” coming from

tier-1 sensors. Developing these data processing/computational

techniques for tier-2 CHs will be considered as future work

and outside the scope of this paper.

Upgrades to the sensing tier (Tier 1, composed of analog

sensors) can be made independently without affecting the

computing tier (Tier 2, composed of digital CHs), and vice-

versa. This is possible because the sensors only sense and

do not have any intelligence. So it should be easy to replace

them with other sensors. Similarly, upgrades to the comput-

ing capabilities of the CHs can be made without affecting

the analog sensors. Three-tier architecture also makes the

WSNs incrementally deployable: any WSN following this

new paradigm can easily coexist (backward compatible) with

already deployed WSNs in existing CPS’s. In a world of

incremental deployment, we believe this marks a major contri-

bution towards low-cost, high-confidence, scalable CPS’s. We

claim that the broader applications of our proposed architec-

ture include low-cost, high-confidence monitoring for urban

infrastructure, precision agriculture, intelligent transportation

systems, and military surveillance, to name a few.

In agreement with the Latin phase, Natura non facit saltus

(“nature does not make jumps”), our sensors are analog, as

measurements are taken for the real world, which is inher-
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Fig. 2: Shannon’s Rectangular Mapping. Sensed point is

mapped to a point closest on the rectangular curve and the

length of the curve from origin to the mapped point (bold

part) is transmitted instead of two sensed values. Odd level

voltages are generated using Type-1 VCVS while that of even

level are generated using Type-2 VCVS.

ently analog. Compared to Commercial Off-The-Shelf (COTS)

motes, the energy consumption of pure analog sensing can be

much lower: an all-analog node should consume, in theory,

on the order of mW or less power (which is comparable

to the power that can be harvested using, for example, a

compact solar panel), while a COTS nodes power consumption

is typically on the order of several tens of mW . Considering

the sensors’ low-power and low-cost benefits these can be

either rechargeable or disposable. Broader applications of

our approach include low-cost, high-confidence monitoring

for intelligent transportation systems, military surveillance,

urban infrastructure, precision agriculture, and even body area

networks (with no fusion center). We believe it will provide

significant benefits in terms of ease of upgrade and scaling out

of WSNs in addition to adaptive sensing resolution, accuracy,

and energy efficiency.

III. LOW-POWER TIER-1 SENSING

We first discuss the reasons for choosing AJSCC by giving

an overview of the potential advantages of AJSCC. Then, we

introduce our proposed circuitry for realizing AJSCC.

A. Analog Joint Source Channel Coding (AJSCC) in WSNs

AJSCC adopts Shannon mapping as its encoding

method [11], [14]. Such mapping, in which the design of

rectangular (parallel) lines can be used for 2:1 compression

(Fig. 2), was first introduced by Shannon in his seminal

1949 paper [21]. Later work has extended this mapping to

a spiral type as well as to N:1 mapping [9]. The Shannon

mapping has the two-fold property of (1) compressing the

sources (by means of N:1 mapping) and (2) being robust to

(wireless) channel distortions as the noise only introduces

errors along the parallel lines (or the spiral curve). Joint

analog source-channel coding achieves optimal performance

in rate-distortion ratio. It is known that to achieve optimal

performance in communications using separate source and

channel coding, complex encoding/decoding and long-block

length codes (which cause significant delays) are required.
It is worth noting that there are information-theoretic anal-

yses on whether the separate source-channel coding deployed

in real communication systems is optimal or not. Nazer and

Gastpar [16] argue that, for a Gaussian sensor network, analog-

scaled transmission performs exponentially better than a sep-

arate source-channel coding system. In [13], a sensing system

is studied for single memoryless Gaussian source, multiple

independent sensors with Gaussian noise, and a cluster head

node with standard Gaussian multiple-access channel. It is

stated that the optimal communication strategy is analog scaled

transmission, where each sensor transmits a scaled signal

of the noisy sensed signal to the communication channel

connecting sensor nodes with the cluster head node. Also,

analog communications can be optimal in certain circum-

stances, e.g., when Gaussian samples are transmitted over

an Additive White Gaussian Noise (AWGN) channel and the

source is matched to the channel. As mentioned earlier, AJSCC

is resilient to channel noise because the channel noise only

introduces errors along the spiral curve or the parallel lines.

