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Abstract—Intensive research effort has been dedicated to
tackle multi-hop network problems. Joint consideration across
multiple layers is required to achieve optimal performance. The
general trend in solving these problems is to develop strong
mathematical programming formulations that are capable of
providing near-optimal solutions to practical-sized problems.
For the class of problems studied, we show that a traditionally
formulated model turns out to be insufficient from a problem-
solving perspective. When the size of the problem increases, even
state-of-the-art optimizers cannot obtain an optimal solution
because of running out of memory. In this work, we show that
augmenting the model with suitable additional constraints and
structure enables the optimizer to derive optimal solutions, or
significantly reduce the optimality gap, which were previously
elusive given available memory restrictions.

I. INTRODUCTION

Optimal performance of wireless networks requires joint

consideration and optimization across multiple layers. Typi-

cally, these problems in the most complex form involve in-

teger, binary, and continuous variables. At the network layer,

rates of data sessions can be represented using continuous

variables. At the MAC layer, scheduling can be done in either

frequency or time domain if the available spectrum/time

frame is fragmented into number of small divisions. In either

case, a binary variable is needed to model the link activity

between two nodes on specific frequency band or time slot.

At the physical layer, adopting discrete power levels within

power control strategies, and exploiting different technologies

such as Multiple-Input-Multiple-Output (MIMO) and Inter-

ference Alignment (IA) mandates the use of binary and inte-

ger variables to correctly model their behavior. In most cases,

this leads to an overall formulation of a Mixed-Integer-Linear

Program (MILP) [1], [6], [7]. Moreover, if non-linear terms

appear in the formulation, advanced optimization techniques,

such as the Reformulation-Linearization Technique (RLT)

[2], enable the linearization of such terms, resulting in an

equivalently reformulated MILP, which is more convenient

for solution using powerful, robust available software.

State-of-the-art optimizers (such as CPLEX [3]) implement

a wide range of techniques and methods to solve MILPs.

Most of these algorithms are based on the well-known

Branch-and-Bound (B&B) method [4]. In this method, a

search tree is constructed by fixing one or more binary

variable to the value of zero or one. For reasonable network

sizes, the number of binary variables is relatively large.

Consequently, the search tree of the optimizer eventually

explodes if the problem instance is sufficiently challenging

so that an optimal solution is not found during the early

steps. Maintaining a large search tree requires huge amount

of memory, which can be beyond traditional desktop machine

capabilities. In such cases, the optimizer runs out-of-memory

and fails to obtain an optimal/near-optimal solution. On

the other hand, most (if not all) optimizers are designed

as general-purpose tools to tackle optimization problems.

That is, they are not tailored to efficiently solve specifically

structured problems such as the class of wireless network

problems at hand. When the network size is small, any opti-

mizer can easily provide the optimal solution for the problem

under study. However, for large networks, the optimization

tools are unable to handle the problem (e.g., in [5], the solver

could only solve the relaxed version of the MILP problem

while in [6] and [7] simulations were limited to network size

of 20 and 25 nodes, respectively).

One way to tackle this problem is to use distributed proce-

dure. Newton’s method [8], among other efficient algorithms,

can be adopted to solve linear and, more generally, convex

optimization problems in a distributed way. However, the in-

tegrality restrictions on some variables in the MILP problem

preclude a straightforward extension of this algorithm. An

optimization software does not understand the networking

problem itself; it recognizes the problem as an objective

function with a set of variables and constraints. Although

it generates different kinds of generic cuts, these cuts do not

fully exploit the inherent physical structure of the problem.

This paper makes the following contributions. We demon-

strate how the structure of the networking problem can be

exploited to generate effective specialized cuts (constraints).

The basic idea behind these cuts is to associate flows with

the link activity variables based on the inherent nature of

the problem. Moreover, we develop an effective strategy of

introducing auxiliary binary variables to induce a specialized

disjunctive constraint-based branching process. In the follow-

ing sections, a case study is considered for an MILP problem

and different strategies are introduced to implement this idea.
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It is worth mentioning here that the proposed special cuts

and strategies are also applicable to any multi-hop network

problem formulated as (or reduced to) an MILP problem. The

introduced cuts in Section III-C are applicable to any multi-

hop network problem having minimum rate requirements on

some of its data flows.

The remainder of this paper is organized as follows.

Section II reviews the basic components of mathematically

modeling a multi-hop network. Section III introduces our

specialized techniques in details. In Section IV, we introduce

a case study concerning an MILP formulation of a multi-hop

network-based problem. In Section V, we present our results.

