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Abstract—Recently, Mobile-Edge Computing (MEC) has
arisen as an emerging paradigm that extends cloud-computing
capabilities to the edge of the Radio Access Network (RAN)
by deploying MEC servers right at the Base Stations (BSs).
In this paper, we envision a collaborative joint caching and
processing strategy for on-demand video streaming in MEC
networks. Our design aims at enhancing the widely used Adaptive
BitRate (ABR) streaming technology, where multiple bitrate
versions of a video can be delivered so as to adapt to the
heterogeneity of user capabilities and the varying of network
condition. The proposed strategy faces two main challenges: (i)
not only the videos but their appropriate bitrate versions have
to be effectively selected to store in the caches, and (ii) the
transcoding relationships among different versions need to be
taken into account to effectively utilize the processing capacity at
the MEC servers. To this end, we formulate the collaborative joint
caching and processing problem as an Integer Linear Program
(ILP) that minimizes the backhaul network cost, subject to the
cache storage and processing capacity constraints. Due to the NP-
completeness of the problem and the impractical overheads of the
existing offline approaches, we propose a novel online algorithm
that makes cache placement and video scheduling decisions
upon the arrival of each new request. Extensive simulations
results demonstrate the significant performance improvement of
the proposed strategy over traditional approaches in terms of
cache hit ratio increase, backhaul traffic and initial access delay
reduction.

Index Terms—Collaborative caching; adaptive bitrate stream-
ing; multi-bitrate video; mobile-edge computing; joint caching
and processing.

I. INTRODUCTION

Motivation: Over the last few years, the proliferation

of Over-The-Top (OTT) video content providers (YouTube,

Amazon Prime, Netflix,...), coupled with the ever-advancing

multimedia processing capabilities on mobile devices, have

become the major driving factors for the explosion of on-

demand mobile video streaming. According to the prediction

of mobile data traffic by Cisco, mobile video streaming will

account for 72% of the overall mobile data traffic by 2019 [1].

While such demands create immense pressure on mobile net-

work operators, distributed edge caching has been recognized

as a promising solution to bring video contents closer to the

users, reduce data traffic going through the backhaul links

and the time required for content delivery, as well as help

in smoothing the traffic during peak hours. In wireless edge

caching, highly sought-after videos are cached in the cellular

Base Stations (BSs) or wireless access points so that demands

from users to the same content can be accommodated easily

without duplicate transmissions from remote servers.

Recently, Mobile-Edge Computing (MEC) [2]–[7] has been

introduced as an emerging paradigm that enables a capillary

distribution of cloud computing capabilities to the edge of

the cellular Radio Access Network (RAN). In particular,

the MEC servers are implemented directly at the BSs using

generic-computing platforms, enabling context-aware services

and applications in close-proximity to the mobile users. With

this position, MEC presents an unique opportunity to not only

implement edge caching but also to perform edge processing.

In this paper, we aim at exploiting MEC storage and process-

ing capabilities to improve caching performance and efficiency

beyond what could be achieved using traditional approaches.

Due to the heterogeneity of users’ processing capabilities

and the variation of network condition, user preference and

demand towards a specific video might be different. For

example, users with highly capable devices and fast network

connection usually prefer high resolution videos while users

with low processing capability or low-bandwidth connection

may not enjoy high quality videos because the delay is

large and the video may not fit within the device’s display.

Leveraging such behavior, Adaptive Bit Rate (ABR) streaming

techniques [8], [9] have been widely used to improve the

quality of delivered video on the Internet as well as wireless

networks. In ABR streaming, the quality (bitrate) of the

streaming video is adjusted according to the user device’s

capabilities, network connection, and specific request. Existing

video caching systems often treat each user request equally

and independently, whereby each bitrate version of a video is

offered as a disjoint stream (data file) to the user, which is a

waste of storage.

