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Abstract—Nowadays, many applications demand precise local-
ization information. One of those applications is wildlife monitor-
ing, e.g. tracking of bats. Wireless sensor networks featuring field
strength measurements are a promising approach to track tiny
and lightweight animals. In this paper a robust grid-based filter
for the localization of bats based on field strength measurements
is proposed. Therefore, fundamentals of field strength-based
direction finding and optimal filtering are presented. A grid-
based filtering approach to the problem of field strength-based
position estimation of bats is derived and evaluated by Monte
Carlo simulations.

I. INTRODUCTION

Wildlife monitoring has become a popular research field,
especially in wireless sensor networks (WSNs) [1], [2]. Habitat
selection [3] and foraging behavior [4] have been in the focus
of research in the past years. With the rapid advance in real-
time locating systems (RTLSs) biologists now grasp for the
next level of wildlife monitoring, i.e. observing social and
behavioral structures of animals. They are interested in inter-
actions and social organization between multiple individuals
or inside larger groups.

In the BATS1 project [5] biologists try to understand so-
cial interactions between individuals and recognize behavior
pattern[6]. In order to answer their research questions a
automated localization system is needed that is capable to track
multiple bats simultaneously with a observation rate of 1 Hz.
Different approaches are already known, e.g. GPS trackers [7]
or classical wildlife tracking with cross bearing and VHF-
transmitters [8]. All systems have different advantages and
disadvantages due to coverage, transmitter weight or update
rate. For studying the hunting behavior and social interaction
a mid range coverage of approximately 500 m by 500 m is
desirable.

For accurate tracking of bats in [9] a real-time locating
system (RTLS) based on time-of-arrival measurements is pre-
sented and assessed in terms of its theoretical performance
limits. In [10] a system for encounter detection for bats is
shown. In [11] and [12] a field strength-based approach is
presented which is very cost-effective and is suitable for a
mid-range area coverage. In Figure 1 the principal of a RTLS
using direction of arrival (DOA) estimation based on received
signal strength indication (RSSI) is shown.

1Dynamically adaptive applications for bat localization using embedded
communicating sensor systems, http://www.for-bats.org/
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Figure 1: Estimating trajectories of bats: The localization is
based on direction finding, which itself is inferred by field
strength measurements of radio signals (dashed lines) at two
directed antennas (gain patterns denoted in red and blue)
at multiple receiver stations. Triangulation of multiple DOA
measurements yields the bats position.

A straight-forward approach to track targets based on noisy
measurements is Bayesian filtering, the most popular in this
domain being the Kalman Filter. However, Kalman Filters
and its derivatives (e.g. Extended Kalman Filter) are not
able to cope with highly nonlinear models and multimodal
distributions. Due to this fact, sub-optimal filtering methods
have to be considered in the presented scenario, with particle
filters and grid-based filter being the most prominent ones
[13]. Particle filter commonly suffer from particle depletion
and the “kidnapped robot problem” [14], where the only vital
hypothesis might be trapped. Furthermore, the presence of a
bat in the observation area is rather short in terms of time and
only a small number of measurements are available, so that the
particle filter will be frequently re-initialized with uniformly
spreading particles over the state space. Therefore, for the
localization in the BATS scenario a grid-based filter [15] is
implemented and discussed in detail in this paper.

This paper is organized as follows. Section II gives an
introduction to the fundamentals of field strength-based DOA
estimation and introduces the system model. In Section III the
basics of Bayesian filtering are wrapped up and the grid-based
filter is introduced. Section IV covers the simulation environ-
ment and the filter realization, and in Section V simulation
results applying the proposed filter are discussed. Section VI
concludes the paper.
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Figure 2: Far-field antenna gain patterns GRX,1(ϕ) (blue) and
GRX,2(ϕ) (red) for a antennas provided by a dipole array with
a radius of r = 0.23λ and at a rotation angle of ν = 1

2 between
the two antennas.