Section VI concludes our work and indicates directions for

future research.

II. BASIC MATHEMATICAL MODEL FOR A MULTI-HOP

NETWORK

In this section, we review how we can mathematically

model data flow balance and enforce data rate requirements

of data sessions in multi-hop networks. Consider a multi-hop

network where a set N of wireless nodes are placed randomly

in bounded area. A node i is capable of directly transmit and

relay signals to a subset of the surrounding nodes Ti in its

transmission range. Also, a subset of nodes Ij can overhear

(being interfered) by a transmit node i if they fall inside the

latter’s interference range. A link (i, j) ∈ L from i to j is

defined if and only if j ∈ Ti, where L is the set of all links in

the network. We assume that the time frame is divided into

finite number of equal sized time slots T . Each link activity

at any time slot t is represented using a binary variable xij [t].
That is, xij [t] = 1 if node i transmits to node j during time

slot t, and xij [t] = 0, otherwise. We assume a static envi-

ronment where the wireless channel remains constant. Also,

the interference in the network follows the protocol model

[9]. In this model, a transmission is considered successful if

the receive node is inside the transmit node’s transmission

range, and outside the interference ranges of other non-

intended simultaneous transmit nodes. Therefore, any two

interfering links cannot be activated simultaneously. Given

these two assumptions, we can simply consider that each

link (i, j) has a constant capacity Cij when activated. There

is a set of end-to-end sessions M to transfer data through

the network. A session m ∈ M is defined by its source-

destination pair (s(m), d(m)), and its data rate r(m). Data

flows of all sessions in the network are assumed to be steady

and infinite. Without loss of generality, we also assume that

each node has infinite buffer to temporarily store the relayed

data traffic. Table I lists the relevant notation used in the

paper. The different constraints described below model the

basic behavior for a wireless multi-hop network.

Avoiding self- and mutual-interference: At any time

slot t, if node i transmits signal to node j, it cannot neither

transmit to nor receive from any other node. This can be

Symbol Definition

Ns Set of source nodes in the network
Nm Set of intermediate nodes in the network
Nd Set of destination nodes in the network
N Ns

⋃
Nm

⋃
Nd, the set of all nodes in the network

L Set of all links in the network
M Set of all sessions in the network
Ti Set of nodes within the transmission range of node i
Ii Set of nodes within the interference range of node i
T Total number of available time slots

r(m) Data rate of session m ∈ M

s(m), d(m) Source and destination nodes of session m ∈ M

xij [t] Link activity indicator for the link (i, j) in time slot t
fij(m) Data rate attributed to session m ∈ M on link (i, j)
Cij Capacity of link (i, j)

TABLE I: Notation.

expressed as follows:
∑

j∈Ti

xij [t] +
∑

k∈Ti

xki[t] ≤ 1, i ∈ N , t ∈ {1, 2, · · · , T}.

To avoid mutual interference, when a node j receives signal

from i at a time slot t, every node p 6= i, where j ∈ Ip
should not be transmitting in the same time. The following

constraint models this behavior.
∑

i∈Tj

xij [t] +
∑

q∈Tp

xpq[t] ≤ 1,

p : j ∈ Ip, p 6= i, j ∈ N , t ∈ {1, 2, · · · , T}.

Maintaining network flow balance: Denote fij(m) as

the data rate that is attributed to session m on link (i, j). We

assume that flow splitting is allowed inside the network. This

means that a data flow can split or merge at any node inside

the network at the bit level. Then, the flow balance at each

node can be maintained using the following constraints:

j 6=s(m)
∑

j∈Ti

fij(m) =

k 6=d(m)
∑

k∈Ti

fki(m),

m ∈ M, i ∈ N , i 6= s(m), d(m),

∑

j∈Ti

fij(m) = r(m), m ∈ M, i = s(m),

∑

j:i∈Tj

fji(m) = r(m), m ∈ M, i = d(m).

It is easy to show that the third constraint above can be

derived from the former two. When a session is data rate

requirement-restricted, r(m) becomes a predetermined con-

stant.

Link capacity: The total amount of data rate of different

flows on link (i, j) cannot exceed its capacity Cij . This can

be represented using the following constraint:

j 6=s(m),i6=d(m)
∑

m∈M

fij(m) ≤
1

T

T
∑

t=1

Cij .xij [t], i ∈ N , j ∈ Ti.

Objective functions: In designing multi-hop wireless

networks, several objectives can be considered. Maximizing

the total data flow rates of all sessions in the network is one
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example. Another example is to maximize the minimum data

flow rate in order to achieve fairness between sessions and

avoid starvation. We assume a general utility function U to

be maximized/minimized in order to express the complete

problem formulation.