In contrast, linear mapping techniques such as Quadrature

Amplitude Modulation (QAM) have errors spread on the

constellation plane. Therefore channel noise has less effects

on the error performance for Shannon mapping than linear

modulation schemes.
All these reasons motivated us to choose the combination

of analog communication and Joint Source-Channel Cod-

ing (JSCC), hence AJSCC, as sensing/transmission scheme

for our low-cost, low-power Tier-1 analog sensors. AJSCC

performs analog compression at the symbol level. Also, the

fact that symbols are memoryless makes it a low-latency and

low-complexity solution that is very suitable for practical

implementations. Last, but not least, AJSCC schemes can

also achieve performance close to the Optimal Performance

Theoretical Achievable (OPTA) for Gaussian sources [10],

[15], thus making it very attractive for our Tier-1 sensing.
AJSCC requires simple compression and coding, and low-

complexity decoding. To compress the source signals (“sens-

ing source point”), the point on the space-filling curve with

minimum Euclidean distance from the source point is found

(“AJSCC mapped point”), as in Fig. 2. The two most-widely

adopted mapping methods are rectangular (Fig. 2) and spiral

shaped: in the former, the transmitted signal is the “accumu-

lated length” of the lines from the origin to the mapped point;

while in the latter it is the “angle” that uniquely identifies

the mapped point on the spiral. At the receiver (a CH), the

reverse mapping is performed on the received signal using

Maximum Likelihood (ML) decoding. The error introduced by

the two mappings is controlled by the spacing ∆H between

lines and spacing ∆S between spiral arms, respectively: with

smaller ∆H (or ∆S), approximation noise is reduced; however,

channel noise is increased as a little variation can push the

received symbol to the next parallel line (or spiral arm).

In addition, the mapping signal range would also increase,

pushing more resources for transmission.
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TABLE I: Relationship to prior work.
Related

work

Description Comparison with the proposed research

Patent [22] Digital video transmission by AJSCC/Shannon mapping Digital implementation of AJSCC

Patent [17] Wireless analog sensors for implantation application No source and channel coding considered

Paper [12] Software-defined radio system for AJSCC in indoor channel Digital implementation of AJSCC

Paper [19] Digital optical communication system with AJSCC encoding for image
transmission

Digital implementation of AJSCC

Product [7] WSN340: Active MCU power consumption: 1.1 mW Our proposed sensor will consume ≈ 130 µW with state-of-the-art low-

power components (OpAmps, etc.) [28]. There is potential to reduce this

even further (< 50 µW) when all the functionalities are integrated into

a monolithic component using analog IC design.

Product [18] Mantaro CoSeN: Active MCU power consumption: 2.4 mW

Product [6] Telos RevB: Active MCU power consumption: 6 mW

Product [5] MICA2: Active MCU power consumption: 26.4 mW

B. Proposed Circuit Realization of AJSCC

A low-power, low-cost, and high-accuracy analog circuit

needs to be designed as existing AJSCC-hardware solutions

are all digital and power hungry as they combine both sens-

ing/communication and processing per the traditional architec-

ture. For example, a Software-Defined Radio (SDR) system

to realize AJSCC mapping has been reported in [12]. The

mapping was also recently implemented in an optical digital

communication system in [19] and has been combined with

Compressive Sensing (CS) in [8] to improve robustness against

channel noise. Shannon mapping encoding was adopted in [22]

for a digital video transmission. All these design solutions use

digital microcontrollers, which are quite power hungry: for

example in [23], with a 1.8 V supply, the power consumption

of a microcontroller alone can be as high as 450 mW
(250 mA× 1.8 V); not to mention that the actual power con-

sumed will be even greater when one considers other power-

hungry digital components such as ADC/DAC/FPGA/DSP.

Table I compares our work with the existing patents, papers

and products which are close to our work. To the best of our

knowledge, none of them implemented Analog Joint Source

Channel Coding using analog circuitry to achieve low-power,

low-cost sensing as we did. While comparing our product with

the TI sensor in [19], we understand that the TI sensor is doing

many other processing jobs apart from just sensing, justifying

it’s cost and power consumption. However, it is to be noted

that one of our main ideas in this paper is to deviate from

such architecture, i.e., to split the two functionalities - sensing

in tier-1 and processing in tier-2. We have also successfully

demonstrated a working prototype using that architecture.

Because of this, our sensors that are to be deployed on the

field become less expensive and less power-hungry lending

themselves well to high-density deployment which in turn

leads to highly accurate spatial and temporal sensing of the

environment.