II. FUNDAMENTALS OF FIELD STRENGTH-BASED
DIRECTION FINDING

The DOA estimation is based on a field strength difference
measurement of two directional antennas. In general, the
received signal strength PRX at a receiver from a transmitter
can be calculated by:

PRX = PTX − L+GTX +GRX(φ), (1)

where PTX is the emitted power of the transmitter, L is
the path loss between transmitter and receiver, GTX is the
gain of the transmit antenna, and GRX(φ) is the directional
receive antenna gain as a function of the DOA φ of the
electromagnetic wave (e.g. Figure 2). Using two identical
antennas with different orientation, the antenna gain of the
second antenna, e.g. GRX,2(φ) can be described by the gain
of the first antenna GRX,1(φ):

GRX,1(φ) = GRX,2(φ− ν), (2)

where ν is the rotation angle between both antennas. With (2)
the gain difference function ca be formulated as

∆Gν(φ) = GRX(φ)−GRX(φ− ν). (3)

Then, the received signal strength difference ∆PRX between
both antennas is given by

∆PRX = ∆Gν(φ), (4)

when both channels are excited with same transmit power and
exhibit exact the same path loss. The antenna gain patterns
GRX,1(φ) and GRX,2(φ) are a priori known and therefore
the pattern difference ∆Gν(φ) is also known. Consequently,
measuring the signal strength difference ∆PRX between two
differently orientated antennas the DOA ϕ can be calculated
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Figure 3: PDF for direction estimation: Exemplary measure-
ment error distribution, gain difference function ∆G(φ) and
the DOA PDF p(φ) at σ = 5 dB and an observed RSSI
difference of ∆PRX = 0 dB.

without knowledge of the path loss L, the transmit power PTX
and the transmit antenna gain GTX .

In case of the BATS project, each of the antennas is
described by two half-wave dipoles place uniformly on a circle
with a radius of r = 0.23λ. The design process of antennas for
RSSI-based direction finding has been described previously
in [11] in a more general way. Considering the placement
of dipoles described above the gain function for the directed
antenna, according to [16], is expressed by

G(φ) = 1.64 ·2 [cos(2πd cos(φ))]
2 , (5)

which solely depends on the direction of arrival φ. The
resulting gain patters for the antenna described above are
depicted in Figure 2.

The gain difference function ∆Gν(φ) for a set of two
antennas is derived from (3) and (5), where ν is the rotation
angle of the second antenna with respect to the first one
implying that both antenna feature exactly the same gain
pattern. In the BATS project a rotation angle ν = 1

2π is
considered, as this rotation angle yields the best average CRLB
for the DOA estimation [11]. The resulting gain difference for
the described antenna layout is shown in Figure 3.

It is obvious, that the given gain difference function results
in an ambiguous DOA estimation result. Figure 3 depicts the
transformation of gain difference function ∆Gν(φ) (top right)
with a standard deviation of σ∆G = 5 dB for a measured RSSI
difference of 0 dB (top left). Evidently the DOA probability
density function (PDF) has 4 modes (bottom) resulting from
the symmetry of the contemplated gain patterns. These inher-
ently arising ambiguities have to be resolved by multi-sensor
data fusion. Therefore, the utilized fusion algorithms have to
be able to handle multimodal distributions.
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Figure 4: Observation of hidden states: The time-varying
system is described by a first order hidden Markov Model
(HMM).

III. BAYESIAN FILTERING

In general, optimal filtering, more frequently known as
Bayesian filtering, aims at the solution of estimating the hidden
state of a time-varying system which is indirectly observed by
measurements. Being the theoretic framework of the proposed
grid-based filter in this section Bayesian filtering is reviewed.
According to [17], the regarded state estimation problems are
considered to have the following form

xk ∼ p(xk|xk−1)

zk ∼ p(zk|xk), (6)

where xk is the hidden unknown state, that is observable
by noisy measurements zk. Moreover, the distribution of the
measurement likelihood p(zk|xk) and the state transition PDF
of the Markov process p(xK |xk−1) have to be known.