Our vision: In contrast to most of the existing works on

video caching which are not ABR-aware and mainly rely on

the “store and transmit” mechanism without any processing,

our work proposes to utilize both caching and processing

capabilities at the MEC servers to satisfy users’ requests for

videos with different bitrates. To the best of our knowledge, we

are the first to introduce collaborative joint caching and pro-

cessing in MEC networks. Specifically, owing to its real-time

computing capability, a MEC servers can perform transcoding

of a video to different variants to satisfy the user requests.

Each variant is a bitrate version of the video and a higher

bitrate version can be transcoded to a lower bitrate version.
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For example, a video at bit-rate of 5 Mbps (720p) can be

transcoded from the same video at bit-rate of 8 Mbps (1080p).

Moreover, we extend the collaborative caching paradigm to a

new dimension where MEC servers can assist each other to

not only provide the requested video via backhaul links but

also transcode it to the desired bitrate version (for example,

when the requesting server’s processing load is full). In this

way, the requested variant of a video can be transcoded by

any MEC server on the delivery path from where the original

video is located (data provider node) to the home MEC server

(delivery node) of the end user. The potential benefits of this

strategy is three-fold: (i) the original remote content server

does not need to generate different bitrate versions of the same

video, (ii) users can receive videos that are suited for their

network condition and multimedia processing capabilities as

content adaptation is more appropriately done at the network

edge, and (iii) collaboration among the MEC servers enhances

cache hit ratio and balance processing load in the network.

Challenges and contributions: The proposed strategy,

however, faces several challenges. Firstly, caching multiple

bitrate versions of the videos incurs high overhead in terms

of storage. Although hard disk is very cheap nowadays, it is

neither cost-efficient nor feasible to store all these files. Sec-

ondly, real-time video transcoding is a computation-intensive

task. Transcoding of a large number of videos simultaneously

might quickly exhaust the available processing resource on

the MEC servers. Therefore, it is very important to design a

caching and request scheduling scheme that efficiently utilizes

both the given cache and processing resouces. To this end,

we formulate the collaborative joint caching and processing

problem as an Integer Linear Program (ILP) that minimizes

the backhaul network cost, subject to the cache storage and

processing capacity constraints. Due to the NP-completeness

of the problem and the impractical overheads of the existing

offline approaches, we adopt the popular Least Recently Used

(LRU) caching policy and propose a novel online video

scheduling algorithm that makes decision upon arrival of each

new request. It should be noted that our approach does not

need a-priori information about the content popularity and

request arrivals as commonly assumed.

Related Works: In general, content caching has been exten-

sively studied in the context of Information Centric Network

(ICN) (see for example [10], [11] and the references therein).

In [12], [13], the authors develop game theoretic models to

evaluate joint caching and pricing strategies among access

networks, transit networks and content providers in an ICN.

Different from the ICN settings, considerable research efforts

have focused on content caching in wireless networks [14]–

[16], and on exploiting the backhaul links connecting the

BSs for collaborative caching [17], [18]. Recently, the authors

in [19], [20] proposes a cooperative hierarchical caching in

a Cloud Radio Access Network (C-RAN) where the cloud-

cache is introduced as a bridging layer between the edge-

based and core-based caching schemes. The authors propose a

low complexity, online cache management strategy, consisting

of a proactive cache distribution algorithm and a reactive

 
Fig. 1. Illustration of collaborative video caching and processing framework
deployed on MEC network. The cache server implemented on MEC server
acts as both RTP/RTSP client and server.

cache replacement algorithm, to minimize the average delay

cost of all content requests. Along this line, work in [21]

proposes a coordinated data assignment algorithm to minimize

the network cost with respect to both the precoding matrix

and the cache placement matrix in a C-RAN. However, the

heterogeneity of networks and user capabilities have not been

considered in these works to facilitate ABR video streaming.