Traditional Formulation: A general formulation of a

multi-hop wireless network can be expressed as follows:

OPT

max/min U

s.t.

Self- and mutual-interference constraints;

Network flow balance constraints;

Link capacity constraints;

In this formulation, fij(m) and r(m) are continuous vari-

ables, xij [t] are binary variables, T and Cij are constants.

The problem is in the form of MILP.

III. PROPOSED NETWORK STRUCTURE-BASED

TECHNIQUES

In this section, we derive our specialized valid inequalities

(VIs) by considering the particular inherent special structures

of a multi-hop network. We first examine the relationship

between the sets of incoming/outgoing links associated with

each node in the network. Second, we tie up the activation

of links associated with each source-destination pair in the

network. The last set of constraints relates the sessions with

data rate requirements by generating suitable lower bounds

on the number of active links associated with their source

and destination nodes.

A. Relationships between nodes’ incoming and outgoing

links

Each physical link in the network between two nodes can

be active during one or more time slots as long as this

link activation does not interfere with other active links.

The number of time slots during which this link needs

to be active (having corresponding x-variables set at one)

depends on its capacity and the amount of data flow passing

through. If we consider every single node in the network,

explicit constraints can be derived by simply exploiting the

relationship between the number of time slots during which

the incoming and outgoing links associated with this node,

are active. These constraints are presented in two different

ways in the following subsections.

1) VIs based on nodes’ incoming and outgoing links:

Let Ns the set of source nodes, Nm the set of intermediate

nodes excluding any node that acts as a source or destination

to any session, Nd the set of destination nodes. Note that the

data flows are infinite. To keep the network stable, all data

accumulated at any intermediate node should be forwarded

within one time frame. Therefore, to simplify our analysis,

we look into one time frame because the link activation

schedule in other frames will be the same. Also, the time

slot indices ignore the order of incoming and outgoing link

activation. For example, consider a time frame length of ten

time slots. If the outgoing link is activated during time slot

5, the incoming link can be activated at any other time slot

other than 5 including the slots from 6 to 10. This is because

what actually happens is that the data may arrive the node at

time slot 7 and it will be forwarded to the next node in time

slot 5 of the next frame.

For any multi-hop network, the following are implied:

1) For all intermediate nodes (excluding source and desti-

nation nodes of other sessions), if one of the incoming

links is active during one of the available time slots, at

least one of the outgoing links must be active during

at least one of the available time slots, and vise versa.

This can be expressed as follows:

∑

i:j∈Ti

T
∑

t=1

xij [t] ≥ 1 ⇔
∑

k∈Tj

T
∑

t=1

xjk[t] ≥ 1,

∀j ∈ Nm, (1)

and can be formulated as shown below.

For each j ∈ Nm:

∑

i:j∈Ti

xij [t] ≤
∑

k∈Tj

T
∑

t́=1

xjk[t́],

∀t ∈ {1, 2, · · · , T}, (2)

∑

k∈Tj

xjk[t] ≤
∑

i:j∈Ti

T
∑

t́=1

xij [t́],

∀t ∈ {1, 2, · · · , T}. (3)

2) For all source nodes, if one of the incoming links is

active during one of the available time slots, at least

one of the outgoing links must be active during at least

one of the available time slots, but not vice versa. In

this case, the source node acts as an intermediate node

for another session. This can be expressed as follows:

∑

i:s∈Ti

T
∑

t=1

xis[t] ≥ 1 ⇒
∑

k∈Ts

T
∑

t=1

xsk[t] ≥ 1,

∀s ∈ Ns, (4)

which leads to the formulation given below.

For each s ∈ Ns:

∑

i:s∈Ti

xis[t] ≤
∑

k∈Ts

T
∑

t́=1

xsk[t́],

∀t ∈ {1, 2, · · · , T}. (5)

3) For all destination nodes, if one of the outgoing links is

active during one of the available time slots, at least one

of the incoming links must be active during at least one

of the available time slots, but not vice versa. In this

case, the destination node acts as an intermediate node
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for another session. This can be expressed as follows:

∑

k∈Td

T
∑

t=1

xdk[t] ≥ 1 ⇒
∑

i:d∈Ti

T
∑

t=1

xid[t] ≥ 1,

∀d ∈ Nd, (6)

and can be formulated as specified below.