As shown in Figure 4 the observed time-varying system
yields two essential properties:

1) Markov property of states [17]: The actual state xk
provided that xk−1 is independent of all previous states
(x0, . . . ,xk−2) and the observation z1:k−1:

p(xk|x1:k−1, z1:k−1) = p(xk|xk−1) (7)

2) Conditional independence of measurements [17]: The
latest measurement zk given the actual state xk is
independent of all previous measurements and the state
history:

p(zk|x1:k, z1:k−1) = p(zk|xk) (8)

When the desired state is xk, then the objective of Bayesian
filtering is to represent the posterior PDF of a possible
state representation comprising all measurements p(xk|z1:k).
Applying Chapman-Kolmogorov equation for a posterior PDF
p(xk−1|z1:k−1) given at time k−1 the prior PDF p(xk|z1:k−1)
is derived by:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (9)

where p(xk|xk−1) is the PDF of the state transition. The
successive posterior PDF is calculated in the update step
applying the rule of Bayes to p(xk|zk, z1:k−1). Which then
leads to the normalized product of the likelihood p(zk|xk)
and the PDF of the prior

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
. (10)

As the denominator is constant relative to xk, it can be
computed by integrating the nominator over xk. In summary,
the posterior PDF can be calculated recursively applying pre-
diction and update starting with an initial value for p(x0|z0) =
p(x0).

A. Grid-based Filter

In the BATS localization scenario a grid-based filter is
utilized. In grid-based filters the total number of possible
states is limited and the continuous state space is decomposed
into so-called “cells” xik : i = 1, . . . , N . Thus, its finite state
space is defined by a grid of discrete states and also PDFs
are discretized. The grid-based filter calculates the probability
p(xk|z1:k) of the position xk for every cell in the grid for
the observed measurements z1:k. Under the assumption of a
Markov properties (equations (11) and (12)) the position xk
at timestep k is described by:

xk = f(xk−1) + wk (11)
zk = g(xk) + vk, (12)

where f(xk−1) describes the motion model of the system and
g(xk) is the measurement model. wk and vk are process and
measurement noise, respectively, and are mutually indepen-
dent, with known PDFs.

The posterior PDF of the state xi given the measurements
z1:k−1 is defined by

p(xk−1 = xi|x1:k−1) = ωik−1|k−1 (13)

which can be written as a sum of delta functions

p(xk−1|x1:k−1) =

N∑
i=1

ωik−1|k−1δ(xk−1 − xi). (14)

Recapitulating the Chapman-Kolmogorov equation (9) for
the continuous case, the prior PDF for the discretized case
becomes

p(xk|z1:k−1) =

N∑
i=1

N∑
j=1

ωjk−1|k−1p(x
i|xj)δ(xk−1 − xi)

=

N∑
i=1

ωik|k−1δ(xk−1 − xi) (15)

where the new prior is weighted by a sum of delta functions
and the new prior weights

ωik|k−1 =

N∑
j=1

ωjk−1|k−1p(x
i|xj) (16)

are calculated by reweighing the old posterior weights using
the state transition probabilities. For the update step equation
(10) becomes

p(xk|z1:k) =

N∑
i=1

ωik|kδ(xk−1 − xi), (17)
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where the posterior weights

ωik|k =
ωik|k−1p(zk|xi)∑N
j=1 ω

j
k|k−1p(zk|xj)

(18)

are the prior weights reweighed using the measurement like-
lihoods.

B. Forward-backward Smoothing

So far the grid-based filter only considered the measure-
ments obtained before and at the current step for comput-
ing the best possible position estimate. However, for offline
evaluations it is favored to estimate states for each timestep
conditional on all the measurements that we have obtained. For
offline processing the estimated trajectory can be smoothed
applying Bayesian smoothing. In the grid-based filtering al-
gorithm the cells probabilities ωik|k−1 are computed from the
previous estimate applying the movement model

ωik|k−1 =

N∑
j=1

ωjk−1|k−1p(x
i
k|xjk−1). (19)

Due to the Markov properties for a fixed interval this equation
can be written in a reverse way, which then gives the backward
prediction