To account for multi-bitrate video streaming, a number of

works have focused on Scalable Video Coding (SVC) [22]–

[24]. However, SVC is not preferred in industry in the past,

which is partly due to the lack of hardware decoding support,

and especially it may significantly increase power consumption

on mobile devices whose battery capacity is limited.

The works in [25], [26] consider caching and processing

for muli-bitrate (or multi-version) video streaming, which are

closest to our work. However they only study on one cache

entity, as opposed to the collaborative scheme of multiple

caching/processing servers in our paper. Furthermore, the

proposed technique in [26] resolves the optimization problem

from scratch every time there is a new request arrival, thus re-

sulting in re-directing large numbers of pre-scheduled requests.

On the other hand, the heuristic solution in [27] requires the

knowledge of the content popularities, which may be hard to

estimate accurately in practice.

Paper organization: The remainder of this paper is orga-

nized as follows: In Section II, we describe considered caching

system. In Section III, we formulate the joint collaborative

caching and processing problem and present the proposed

online algorithm. Section IV presents our simulation results.

Finally we conclude the paper in Section V.

II. MEC CACHING SYSTEM

In this section, we present the envisioned distributed caching

system deployed on MEC networks, followed by the settings

of the considered model.
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Fig. 2. Illustration of possible (exclusive) events that happen when a user request for a video. (a) The video is obtained from cache of the home BS; (b) a
higher bitrate version of the video from cache of the home BS is transrated to the desired bitrate version and deliver to the user; (c) the video is retrieved
from cache of a neighboring BS or from the origin content server; (d) a higher bitrate version of the video from cache of a neighboring BS is transrated using
the co-located transcoder and is then transfered to the home BS; (e) similar to (d) but the transcoding is done at the home BS’s transcoder.

A. System Architecture

As shown in Fig. 1, a MEC network consists of multiple

MEC servers connected via backhaul links. Each MEC server

is deployed side-by-side with the BS in a cellular RAN,

providing computation, storage and networking capabilities to

support context-aware and delay-sensitive applications in close

proximity to the users. In this paper, we envisage the use

of MEC servers for enabling video caching and processing.

The concept of MEC cache server is similar to the cache

proxy server in the Internet [25], however we consider these

servers in a collaborating pool that could share content and

processing resources. In particular, each cache server acts as

a client to the origin content server (in the Internet) and to

other peer cache servers. An RTP/RTSP client is built into

the server to receive the streamed content from other servers

via backhaul links and put it into the input buffer. If needed,

the transcoder will transcode the input stream to a desired

bitrate stream and pushes it out to the output buffer; otherwise

the input buffer is directly moved to the cache and/or output

buffer for transmitting to the end users. Here, an RTP/RTSP

server is built to stream the video to the end users and to other

servers. The data in the output buffer is obtained either from

the transcoder or from the cache. In Fig. 2, we illustrated the

possible (exclusive) events that happen when a user request

for a video.

Video transcoding, i.e., compressing a higher bitrate video

to a lower bitrate version, can be done by various tech-

niques [28]. Among those, compressed domain based ap-

proaches, such as bitrate reduction and spatial resolution

reduction, are the most favorable [25]. In general, video

transcoding is a computation-intensive task. The cost of a

transcoding task can be regarded as the CPU usage on the

MEC cache server.

B. Settings

In this paper, we consider a MEC network of K cache

servers, denoted as K = {1, 2, ...K}. Each cache server is

attached to a BS in the cellular RAN that spans K cells. Ad-

ditionally, k = 0 denotes the origin content server. The MEC

servers are connected to each other via backhaul mesh net-

work. The collection of videos is indexed as T = {1, 2, ...V }.