Figure 2 shows the Shannon’s rectangular mapping curve

applied to the range of temperature voltage, VT and humidity

voltage VH . Let’s denote the cross point as the actual sensed

point. As Shannon Mapping maps the actual sensed point to

the closest point on the rectangular curve, the circle denotes

the mapped point. Hence 2D information consisting of VT

and VH has been compressed to 1D information, the length

of the curve from the origin to the mapped albeit with some

quantization error. This length of the curve can henceforth

be used for modulation and transmission instead of VT and

VH . The receiver upon receiving this 1D information decodes

it back to 2D information using simple modulus calculation.

The number of levels, the encoded length and the quantization

error in VH are determined by resolution sought in VH (∆H ).

To the best of our knowledge, there has been no prior work

on how to realize this length in practice using analog circuitry.

We have come up with an innovative solution to calculate

the length of this curve as a function of the mapped VT and

VH values. Let’s assume the mapped point lies on level 1.

In this case the encoded length varies proportional to VT .

When the mapped point lies on level 2 it varies inversely

proportional to VT (if the level 1 length is subtracted from

it). In fact, this basic behavior can be observed at all odd

and even levels respectively (i.e., assuming the total length of

levels below it are subtracted from the encoded length). If we

consider the mapped point lying on some arbitrary level, the

encoded length would be equal to the sum of lengths of all

levels below it and the length either proportional (odd level)

or inversely proportional (even level) to VT . This means there

are two components that determine the encoded length - the

level on which the mapped point lies and whether the level is

odd or even. The latter is easily found if we assign odd and

even indicators to all levels which is trivial when we know

the number of levels (i.e., ∆H ) in advance and we make this

assumption as of now. The former can be found by comparing

VH with threshold voltages of the levels (dashed lines in

Fig. 2). Hence each level contributes one of these three values

to the total encoded length: zero, partial (how much is based

on whether odd or even level) and full level length. Using this

idea we came up with a circuit realization for each level. For

the partial length case to realize proportionality, we made use

of a Voltage Controlled Voltage Source (VCVS) which outputs

voltage that is proportional to the input voltage. Let’s call this

Type-1 VCVS and for odd levels this can be used directly.

However for even levels, we need another type of VCVS, we

call it Type-2 VCVS that gives output inversely proportional

to the input. For these reasons, we use odd (even) level and

Type-1 (Type-2) level interchangeably. We sometimes refer the

combination of two consecutive levels (Type-1 and Type-2) as

a single stage.

With this information we can have the following circuit

for each level to determine its contribution to the encoded

length/voltage. Fig. 3 shows the proposed circuit realization

for level 1 and level 2 (stage 1). We can have an analog multi-

plexer that takes 0, VR and Type1,out (for odd level)/Type2,out
(for even level) as inputs and outputs one of these values

based on it’s select signals. Here VR, the saturation voltage

corresponds to the voltage that is proportional to the full length

of the level. The select signals are generated by comparing

VH with threshold voltages of the levels. Finally the voltage
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Fig. 3: Proposed Analog Circuit for Shannon’s Rectangular

Mapping (only one stage is shown). VH in comparison with

threshold voltages generates select signals for the two analog

multiplexers to decide which of the three inputs goes to the

output. The outputs of both muxes are added to give this

stage output. Similar outputs from higher stages are added

to give AJSCC encoded voltage which is FM modulated and

the mixed with semiorthogonal codes before RF transmission.

contributions from all levels are added to give the AJSCC en-

coded voltage which is then modulated by frequency position

modulation, and sent to RF module for transmission.

It can be seen that our sensor node will be composed of

low-cost mapping circuits, FM modulation circuits, and RF

circuits. No microcontroller is needed, and no FPGA and DSP

chips are needed either. Hence, the total power consumption

of our design could be much lower than that of present digital

sensor nodes, and the fabrication cost will also be much lower

if fabricated on an Integrated Circuit (IC). A low-cost, compact

energy-harvesting unit for powering the sensor system can be

used, e.g., a tiny solar cell—given the sensor scale of a few

cm2—that can provide mW-level power supply thus extending

its lifetime to years. For more details about our prototype all-

analog tier-1 sensor, including Spice, breadboard and Printed

Circuit Board (PCB) implementation and experimental results,

please see [28].