ωik|k+1 =

N∑
j=1

ωjk+1|k+1p(x
i
k|xjk+1). (20)

Combining the forward and backward filtering PDFs yields
the smoothed localization estimate

ωik|k =
ωik|k−1p(zk|xik)ωik|k+1∑N
j=1 ω

j
k|k−1p(zk|x

j
k)ωjk|k+1

. (21)

IV. GRID-BASED FILTER FOR TRACKING BATS

After introducing the fundamentals of RSSI-based DOA
estimation and reviewing the Bayesian filtering, in this section
the realization of the grid-based filter is described in detail
and the simulation environment is presented. In the first part
the simulation environment is covered including trajectory
generation, WSN, channel models and antenna characteristics.
Secondly, the filter implementation comprising movement and
measurement models.

A. Simulation Environment

The proposed filter algorithm is assessed in a simulation
environment that incorporates multiple real-world effects of
the localization system. Shadow fading effects are modeled
by log-normal distributed fading. The organization of the
simulation environment is depicted in Figure 5 and all blocks
are described in detail in the following, where the grid-based
filter and models of the localization block are covered in a
separate Subsection IV-B due to their importance to this work.

bats trajectory WSN

geometry

channel antenna
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+ channel
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x̂

Figure 5: Block diagram of the simulation environment with
the components for the geometrical dependencies, channel
simulation and localization by the grid-based filter.

1) Trajectory Generation: Initially in the simulation envi-
ronment, a bats trajectory is generated in the area of the base
stations. In our case the trajectory is defined by 20 separate
way points by the user and a linear interpolation at a defined
speed is generating all 384 way points of the trajectory.

2) Topology of the Wireless Sensor Network: For the simu-
lation the sensor nodes are placed in a shape shown in Figure
7, where the distance between the stations is roughly 50 m
covering an area of 200 m×200 m. The positions arrangement
is defined like the positions of the stations in a field trail to
make the results comparable in a later stage of the project. The
main lobe direction of the antenna pattern GRX,1(ϕ) is rotated
by −15 ° to the north direction and is indicated by the green
arrows in Figure 7. The calculations for the optimal rotation
angle to optimize the CRLB is shown in [16] and is not part of
this paper. Considering the generated trajectory and the known
positions of the base stations a, the distances ra and angles
φa between the way points and stations are calculated.

3) The Wireless Propagation Channel: The path loss LdB
is computed applying a modified version of the free space loss
model and is defined by

LdB = 17 + 10 log(r3,5) + 20 log(fc), (22)

where r is the distance and fc is the frequency. The underlying
channel model was obtained during a measurement campaign

2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS) 

187



in the forests of the Franconia Switzerland close to Forchheim,
Germany. The measurement frequency was in the short range
devices band around 868 MHz. All further simulations were
carried out at a frequency of 868 MHz. Details of utilized the
channel sounding equipment has been recently published in
[18].

4) Antenna Characteristics: The trajectory and the geomet-
rical arrangement of the base stations defines the DOA φa of
the received signal at every base station a, inherently, with this
the antenna gain GRX,1(φa) and GRX,2(φa) is defined. The
ideal RSSI values PRX,a,1 and PRX,a,2 are calculated with (1)
for all positions of the trajectory along the given way points
and for all receiving stations. For simplicity the index a is
dropped in this section. The values are the ideal RSSI values
PRX,i without any fading effects and would result to a perfect
localization result. These artificial, error-free, measurements
allow to test the localization algorithms and check whether
the grid-based filter performs correctly, i.e. the estimator is
free of biases. The generation of erroneous measurements,
characterizing the impact of the wireless propagation channel,
is specified in next paragraph.

5) Fading model: The true RSSI values PRX,i are super-
posed by correlated fading vb and uncorrelated fading vi

P̃RX,i = PRX,i + vb + vi (23)

The shadow fading effect is modeled by log-normal fading
[19], [20]. One effect considered is fading affecting both
antennas in the same manner, i.e. correlated fading, defined
by vb. However, due to the evaluation of the field strength
difference ∆PRX,a this effect has no influence on the direction
estimation.Although it does not lead to DOA estimation errors,
the effect causes additional outages of stations due to the
limited sensitivity of the receiver nodes as described in (29).