Without loss of generality, we consider that all videos have the

same length and each has L bitrate variants. Hence, the size

of each video variant l, denoted as rl [bytes], is proportional

to its bitrate. The set of all video variants that a user can

request is V = {vl |v ∈ T , l = 1, ...L}. In the subsequent

analysis, unless otherwise stated, we will refer to video and

video variant interchangeably. We consider that video vl can

be transcoded from video vh if l ≤ h and the cost (CPU

usage) of transcoding vh to vl is denoted as φhl, ∀v ∈ T and

l, h = 1, ...L. As considered in [26], we assume that phl is

proportional to rl, i.e., phl = pl = τrl. It should be noted that

this cost model can be easily extended to the case where phl
depends on both rh and rl.

In this paper, we consider that video requests arriving at

each BS following a Poisson process with rate λj , j ∈ K. The

caching design is evaluated in a long time period to accumulate

a large number of request arrivals. The set of new request

arriving at BS j in the considered time period is denoted as

Nj ⊆ V .

We consider that each user only connects to and receives

data from the nearest BS (in terms of signal strength), which

is later referred to as the user’s home BS. Further extension to

the system employing Coordinated Multi-Point transmission

(CoMP), where each user can be served by multiple BSs,

is a subject for future investigation. In the considered MEC

caching system, each cache server is provisioned with a stor-
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age capacity of Mj [bytes]. To describe the cache placement,

we define the variables cvlj ∈ {0, 1} , j ∈ K, vl ∈ V , in which

cvlj = 1 if vl is cached at server j and cvlj = 0 otherwise. The

cache storage capacity constraint at each server j ∈ K can be

expressed as,
∑

vl∈V

rlc
vl
j ≤ Mj , ∀j ∈ K. (1)

To describe the possible events that happen when a request

for video vl ∈ Nj arriving at server j, we introduce the

binary variables
{

xvl
j , yvlj , zvljk, t

vl
jk, w

vl
jk

}

∈ {0, 1}, which are

explained as follows.

• xvl
j = 1 indicates that vl can be served directly from

cache of BS j, given that cvlj = 1 (as illustrated in

Fig. 2(a)); and xvl
j = 0 otherwise.

• yvlj = 1 when vl is retrieved from cache at BS j
after being transcoded from a higher bitrate variant (as

illustrated in Fig. 2(b)); and yvlj = 0 otherwise.

• zvljk = 1 if vl is retrieved from cache of BS k 6= j, k ∈
K ∪ {0} (including the remote server, as illustrated in

Fig. 2(c)); zvljk = 0 otherwise.

• tvljk = 1 when vl is obtained by transrating a higher

bitrate version from cache of BS k 6= j, k ∈ K and

the transcoding is performed at BS k (as illustrated in

Fig. 2(d)); tvljk = 0 otherwise.

• wvl
jk = 1 when vl is obtained by transrating a higher

bitrate version from cache of BS k 6= j, k ∈ K and

the transcoding is performed at BS j (as illustrated in

Fig. 2(e)); wvl
jk = 0 otherwise.

When a video is requested, it will be served following one

of the event described above. To ensure this, we impose the

following constraint (∀j ∈ K, vl ∈ V),

xvl
j + yvlj +

∑

k 6=j,k∈K

(

zvljk + tvljk + wvl
jk

)

+ zvlj0 = 1. (2)

C. Backhaul Network Cost

Let djk denote the backhaul cost incurred when the jth

cache server retrieves a video of unit size from the kth cache

server, and let dj0 denote the backhaul cost incurred when the

jth cache server retrieves a video of unit size from the origin

content server in the Internet. If we associate a cost between

any two directly connected BSs, then for any two BSs j and

k, we can calculate djk using the minimum cost path between

j and k. In practice, dj0 is usually much greater than djk as

the backhaul link connecting a BS to the origin content server

is of many-fold further than the backhaul links between the

BSs. This makes it cost-effective to retrieve content from the

in-network caches whenever possible rather than downloading

them from the remote server. To reflect this cost model, as

considered in [17]–[19], we set dj0 ≫ djk, ∀j, k ∈ K.