For each d ∈ Nd:

∑

k∈Td

xdk[t] ≤
∑

i:d∈Ti

T
∑

t́=1

xid[t́],

∀t ∈ {1, 2, · · · , T}. (7)

These constraints, although simple and can be derived from

the original constraints, are very unlikely to be automatically

generated by the standard, generic methods implemented

within the optimization software. However, augmenting the

original formulation with these constraints may cause a slight

degradation in the performance since the number of added

constraints is (|Ns|+ 2|Nm|+ |Nd|) ∗ T , where |Ni| is the

total number of nodes in the set Ni. As such, when they

do not offer significant reduction in the search space of the

problem’s feasible region, they can cause an overhead on

the optimizer and negatively affect its performance. However,

this occurs only in a few cases.

2) Introducing additional binary variables to facilitate

special branching strategies: Although the derived formu-

lation in Section III-A1 offers a tight model formulation,

it sometimes does not provide satisfactory performance im-

provement. We therefore propose a new strategy of introduc-

ing certain binary variables to induce a disjunctive constraint-

based branching using the developed set of cuts, which af-

fords improved performance for some difficult instances. We

motivate this strategy below and provide results in Section V

to demonstrate its utility.

First, consider the set of constraints (2). By introducing

additional binary variables, a revised set of constraints can

be modeled as follows:

1) For each j ∈ Nm:
∑

i:j∈Ti

xij [t] ≤ zj , ∀t ∈ {1, 2, · · · , T},

∑

k∈Tj

T
∑

t=1

xjk[t]− zj ≥ 0,

(8)

where zj ∈ {0, 1}. It is straightforward to check

the validity of (8) by considering the cases of zj =
0, 1. That is, when zj = 0, these constraints re-

duces to
∑

i:j∈Ti
xij [t] ≤ 0, ∀t ∈ {1, 2, · · · , T}, and

∑

k∈Tj

∑T

t=1 xjk[t] ≥ 0. The second set of con-

straints becomes redundant but the first set enforces

all xij [t], ∀t ∈ {1, 2, · · · , T}, to have the value of

zero. On the other hand, when zj = 1, the constraints

reduce to
∑

i:j∈Ti
xij [t] ≤ 1, ∀t ∈ {1, 2, · · · , T}, and

∑

k∈Tj

∑T

t=1 xjk[t] ≥ 1. Here, the first set is redundant

but the second set enforces that at least one of xjk[t]
is equal to one.

Note that the addition of such superfluous binary

variables to a model is atypical from a modeling

perspective. However, this strategy turns out to be ad-

vantageous when done in the proposed fashion because

it affords the opportunity for the solver to branch on

certain key constraints (as opposed to just branching

on variables as in the standard branch-and-bound/cut

procedure) by virtue of the usual branching on the

auxiliary binary variable. Indeed, this is evident by

examining the effect of the disjunctive constraints

imposed by (8) when considering the cases of zj equal

to zero and one.

Similarly, we can modify (3) as follows:

For each j ∈ Nm:
∑

k∈Tj

xjk[t] ≤ yj , ∀t ∈ {1, 2, · · · , T},

∑

i:j∈Ti

T
∑

t=1

xij [t]− yj ≥ 0,

(9)

where yj ∈ {0, 1}.
Likewise, we can derive similar constraints for the

source and destination nodes:

2) For each s ∈ Ns:
∑

i:s∈Ti

xis[t] ≤ zs, ∀t ∈ {1, 2, · · · , T},

∑

k∈Ts

T
∑

t=1

xsk[t]− zs ≥ 0,

(10)

where zs ∈ {0, 1}.
3) For each d ∈ Nd:

∑

k∈Td

xdk[t] ≤ yd, ∀t ∈ {1, 2, · · · , T},

∑

i:d∈Ti

T
∑

t=1

xid[t]− yd ≥ 0,

(11)

where yd ∈ {0, 1}.

The proposed auxiliary binary variables help the optimizer

improve the partitioning process in the search tree. How-

ever, if the optimization tool does not benefit from such

branching opportunities due to its internal heuristics, the

increased dimension of the problem might slightly negatively

impact its performance. In our experience, this deterioration

in performance for certain instances is outweighed by the

improvement achieved for other challenging instances.

B. VIs based on links of source and destination nodes

In this section, we jointly consider the activation of links

associated with each session’s source-destination node pair

in the network. This consideration is under two conditions.