Furthermore, uncorrelated fading vi is considered, adding
additional noise to the measurements P̃RX,1 and P̃RX,2 indi-
vidually. Due to the directional antenna pattern both antennas
are sensitive to multipath propagation and shadowing, which is
modeled by uncorrelated fading on both antennas, denoted by
v1 and v2. For mutually independent v1 and v2 the measured
RSSI difference becomes

∆P̃RX = ∆PRX + v1 − v2 (24)

The standard deviation of a sum of two uncorrelated noise
processes (v1 − v2) yields

√
2σv , when σv is defined as σv =

σv1 and σv1 = σv2 is given. Therefore, the PDF of RSSI
difference measurement is given by

p
(

∆P̃RX

)
∝ exp

(
− 1

2σ2
v

[
∆P̃RX −∆PRX

]2)
, (25)

The noisy RSSI measurements ∆P̃RX,a for all stations in-
dexed by a are processed by the grid-based filter to estimate
the position of the tracked target.

6) Position Estimation: The target position is estimated
applying the grid-based filter. The grid size is determined with
a cell spacing of 1 m×1 m, which leads for a observation area
of 200 m×200 m to a total number of 40000 cells. Simulations

show that a cell size of 1 m×1 m is sufficient to obtain accurate
position estimates. In addition, this grid size still yields an
acceptable computational load.

The localization comprises three modes: i.e. position es-
timates from pure snapshot measurements, filter estimates
applying the grid-based filter and the latter including forward-
backward smoothing. The localization results are discussed in
Section V.

B. Bayesian Filter Models

In this section the filter models of the proposed grid-based
filter are discussed. The grid-based filter incorporates a motion
model (11) of the bat to predict the state for the successive
timestep and a measurement model (12) based on the PDF for
RSSI-based DOA estimation described by (25).

1) Motion Model : State prediction is a essential part of
Bayesian filters. A priori knowledge of the movement model
of the tracked target is beneficial. However, the flight behavior
of many animals and insects is typically characterized by Levy
flights as shown in [21] and [22]. According to observations
of the biologists, the flight behavior of bats seems to be rather
random, and thus is very similar to Levy flights. For the
sake of simplicity the movements are modeled by a motion
of the target in an arbitrary direction with a limited speed,
independent of the movement in the previous timestep, which
is expressed by

xk = xk−1 + exp(−jϕ) ·∆xmove, (26)

where xk is the predicted position, the previous xk−1, and ϕ
and ∆xmove are sampled form uniform distributions defined
byϕ ∼ U(−π, π) and ∆xmove ∼ U(0,∆xmax)The maximum
speed is limited to the physical maximum possible speed of a
bat vmax . The maximum possible movement in state transition
is therefore denoted by

∆xmax = vmax · (tk − tk−1), (27)

where tk − tk−1 is the time between two measurements.
The PDF for the cell transition probability p(xi|xj) is

defined as

p(xi|xj) ∝
{

1 ||xi − xj ||2 ≤ ∆xmax

0 otherwise
. (28)

The new prior weight is computed following equation (16).
The full discrete prior PDF of the grid-based filter is calculated
according to equation (15).

2) Measurement model: The measurement model of the
grid-based filter realizes the update base upon the RSSI
difference measurements incorporating the model presented
in Section II. For the simulated noisy measurements values
P̃RX,a,i of station a the RSSI difference ∆P̃RX,a is evaluated
when both RSSI values fulfill

Pmin < P̃RX,a,i < Pmax, (29)

where Pmin is the minimum received signal strength e.g. the
sensitivity of the receiver, and Pmax is the maximum received
signal strength, e.g. clipping of the receiver.
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Figure 6: Discrete PDF snapshots for (a) position probability from snapshot measurement and (b) position probability after
update step of the grid-based filter are depicted above.