The incurred backhaul cost when serving request for video

vl from BS j can be calculated as (∀j ∈ K, vl ∈ V),

Dj (vl) = rl



dj0z
vl
j0 +

∑

k 6=j,k∈K

djk
(

zvljk + tvljk + wvl
jk

)



 .

(3)

The backhaul cost reflects the amount of data traffic going

through the backhaul links, and thus the resource consumption

of the network. On the other hand, reducing the backhaul

cost (by retrieving content from shorter paths) also directly

translates to the decrease in initial delay that the users have

to wait before starting to play the videos. Therefore, it is

very important to minimize the backhaul cost of serving video

requests, which constitutes a large portion in the total backhaul

cost of a cellular network.

III. JOINT COLLABORATIVE VIDEO CACHING AND

PROCESSING

Here we formulate the collaborative joint caching and

processing problem and present the offline optimal solution,

followed by the proposed online approach.

A. Problem Formulation

To realize the envisioned joint collaborative caching and

processing in a MEC network, we now formulate the opti-

mization problem that aims at minimizing the total backhaul

cost of serving all the video requests. In particular, given the

available resources (cache storage and processing capability),

the objective is to jointly determine (i) a cache placement

policy, i.e., deciding
{

cvlj
}

and (ii) a video request scheduling

policy, i.e., deciding
{

xvl
j , yvlj , zvljk, t

vl
jk, w

vl
jk

}

. The problem

formulation is as follows,

min
∑

j∈K

∑

vl∈Nj

Dj (vl), (4a)

s.t. xvl
j ≤ cvlj , ∀j ∈ K, vl ∈ V, (4b)

zvljk ≤ cvlk , ∀j, k ∈ K, vl ∈ V, (4c)

yvlj ≤ min

(

1,
L
∑

m=l+1

cvmj

)

, ∀j ∈ K, vl ∈ V, (4d)

tvljk ≤ min

(

1,
L
∑

m=l+1

cvmk

)

, ∀j ∈ K, vl ∈ V, (4e)

wvl
jk ≤ min

(

1,
L
∑

m=l+1

cvmk

)

, ∀j, k ∈ K, vl ∈ V, (4f)

xvl
j + yvlj +

∑

k 6=j,k∈K

(

zvljk + tvljk + wvl
jk

)

+ zvlj0 = 1,

∀j ∈ K, (4g)
∑

vl∈V

rlc
vl
j ≤ Mj , ∀j ∈ K, (4h)

∑

vl∈Nj

pl



yvlj +
∑

k 6=j,k∈K

wvl
jk



+
∑

k 6=j,k∈K

∑

vl∈Nk

plt
vl
kj ≤ Pj ,

∀j ∈ K, (4i)

cvlj , xvl
j , yvlj , zvljk, t

vl
jk, w

vl
jk ∈ {0, 1} , ∀j ∈ K, vl ∈ V.

(4j)

The constraints in the formulation above can be explained

as follows: constraints (4b) and (4c) ensure availability of the

exact video variants; constraints (4d), (4e) and (4f) ensure
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the availability of the higher bitrate variants for transcoding;

constraint (4g) ensures that each request should only be

fulfilled by one unique path as mentioned in (2); constraint

(4h) ensures the cache storage capacity; finally constraint (5h)

ensures the availability of processing resource (in terms of

encoded bits that can be processed per second) for transcoding

at each cache server.

The problem in (4) is an ILP and is NP-complete, which can

be shown by reduction from a multiple knapsack problem [29].

Thus, solving this problem to optimal in polynomial time is

extremely challenging. A common approach to make such

problem more tractable is to rely on continuous relaxation

of the binary variables to obtain fractional solutions (where

a video request is served from multiple places and a video

can be partially stored in the cache). While the fractional

solutions satisfy the constraints, simply rounding them to

integer solutions will lead to infeasible solutions. Another

approach is to resolve the optimization problem everytime

there is a new request arrival; however this will result in re-

directing large numbers of pre-scheduled requests and wasting

buffer data. Another key challenge of solving problem (4)

in practice is that the complete set of request arrivals, i.e.,

Nj’s, are not known in advance. Furthermore, we make no

assumption about the popularity of the contents, and thus Nj’s

are not known probabilisticly, either.