C. AJSCC Parameter Optimization

In this section, we theoretically analyze the AJSCC system

to derive at optimum parameters (number of levels or the spac-

ing ∆ between parallel lines). Let us assume two independent

sources, X1 and X2, whose distribution is unknown. The two

sources are sensed and converted to voltages by the sensing

units. Let’s denote the two sensed signals by x1 and x2 and

assume their ranges are [0, V1], and [0, V2] respectively. The

AJSCC circuit with spacing ∆ between parallel lines outputs

the voltage Vd given by,

Vd =

{

kV1 + x1 k is even
kV1 + V1 − x1 k is odd

(1)

where the parameter k = floor(x2

∆
)

We have an assumption that the encoded signal has an

amplitude constraint Dmax. This is because the FM modulator

Fig. 4: Signal chain block diagram. AJSCC voltage is FM

modulated and transmitted in the tier-1 sensor. Received

baseband signal in tier-2 digital CH is sampled using ADC

to find peak frequency using FFT. Peak frequency is mapped

back to AJSCC voltage which is then decoded to sensor values.

can only accept a signal within certain amplitude. If we denote

the number of levels by L, this constraint can be denoted by

V1L ≤ Dmax. The extreme case will be V1L = Dmax where

V1L is the maximum output signal of AJSCC encoder. Due

to this constraint, if we increase the parameter L, the voltage

V1 = Dmax/L for x1 will be reduced. V2 is a constant value,

and the line spacing ∆ = V2/(L− 1).

The AJSCC encoding and decoding by the rectangular curve

is depicted in Fig. 4. The output of the AJSCC circuit is

first frequency modulated and is then sent to RF circuitry

for wireless transmission over a noisy wireless channel. At

receiver, the baseband signal from RF is sampled by ADC

and is sent to FFT block for frequency peak detection. Once

the base-band frequency is determined, the AJSCC decoder

finds the corresponding AJSCC voltage and then decodes it

back to give reverse mapped signals x̂1 and x̂2.

We have an interesting tradeoff behavior here. With increas-

ing L, the MSE of x2 drops as the spacing between the lines

(∆) reduces. However, due to the constraint of the transmitted

signal, the voltage representing x1 will be smaller which will

introduce higher error in MSE for x1. With decreasing L, the

quantization error in x2 increases leading to high MSE for

x2d. This tradeoff behavior has been studied via MATLAB

simulations to find an optimal L. We assumed two sources

with uniform distribution between [0,1]. The parameter Dmax

is set to 5. The signal Vd generated by AJSCC mapping is

FM modulated, in which a scaling factor is applied to convert

voltage to frequency. Assuming linear transformation from

voltage to frequency, and a scaling factor of 1000, the fre-

quency range is from 0Hz to 5kHz. The SNR in the simulation

is defined as the transmitted signal power to the noise power

in the channel. The transmitted signal power is assumed to

be unity for FM modulation of continuous cosine wave of

amplitude equals to 1. The noise power is defined by the
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Fig. 5: MSE vs. parameter L, for SNR = −20 dB; Observed

optimum L is about 73.

variance of the Gaussian noise. It is assumed that the channel

is static channel between the sensor to the cluster head. Since

there is no sensor movement and the environment is also

static, it can be assumed that the channel gain is a constant

value with phase shift. In the receiver, the ADC samples at a

frequency of 65.536kHz and the frequency resolution of the

signal is assumed as 1Hz giving FFT size as 65536. Once the

peak frequency is determined, the AJSCC decoder decodes the

baseband signal by first reverse mapping the frequency back

to voltage and then voltage back to x̂1 and x̂2. Fig. 5 shows

the MSE-vs-L tradeoff behavior for an SNR value of -20 dB.

We have observed that this FM modulated system achieves

a low sum MSE of 3 ∗ 10−4, but requires large number of

parallel lines, around 73, to achieve this minimum MSE. The

minimum sum MSE and the corresponding L doesn’t change

much for SNRs of −20dB, −10dB and 0dB. The mapping

can be extended to more than two sources. In three sources

case, two sources will be discrete, and one will be continuous.

Two modulus calculations need to be performed at the receiver

for three source scenario. The above simulated system can

be generalized to a sensor network, where different sensors

transmit the FM modulated signal in overlapped frequency

bands. The sensor signals are separated by semi-orthogonal

signals mixed with the transmitted signal. In receiver, there

will be interference from other sensors, thus the SNR will be

SINR (Signal to Interference-plus-Noise Ratio). The level of

interference is determined by the semi-orthogonal signals.