The first condition is that at least one of the outgoing links of

the session’s source node is active during any time slot. The
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second condition is that this session’s source node is not an

intermediate node for any other session. Then, at least one of

the incoming links to the session’s destination node must be

active during at least one time slot, and vice versa. Then, for

each session, if these two conditions on the links associated

with the source node are met, we can derive a restriction on

the incoming links associated with the destination node. This

can be mathematically expressed as follows:

Defining (s, d) as the source-destination pair of the session

under consideration:
{

∑

k∈Ts

T
∑

t=1

xsk[t] ≥ 1&
∑

i:s∈Ti

T
∑

t=1

xis[t] ≤ 0

}

⇒

{

∑

i:d∈Ti

T
∑

t=1

xid[t] ≥ 1

}

.

(12)

{

∑

i:d∈Ti

T
∑

t=1

xid[t] ≥ 1&
∑

k∈Td

T
∑

t=1

xdk[t] ≤ 0

}

⇒

{

∑

k∈Ts

T
∑

t=1

xsk[t] ≥ 1

}

.

(13)

Focusing on (12), since both expressions are linear, non-

negative and integer valued,
∑

k∈Ts

∑T

t=1 xsk[t] ≤ T , and
∑

i:s∈Ti

∑T

t=1 xis[t] ≤ T , we get that (12) is equivalent to

the following:
{

∑

k∈Ts

T
∑

t=1

xsk[t] > 0&
∑

i:s∈Ti

T
∑

t=1

xis[t] < 1

}

⇒

{

∑

i:d∈Ti

T
∑

t=1

xid[t] ≥ 1

}

.

This in turn is equivalent to:
{

∑

i:d∈Ti

T
∑

t=1

xid[t] ≥ 1

}

OR

{

∑

k∈Ts

T
∑

t=1

xsk[t] ≤ 0

}

OR

{

∑

i:s∈Ti

T
∑

t=1

xis[t] ≥ 1

}

which can be modeled as follows:

h1 + h2 + h3 = 1, h ∈ {0, 1},

∑

i:d∈Ti

T
∑

t=1

xid[t] ≥ h1,

∑

k∈Ts

T
∑

t=1

xsk[t] ≤ (1− h2) ∗ T,

∑

i:s∈Ti

T
∑

t=1

xis[t] ≥ h3.

(14)

Similarly, (13) can be modeled as follows:

g1 + g2 + g3 = 1, g ∈ {0, 1},

∑

k∈Ts

T
∑

t=1

xsk[t] ≥ g1,

∑

i:d∈Ti

T
∑

t=1

xid[t] ≤ (1− g2) ∗ T,

∑

k∈Td

T
∑

t=1

xdk[t] ≥ g3.

(15)

The benefit from these constraints occurs when the source

and/or destination node of a data session are not participating

in other data sessions as an intermediate node. Otherwise,

the added constraints may result in overhead on the overall

formulation and might cause a slight degradation in the

performance.

C. VIs for data rate requirement-restricted sessions

A data session is usually defined by its source-destination

nodes pair in the network. We focus here on a data session

with a minimum data requirement. The source node of

such session can be a source of one or more other data

rate requirement-restricted sessions. Similarly, its destination

node can be a destination of one or more other data rate

requirement-restricted sessions. As a traditional node in the

multi-hop network, these source/destination nodes may relay

other sessions’ traffic in the network. Consequently, the

amount of data transmitted from a source node is lower-

bounded by the summation of the rates of sessions for which

this is the source node. Similarly, the amount of data received

by a destination node is lower-bounded by the summation of

the rates of sessions for which this is the destination node. We

can exploit this simple fact to derive special cuts as explained

below.

Denote M̂ as the set of data rate requirement-restricted

sessions (note that M̂
⋂

M = φ). Consequently, denote

r(m̂), s(m̂) and d(m̂) as the data rate, source and destination

nodes of session m̂ ∈ M̂, respectively. Also, denote fij(m̂)
as the data rate that is attributed to data rate requirement-

restricted session m̂ on link (i, j). The capacity constraint

for any source node s ∈ Ns is given as follows:

k 6=s(m̂),s6=d(m̂)
∑

m̂∈M̂

fsk(m̂) +

k 6=s(m),s6=d(m)
∑

m∈M

fsk(m)

≤
1

T

T
∑

t=1

Csk.xsk[t], (k ∈ Ts).

By summing both sides over k ∈ Ts,

∑

k∈Ts





k 6=s(m̂),s6=d(m̂)
∑

m̂∈M̂

fsk(m̂) +

k 6=s(m),s6=d(m)
∑

m∈M

fsk(m)





≤
1

T

T
∑

t=1

∑

k∈Ts

Csk.xsk[t].
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As mentioned earlier, a lower bound on the LHS of the last

inequality is given by the sum of r(m̂) over all sessions

m̂ ∈ M̂ for which s is the source.