Motivated by the aforementioned drawbacks, we adopt the

popularly used Least Recently Used (LRU) cache placement

policy [30], and propose a new online Joint Collaborative

Caching and Processing (JCCP) algorithm that makes cache

placement and video request scheduling decisions upon each

new arrival of video request. In the following, before present-

ing our proposed online JCCP algorithm, we briefly discuss

its offline counterpart to serve as a performance benchmark.

B. Offline Approach

The LRU cache placement policy fetches the video from

the neighboring caches or the origin content server upon user

request if it is not already cached at the home BS. It then saves

the content in the cache and if there is not enough space, the

entries that have been least recently used are evicted to free

up space for the newly added content. The LRU-based offline

approach to problem (4) will recompute the optimal request

scheduling everytime there is a new arrival or departure. The

offline request scheduling problem is expressed as in (5), where

N ∗
j is the set of videos currently being served at BS j ∈ K.

Note that the solution of the offline problem is optimal in

the long run. However such solution might cause re-directing

the existing video requests whenever the optimal request

scheduling solution is re-calculated, thus wasting the buffered

data at the BSs. Another drawback of the offline solution is

that the complexity of solving the problem scales with the

number of request arrivals and number of caching servers and

thus it is highly impractical to re-solve this problem, which is

an integer program, when there is a large number of request

arrivals in a very short time.

min
∑

j∈K

∑

vl∈N∗

j

Dj (vl), (5a)

s.t. xvl
j ≤ cvlj , ∀j ∈ K, vl ∈ V, (5b)

zvljk ≤ cvlk , ∀j, k ∈ K, vl ∈ V, (5c)

yvlj ≤ min

(

1,
L
∑

m=l+1

cvmj

)

, ∀j ∈ K, vl ∈ V, (5d)

tvljk ≤ min

(

1,
L
∑

m=l+1

cvmk

)

, ∀j ∈ K, vl ∈ V, (5e)

wvl
jk ≤ min

(

1,
L
∑

m=l+1

cvmk

)

, ∀j, k ∈ K, vl ∈ V, (5f)

xvl
j + yvlj +

∑

k 6=j,k∈K

(

zvljk + tvljk + wvl
jk

)

+ zvlj0 = 1, (5g)

∑

vl∈N∗

j

pl



yvlj +
∑

k 6=j,k∈K

wvl
jk



+
∑

k 6=j,k∈K

∑

vl∈N∗

k

plt
vl
kj ≤ Pj ,

∀j ∈ K, (5h)

xvl
j , yvlj , zvljk, t

vl
jk, w

vl
jk ∈ {0, 1} . (5i)

C. Proposed Online JCCP Algorithm

In the following, we present the proposed online algorithm

for the joint collaborative caching and processing problem,

which bases on the LRU cache replacement policy. The pro-

posed online JCCP algorithm makes video request scheduling

decision immediately and irrevocably upon each video request

arrival at one of the BSs.
Denote N ∗ = (N ∗

1 , ...N
∗
K) as the set of videos currently

being served in the system, where N ∗
j is served at BS j, we

can calculate the current processing load (due to transcoding)
at BS j as,

Uj(N
∗) =

∑

vl∈N∗

j

pl



y
vl
j +

∑

k 6=j,k∈K

w
vl
jk



+
∑

k 6=j,k∈K

∑

vl∈N∗

k

plt
vl
kj .