IV. PERFORMANCE EVALUATION

We first describe the Printed Circuit Board (PCB) tier-1

sensor we developed along with power and cost analysis. Later

we present some performance results of our Tier-1 sensor

prototype when one, two and three of them communicate with

a simple tier-2 receiver using FDMA.
Printed Circuit Board Sensor: We first tested our circuit

idea (presented in Sect. III-B) on breadboard and obtained

satisfactory results. This motivated us to go a step further to

implement the full circuit (all stages) along with the RF part

(as a COTS component) i.e., a full-fledged sensor on a PCB

entirely designed by us (see Fig. 6). This tier-1 sensor consists

Fig. 6: Prototype: 3 Tier-1 sensors (right bottom) communi-

cating to a Tier-2 receiver CH (left bottom). The baseband

signals of all three channels are captured using NI Digital

Acquisition System and processed/decoded on host computer

using LabView/MATLAB.

of three major blocks - AJSCC encoding block, DC-to-sine

wave conversion circuit and an RFIC module. The AJSCC

encoding block takes temperature and humidity voltages as

input and outputs the AJSCC encoded voltage. It implements

11 VCVS levels in total as per the setup described above

(∆H = 0.3V ). It also has option to take input from two

external sources for testing and verification purposes. Then,

a sine wave whose frequency is proportional to the AJSCC

voltage is generated using a COTS timer chip. This sine wave

is given as input to the COTS RF module which frequency

modulates it and transmits the modulated signal at 2.4 GHz

ISM band. FM requirement is to be noted here as we have

shown in Sect. III-C that it has robust performance even at

low SNR conditions.

Sensing Power and Cost Estimation: We analyze the power

consumption of this tier-1 analog sensor by comparing it

with that of existing sensors. State-of-the-art sensor nodes

consume ≈ 0.5 mA in active mode and a few µA in sleep

mode with supply voltages in the range 1.8 − 3.0 V, i.e.,

0.9−1.5 mW without taking into account the radio power: the

active power consumption is mainly due to the microcontroller

and Analog-to-Digital (A/D) conversions ( [4], [18]). We have

listed some of the well-known wireless sensor nodes with their

active MCU current consumption in Table. I for comparison.

In contrast, our all-analog sensor does not use power-hungry

A/D’s or microcontrollers (MCUs). The current drawn by the

AJSCC baseband circuitry (using COTS OpAmps, Multiplex-

ers, etc.), i.e., the entire board excluding the RFIC module,

is ≈ 3 mA with a supply voltage of 5 V (equivalent to

≈ 15 mW); the cost of the AJSCC PCB is about $25. These

numbers, which are high because of (a) the use of COTS

components and (b) duplication of hardware for each stage,

can be reduced drastically if Integrated Circuit (IC) design is

adopted. While our implementation serves as feasibility study,
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Fig. 7: SDR-vs-CSNR performance for different number of tier-1 sensors communicating to a digital cluster head using different

channels: (a)1 sensor (b) 2 sensors (c) 3 sensors. Note the large jumps in SDR (seen in (a)) owing to similar behavior in SDR

of VH which is because of the discreteness in V̂H
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Fig. 8: Measured SDR-vs-CSNR performance for one, two and

three Tier-1 sensors communicating with a Tier-2 CH. Due to

receiver diversity, SDR of two and three sensor cases is high

compared to one sensor case. Due to reduced performance, the

one-sensor case exhibits a sharp decline in SDR value. The

observed step is because the decoded VH values are discrete

we believe the power consumption can be reduced to < 50 µW
if (1) our circuit is redesigned using the latest nm-technology

components (for OpAmps, Comparators, and Multiplexers) (2)

our circuit is redesigned integrating all the functionality into a

single Integrated Circuit (IC) rather than using discrete COTS

components (3) hardware duplication issue is solved and we

have some preliminary ideas too on that front (possibility of

< 10 µW)

Let us provide a rough estimate using just (1) above:

our circuit in total (5 and half stages/11 levels) consists of

16 OpAmps, 17 Comparators, and 11 Multiplexers, where

OpAmps are clearly the major contributors to the over-

all power consumption. There are many low-power designs

proposed for these components. For example, a low-power

OpAmp [26] consuming about 8 µW, a comparator [24] con-

suming about 12.7 nW, and an analog multiplexer (ADG704)

consuming about 10 nW can be used for our circuit resulting

in a power consumption of ≈ 130µW. We are also optimistic

that the sensor cost would reduce to less than $5 leveraging

economies of scale via mass production using the latest IC

technology. Achieving both goals will enable critical futuristic

applications such as persistent wireless sensing and IoT-based

solutions.

Prototype Performance: We have developed a simple

prototype (Fig. 6) consisting of three tier-1 sensors commu-

nicating to a simple tier-2 Cluster Head (CH). The receiver

CH, also designed by us, has three antennas for receiving the

signals of the three sensors. There are three RF receivers to

downconvert the RF signals received by the three antennas.