Denoting this lower bound by Hs, we have:

1

T

T
∑

t=1

∑

k∈Ts

Csk.xsk[t] ≥ Hs =
∑

m̂∈M̂:s=s(m̂)

r(m̂).

Multiplying both sides by T and dividing both sides by

Cmax
s = max{Csk : k ∈ Ts}, we get:

T
∑

t=1

∑

k∈Ts

Csk

Cmax
s

.xsk[t] ≥
T ∗Hs

Cmax
s

.

Because Csk

Cmax
s

≤ 1, a Chvatal inequality [4] is given as

follows:
T
∑

t=1

∑

k∈Ts

xsk[t] ≥

⌈

T ∗Hs

Cmax
s

⌉

. (16)

Similarly, for any destination node d ∈ Nd, defining Hd =
∑

m̂∈M̂:d=d(m̂)

r(m̂), and Cmax
d = max{Ckd : d ∈ Tk}, we

derive
T
∑

t=1

∑

k:d∈Tk

xkd[t] ≥

⌈

T ∗Hd

Cmax
d

⌉

. (17)

Note that these constraints apply only to sources and destina-

tions of data rate requirement-restricted sessions. Particularly,

in cases when the number of such sessions passing through

the same source/destination node increases, the proposed con-

straint becomes tighter and can thereby assist in enhancing

performance.

IV. A CASE STUDY

In this work, we consider a cognitive radio (CR) network

as a case study to evaluate the effectiveness of the proposed

strategies. CR is an enabling technology for spectrum sharing

in wireless networks [10]. That is, the nodes of a primary

network usually do not fully utilize the available spectrum

all the time. Hence, secondary CR nodes communicate by

exploiting the available opportunities in time, frequency,

and space domains. The prevailing paradigm is to have

completely uncooperative primary and secondary networks.

When the primary and secondary networks are co-located

geographically, a more cooperative paradigm is to let the

secondary nodes help relaying the primary nodes’ traffic

but not vice versa [11]. Yuan et al. introduced the concept

of transparent coexistence of primary and secondary multi-

hop networks in [12]. In that work, primary and secondary

networks are completely coordinating. That is, each node in

both networks may relay data from any node that belongs

to the other network. The data rate requirement-restricted

sessions in the context of this paper are the primary sessions.

The objective in that work was to maximize the minimum

rate of the secondary sessions while maintaining all data rate

requirements of the primary sessions. For the details of the

model and description of the constraints, see [12].

Form.

Index

Description

1 OPT Maxisum/OPT Maximin

2 OPT Maxisum/OPT Maximin;2;3;5;7

3 OPT Maxisum/OPT Maximin;8;9;10;11

4 OPT Maxisum/OPT Maximin;14;15

5 OPT Maxisum/OPT Maximin;16;17

6 OPT Maxisum/OPT Maximin;2;3;5;7;14;15

7 OPT Maxisum/OPT Maximin;2;3;5;7;16;17

8 OPT Maxisum/OPT Maximin;2;3;5;7;14;15;16;17

9 OPT Maxisum/OPT Maximin;8;9;10;11;14;15

10 OPT Maxisum/OPT Maximin;8;9;10;11;16;17

11 OPT Maxisum/OPT Maximin;8;9;10;11;14;15;16;17

TABLE II: A summary of formulations.

V. PERFORMANCE EVALUATION

In this section, we present the performance of CPLEX

(v12.6) [3] in solving the cut-enhanced optimization problem

(augmented with the proposed cuts discussed in Section III)

compared to its performance when solving the original prob-

lem. The set of test cases consists of 55 randomly generated

instances (combinations of Maximin and Maxisum1 versions

of the original problem), with 11 instances each of 30, 35,

40, 45, and 50-node networks. Each network has four active

sessions: two primary and two secondary sessions where the

source and destination of each were randomly selected. We

used a cluster at VirginiaTech, called BlueRidge [13], to

run our experiments. Each experiment was executed on a

single node of BlueRidge that has 16 processors (utilized by

CPLEX when possible) and 64GB memory. This hardware

configuration is very similar to a traditional desktop machine

so that any practitioner can use the proposed algorithms to

run similar experiments without the need of state-of-the-

art cluster capabilities. Each experiment is terminated when

its run-time reaches 144 hours (this limitation comes from

the rules enforced by the BlueRidge administration), reaches

optimal solution, or runs out of memory, whatever happens

first. For the sake of clarity, Table II summarizes all problem

formulations tested in our experiments. As shown in the table,

each formulation represents either one of the two versions

of the original problem or one of the versions augmented

with one or more of the proposed sets of cuts described in

Section III.