(6)

We define the closest (in terms of bitrate) transcodable

version of video vl at BS j as T (j, vl) = vh, in which,

h = argmin
m>l

cvmj s.t. cvmj = 1. (7)

For each video request vl arriving at BS j ∈ K, we present

the cache placement and request scheduling decisions made

by the online JCCP algorithm as in Algorithm 1. In particular,

the algorithm starts with empty cache at each BS and new

video fetched to each cache will be updated following the

LRU policy. For each new request for vl at BS j, if vl cannot

be directly retrieved (step 2) or transcoded (step 3) from cache

of BS j, the algorithm will search for vl or its transcodable

version from other neighboring caches. Step 6 finds the exactly

requested video vl from the neighboring caches, and if that

exists, vl will be retrieved from the cache with lowest backhaul

cost. Otherwise, a transcodable version of vl will be searched
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from neighboring caches in step 7. If the transcodable version

exists in the cache of BS k, the algorithm will select the cache

server (either server k or the requesting server j) with most

available processing resource to perform transcoding. Finally,

if vl cannot be satisfied by the cache system, it will be fetched

from the origin content server (in step 18), which incurs the

highest backhaul cost.

Algorithm 1 Online JCCP

1: Initialize: cvlj = 0, ∀vl ∈ V, j ∈ K
2: For each video request vl arriving at BS j ∈ K, proceed.

3: if cvlj = 1 then stream vl from cache of BS j to the user.

4: else if T (j, vl) 6= ∅ and Uj (N
∗) + pl ≤ Pj then

5: transcode T (j, vl) from cache of BS j to vl and

then stream it to the end user.

6: else if
∑

k 6=j,k∈K

cvlk ≥ 1 then

7: f = argmin
k 6=j,k∈K

djk s.t. cvlk = 1

8: retrieve vl from cache of BS f to BS j and then

stream it to the end user.
9: else if

⋃

k 6=j,k∈K

T (k, vl) 6= ∅ then

10: Calculate Qk (N
∗) = Pk − Uk (N

∗)− pl, ∀k ∈ K.

11: f = argmax
k 6=j,k∈K

Qk (N
∗) .

12: if Qf (N
∗) ≥ 0 then

13: transcode T (f, vl) to vl at cache of BS f .

14: retrieve vl from cache of BS f to BS j and

then stream it to the end user.
15: else continue.

16: end if

17: else

18: retrieve vl from the origin content server and then

stream it to the end user.
19: end if

20: Update cvlj , ∀j ∈ K, vl ∈ V following LRU policy.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

joint collaborative caching and processing solution under

various cache sizes, processing capacities and video request

arrival rates. We consider a MEC networks consisting of 3

MEC servers, each deployed on a BS of a cellular RAN. We

assume the video library V that consists of V = 1000 unique

videos, each having 4 bitrate variants. Like in [26], we set

the relative bitrates of the four variants to be 0.82, 0.67, 0.55
and 0.45 of the original video bitrate (2 Mbps). We assume

that all video variants have equal length of 10 minutes. The

popularity of the videos being requested at each BS follows

a Zipf distribution with the skew parameter α = 0.8, i.e,

the probability that an incoming request is for the i-th most

popular video is given as,

qi =
1/iα

∑V

j=1
1/jα

. (8)

In order to obtain a scenario where the same video can

have different popularities at different locations, we randomly

shuffle the distributions at different BSs. For each request,

one of the four variants of the video is selected with equal

probability. Video requests arrive one-by-one at each BS j
following a Poisson distribution with rate λj [reqs/min]. For

each simulation, we randomly generate 10, 000 requests at

each BS. The end-to-end latency of fetching video content

from the local BS, from a neighboring BS, and from the

origin content server are randomly assigned following the

uniform distribution in the ranges [5, 10](ms), [20, 50](ms),
and [100, 200](ms), respectively [31]. The backhaul cost dj0’s

and djk’s are set equal to the corresponding delays. In terms

of resources, we set the cache storage capacity relative to the

total size of the video library, and the processing capacity is

regard as the number of encoded bits that can be processed

per second.