The baseband signals at the output of RF receivers (which

are supposed to be sine waves as in the case of Tx) are

then fed to NI Digital Acquisition (DAQ) system to detect

their peak frequency in a LabView program. MATLAB is

used inside LabView to perform spectral analysis of the signal

(such as SNR calculation) and also to map back the detected

peak frequency to DC voltage (AJSCC voltage) and then

decode the AJSCC voltage back to temperature and humidity

voltages, [V̂T , V̂H ]. Mean Square Error (MSE) and the Signal

to Distortion Ratio (SDR) has been calculated as follows.

MSE = (VT − V̂T )
2 + (VH − V̂H)2

SDR = 10 log10(
1

MSE
)

We measured and compared the prototype’s performance

for cases when one, two and three sensors are communicating

simultaneously to digital CH using FDMA (different chan-

nels). Fig. 7(a), Fig. 7(b), Fig. 7(c) show the SDR-vs-CSNR

performance for these three cases respectively. Here CSNR

(Channel Signal-to-Noise Ratio) is the SNR of the baseband

signal at the output of receiver RF module. SDR and CSNR

values are plotted by varying the distance between Tx and

Rx and fixing VT and VH . We observe that at high CSNR,

combined SDR is limited by that of VH . This is because VH is

near the threshold voltage (rather than level voltage) resulting

in large quantization error in VH and so very less SDR. Also

in (a), we see a step, this is because SDR of VH is discrete.
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When CSNR varies, VH is decoded to discrete levels instead

of a continuous value resulting in discrete variation in its SDR.

The decoded VH value spreads over two levels in (a) (showing

a huge step) while it is at single level in case of (b) and (c).
Figure 8 compares the SDR-vs-CSNR performance of one,

two and three sensors communicating to digital CH using

different channels showing the effect of receiver diversity. Sum

SDR for the three cases in Fig. 7 are plotted in a single figure

for comparison. We can clearly observe that, three sensor

case has better performance than 2 sensor case which in turn

is far better than one sensor case due to receiver diversity.

Also SDR of one sensor case quickly diminishes as SNR

is reduced (due to discreteness in VH ) while the other two

cases are relatively robust against this behavior. Since our

architecture allows high density deployment, we believe the

benefits of receiver diversity can be harvested. Finally these

results show that (i) it is indeed possible to build a low-power

and low-cost tier-1 sensor (ii) several such tier-1 sensors can

communicate to a tier-2 CH using FDMA. We would like

to mention that we designed tier-1 analog sensors only as a

feasibility study (we are not electrical engineers to design it

perfectly). We are confident that far impressive results can be

achieved with dedicated IC design for tier-1 sensors that would

also significantly reduce cost and power.

V. CONCLUSIONS AND FUTURE WORK

A novel multi-tiered architecture has been proposed for

Wireless Sensor Networks (WSNs) that separates sensing and

computational aspects. In order to achieve low-power and

low-cost objectives, a sensing paradigm that is based on

AJSCC (Shannon Mapping) has been used for Tier 1 whose

main function is to sense, encode and transmit values (dumb

sensing with no intelligence) to Tier 2 consisting of resource-

rich digital cluster heads with powerful signal processing

capabilities. We have also proposed a simple analog circuit to

realize the rectangular type of AJSCC mapping. This circuit

for tier-1 sensors has also been realized on a Printed Circuit

Board for feasibility study. A simple prototype consisting of

three these Tier-1 sensors communicating to a simple Tier-2

receiver using FDMA has been demonstrated to satisfactorily

prove the feasibility of our low-power, all-analog sensing idea.
As future work, we will develop “smart processing” algo-

rithms at tier-2 for fault-detection, denoising, filtering, etc. We

will also investigate the use of this framework to monitor a

full-scale bridge superstructure subjected to accelerated aging

at Rutgers University. We will carry this out at a unique

facility, the Bridge Evaluation and Accelerated Structural

Testing (BEAST) [3], constructed by the Center for Advanced

Infrastructure and Transportation (CAIT). Tier-1 sensors in

this case, will be installed at various places on the bridge to

sense and transmit pressure/strain data to mobile Tier-2 CHs

which will process this data to extract meaningful information.

We also plan to further investigate using Frequency Position

Modulation (FPM) for Tier-1 sensor multiplexing and also

realize it in hardware to assess the true performance.
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