A. Recognizing hard instances

We define “hard” instances as the ones that CPLEX could

not solve to optimality within the enforced computational

limits. Consequently, these instances were run using formula-

tions augmented with different combinations of the proposed

cuts to test their relative effectiveness and performance

improvement. In order to distinguish the hard instances

from others in the test set, each of the instance’s statistics

(number of binary variables, number of constraints, etc.) was

1The Maxisum version is very similar to the Maximin version except that
the objective function in the former is to maximize the sum of the flow rates
of secondary sessions instead of maximizing the minimum flow rate as in
the latter.

2017 13th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

149



correlated with the level of the instance’s hardness. However,

we could not derive a clear relationship using these statistics.

On the other hand, we noticed that CPLEX significantly

reduces the number of binary variables for some instances

during the preprocessing step. We found a high correlation

between the “reduced” number of binary variables and the

difficulty of the instance. That is, if the resulting reduced

number of binary variables is above a certain threshold (2000

in the problem under consideration), CPLEX could not solve

it to optimality for almost all cases because it runs out of

memory. As a result, this serves as a good test for deciding

whether an instance should be augmented with one or more

of the proposed techniques, or not (before attempting to solve

it). In the following sections, we will focus only on the

instances that CPLEX could not solve to optimality when

implementing the original formulation.

B. Potential of the proposed formulations

Augmenting the original problem with only one set of cuts

in Section III-B or III-C (Formulations 4 and 5) did not result

in considerable improvement over the original Formulation

1. Consequently, all the results presented below will focus

on the comparison between the performance of different

representations of the logical implications in Sections III-A1

or III-A2 augmented by one or more of the proposed sets

of cuts in Sections III-B and III-C. Due to space limitations,

we show detailed results for a few key formulations followed

by comparative results for all formulations. We define the

optimality gap for any maximization problem as follows:

Optimality gap = UB-LB
LB

∗ 100%

where LB (lower bound) is determined by calculating the

objective value of the best obtained solution, i.e., the in-

cumbent solution, and UB is the value of the LP-relaxation,

which is an “upper bound” for the optimal solution of the

MILP problem. We consider improvement/degradation in the

performance if the optimality gap is decreased/increased by

at least 5%, respectively.

C. Detailed results

We discuss here the effect of introducing additional bi-

nary variables to the constraints in Section III-A1 (see

Section III-A2). Table III shows some of the instances

of different network sizes where the auxiliary binary vari-

ables significantly enhanced the performance. Formulation

2 helped CPLEX significantly reduces the optimality gap

(Instances III-1, III-3, III-4, and III-5) or even reach the

optimal solution (Instance III-2). When introducing binary

variables to the added cuts (Formulation 3), CPLEX attained

optimality for most instances (and further reduced the opti-

mality gap for others). More interestingly, for Instance III-2,

CPLEX obtained the optimal solution in 82.65 hours using

Formulation 2. With Formulation 3, it attained optimality

much quicker (7.8 hours). As discussed in Section III-A2,

this improved performance when using the extra binary

Instance
Formulation 1 Formulation 2 Formulation 3
opt.
gap

time
(h)

opt.
gap

time
(h)

opt.
gap

time
(h)

III-1 118.03% 6.41 101.77% 12.5 optimal 2.63

III-2 156.86% 3.39 optimal 82.65 optimal 7.8

III-3 26.54% 12.03 13.67% 16.96 optimal 33.86

III-4 62.63% 5.70 40.93% 13.23 21.07% 24.63

III-5 290.18% 24.35 127.68% 39.64 95.1% 40.1

TABLE III: Effect of augmenting the original formulation with the
VIs w/ and w/o superfluous binary variables.

Instance
Formulation 1 Formulation 3 Formulation 9
opt.
gap

time
(h)

opt.
gap

time
(h)

opt.
gap

time
(h)

IV-1 77.98% 9.08 optimal 19.56 optimal 5.89

IV-2 98.79% 7.57 70.8% 29.02 50.4% 23.34

IV-3 25.76% 9.55 16.62% 17.98 optimal 6.00

IV-4 19.84% 11.12 optimal 47.74 optimal 34.93

IV-5 23.19% 11.28 12.96% 26.50 8.19% 20.36

TABLE IV: CPLEX’s performance with Formulations 3 and 9.

variables is likely because of the different type of branching

opportunities that are afforded by these extra variables. We

also show the significance of adding the cuts in Section III-B

to Formulations 3 (Formulation 9). As shown in Table IV,

the added cuts caused the optimality gap to further shrink

and/or reach the optimal solution in shorter time. Similar

results were obtained when the cuts in Section III-C were

used (Formulation 10). Note that longer running time does

not always mean worse performance. It can also mean

that CPLEX has more opportunity (before running out of

memory) to further reduce or close the optimality gap.