In our performance evaluation, we consider the following

three important metrics: (i) cache hit ratio - the fraction of

requests that can be satisfied either by retrieving from the

cache or by transcoding; (ii) average access delay [ms] -

average latency of the contents travelling from the caches or

the origin server to the requesting user; (iii) external backhaul

traffic load [TB] - the volumn of data traffic going through

the backhaul network due to users downloading videos from

the origin server.

In the simulation results, we refer to our proposed joint

collaborative caching and processing scheme as Online-JCCP.

We compare the performance of Online-JCCP with the Offline-

Optimal solution as described in Section III-B and two base-

lines described below.

• CachePro: A joint caching and processing scheme with-

out collaboration among the cache servers, as proposed

in [26].

• CoCache: A collaborative caching scheme without

transcoding, and the LRU cache placement policy is

employed.

A. Impact of cache size and processing capacities

We compare the performance of the four considered caching

schemes in terms of cache hit ratio, average access delay and

external backhaul traffic load at different relative cache sizes

as in Fig. 3(a, b, c) and at different processing capacities

as in Fig. 4(a, b, c). From the figures, we can see that

increasing cache size and processing capacity always result

in performance improvement in all schemes. Notice that the

Online-JCCP scheme significantly outperforms the two base-

lines at a wide range of cache and processing capacities. At

moderate cache and processing capacities, the performance of

Online-JCCP scheme is slightly lower than that of the optimal

scheme; however when the cache size and processing capacity

are high, the performance of Online-JCCP is the same as that

of the optimal scheme. Notice from Fig. 4 that the performance

improvement diminishes at certain processing capacity, from

which the performance of Online-JCCP and Offline-Optimal

schemes are almost identical.
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Fig. 3. Performance comparison of different caching schemes when increasing relative cache capacity at each server; Pj = 10 Mbps, λj =
8 reqs/minute, ∀j ∈ K.
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Fig. 4. Performance comparison of different caching schemes when increasing relative cache capacity at each server; Mj = 20%[Library Size], λj =
8 reqs/minute, ∀j ∈ K.

B. Impact of request arrival rate

In Fig. 5, we illustrate the cache hit ratio performance of

the Online-JCCP scheme at different values of video request

arrival rate and processing capacity. It can be seen that the

cache hit ratio decreases at high request arrival rates and low

processing capacity, and it increases otherwise.

Fig. 6 illustrates the processing resource utilization of

Online-JCCP scheme versus different video request arrival

rates and cache capacities. We observe that the processing

utilization increases with arrival rate and moderate cache

capacity, however it decreases at high cache capacity. This can

be explained as when the cache capacity is high, the MEC

servers can store a large number of video variants and thus

there are fewer requests requiring transcoding.

V. CONCLUSIONS

In this paper, we propose the idea of deploying a collabo-

rative caching in a multi-cell Mobile-Edge Computing (MEC)

networks, whereby the MEC servers attached to the BSs can

assist each other for both caching and transcoding of multi-

bitrate videos. The problem of joint collaborative caching

and processing is formulated as an Integer Linear Program
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Fig. 5. Hit ratio performance of the Online-JCCP algorithm at differ-
ent values of video request arrival rate and processing capacity; Mj =
20%[Library Size], ∀j ∈ K.
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(ILP) aiming at minimizing the total cost of retrieving video

contents over backhaul links. Due to the NP-completeness of

the problem and the absence of the request arrival informa-

tion in practice, we proposed an efficient online algorithm,

referred to as JCCP, that makes cache placement and video

request scheduling decisions upon arrival of each new request.

Extensive simulation results have demonstrated the significant

performance improvement of the proposed JCCP scheme in

terms of cache hit ratio, content access delay, and external

backhaul traffic load, over the traditional approaches. Further-

more, while the performance of JCCP is slightly lower than

that of the offline optimal scheme at moderate cache storage

and processing capacities, the performance gap is approaching

zero when the caching and processing resources are high.
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