D. Comparative results

Table V summarizes statistics for the overall performance

of different formulations. Here, “p1”, “p2” and “p3” in the

table refer to the logical implications in Sections III-A,

III-B and III-C, respectively. The “+ve effect”/“-ve effect”

columns represent the percentage of instances for which the

optimality gap was enhanced/degraded, respectively. The “no

effect” column shows the percentage of instances where there

was no noticeable effect on the optimality gap. Table VI

compares the positive effect performance of the proposed

formulations for different network sizes (represented by node

count). Figure 1 shows CPLEX’s behavior under Formulation

11 for all instances. From these results, we can deduce the

following:

• Overall, for all the proposed formulations, we obtained

significant improvement between 50−65% of the in-

stances, slight degradation for about 20%, and no no-

ticeable effect on the remaining set of instances.

• The proposed formulations were most effective for net-

works of size between 30-45 nodes. When the number of

nodes is less than 30, the problem size is small enough

so that every instance can be solved to optimality using

the original formulation. When the number of nodes ex-

ceeds 45, the increased problem difficulty suggests that

further model or algorithmic enhancements are needed
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Form.
Index

Description +ve
effect

-ve
effect

no
effectp1 p2 p3

2

VIs

65.45% 21.82% 12.73%
6 X 60% 23.64% 16.36%
7 X 61.82% 21.82% 16.36%
8 X X 60% 21.82% 18.18%

3
VIs w/

binary

vars

58.18% 12.73% 29.09%
9 X 60% 21.82% 18.18%
10 X 60% 20% 20%
11 X X 50.91% 18.18% 30.91%

TABLE V: Overall performance of the formulations.

Form.
Index

Node count
30 35 40 45 50

2 45.45% 90.91% 72.73% 72.73% 45.45%

6 72.73% 54.55% 81.82% 45.45% 45.45%

7 63.64% 90.91% 81.82% 45.45% 27.27%

8 45.45% 63.64% 72.73% 72.73% 45.45%

3 72.73% 63.64% 63.64% 54.55% 36.36%

9 45.45% 72.73% 63.64% 63.64% 54.55%

10 54.55% 54.55% 72.73% 45.45% 72.73%

11 63.64% 54.55% 72.73% 36.36% 27.27%

TABLE VI: Percentage of instances exhibiting enhanced perfor-
mance.

in this case. For networks of this size, the branch-and-

bound tree gets relatively huge when approaching small

values of optimality gap despite the tightening effect of

the proposed cuts.

In general, adding cuts helps by tightening relaxations, but

also influences branching strategies and the performance of

the solver’s internal heuristics, which can have unpredictable

effects if the augmented model representation is not aligned

with the software’s built-in algorithmic strategies. Likewise,

introducing auxiliary binary variables to the formulation does

enhance the performance by providing alternative constraint-

based branching options, but adds some difficulty to the

overall problem and causes “improvement degradation” in

a few instances (where the imposed extra variables burden

the formulation more that they assist it). However, overall,

the proposed combination of strategies provide a significant

impetus to resolving challenging problem instances that were

otherwise hopelessly impossible to solve.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed different approaches to tackle

the problem of excessive memory consumption when solving

MILP problems. Generic formulations are often not suffi-

ciently attractive from the problem-solving perspective. We

demonstrated that generating special cuts through exploit-

ing the structure of the problem offers a better strategy.

In most cases, combining different kinds of special cuts

outperformed the performance of the formulations that use

these cuts individually (or not at all). Moreover, introducing

auxiliary binary variables to provide partitioning opportu-

nities based on these cuts, when applicable, significantly

enhanced the performance for some instances. Overall, this

work demonstrates how the use of proper combinations of

model enhancement techniques can help optimize (or further
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Fig. 1: CPLEX behavior under Formulation 11.

reduce the optimality gap) for challenging instances that were

hopelessly unsolvable using traditional formulations.

This work can be extended in several directions. The

general multi-hop network cuts can be applied to different

problems to study their relative effect. On the other hand,

additional approaches following a like philosophy can be

explored to obtain better performance. For example, we could

specify specialized branching priorities within CPLEX for

binary and integer variables, or introduce partitioning based

on different types of disjunctive constraints according to our

understanding of the network structure.
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