Now, the measurement model ga(x) for single receiver
station a for the state vector x = [x, y]T is defined as

ga(x) = ∆Ga

(
tan−1 ∆ya

∆xa

)
, (30)

with

∆xa = x− xa and ∆ya = y − ya. (31)

When further defining the measured RSSI difference for
station a as

za = ∆P̃RX,a, (32)

the measurement probability p(zk,a|xk) for station a and a
measurement zk,a given the state xk expressed by

p(zk,a|xk) ∝ exp

(
− 1

2σ2
v

[zk,a − ga(xk)]
2

)
(33)

where the PDF is normal distributed as the fading model is
log-normal fading and RSSI is measured in dB and ga(xk)
yields the expected field strength difference for the given state
vector and σ2

v is the expected measurement noise variance.
Applying (33) and assuming all measurement to be indepen-
dent, the probability p(zk|xk) for the measured field strength
differences zk is calculated by multiplying the measurement
likelihoods for all the contributing receivers

p(zk|xk) ∝
A∏
a=1

p(zk,a|xk), (34)

where A is the number of stations and

zk = [zk,1, zk,2, . . . , zk,A]T . (35)

Finally, the weights ωik|k of the respective cell i representing
the state xik are calculated according to

ωik|k ∝ ωik|k−1 · p(zk|xik), (36)

with ωik|k−1 being the predicted weight for cell i. The posterior
PDF is computed applying equation (17). The most probable
position estimate is extracted from the discrete PDF utilizing
the k-nearest neighbors algorithm.

V. SIMULATIONS RESULTS

As stated before, the measurement PDF is highly multi-
modal. The impact of this multimodality is visualized in Figure
6a. The position probability given a snapshot measurement
p(xk|zk) is depicted. A large number of position hypotheses
arises from a single measurement. Moreover, Figure 6a illus-
trates that the largest weights of the measurement PDF are
not even in the vicinity of the true mean. However, in contrast
to the position calculation using a measurement snapshot, the
grid-based filter PDF shows a decent Gaussian-like distribution
centered around the true mean. Note that the PDFs in Figure
6a have different scales.

The computed positions for the snapshot measurements,
filtered and smoothed estimates are compared to the true mean.
The simulation run has a length of 384 steps. Correlated
fading effects were simulated using σvb = 10 dB. Three
different uncorrelated fading effects were simulated using
σvi = {2 dB, 5 dB, 10 dB}. In Figure 7 the true trajectory is
shown as a red line, the localized path of the forward-backward
smoothed trajectory is shown as a blue line for different
fading levels. The higher the level of fading is, the more
diverges the estimated path from the true trajectory. The root-
mean-square error (RMSE) for the forward-only grid-based
filter and for the forward-backward smoothing filter shown in
Table I. As expected, increasing the measurement noise the
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Figure 7: Reference trajectory (red line), the estimated trajectory of grid-based filter (blue line) and sensors nodes (green dots).
Fading levels of σzb = 10 dB and σzi = {2 dB, 5 dB, 10 dB}

error in the position estimate increases. The use of the grid-
based filter with forward-backward smoothing reduces position
error significantly, compared with using the grid-based filtering
without smoothing. Resulting errors for both filter variants
over the simulated path are shown in Figure 8 for σvb = 10 dB
. On can see, that filtering and smoothing significantly reduces
the RMSE, in particular the smoothed filter error stay well
below 10 m for the whole trajectory, whereas the mean error
of the snapshot positioning substantially exceeds this value.

For the targeted application, wildlife tracking, the errors
are in a acceptable range and bats movement pattern can
be tracked. The processing load is rather high due to the
high number of cells. The cell density is uniform over the
covered area of observation, also in areas with low residence
probability of the bats. The forward-backward smoothing
enables a robust localization, even for the initial phase of the
location tracking. A simple forward filtering algorithm might
fail in this phase due to the highly multimodal distribution.
Tracking the wrong starting point takes the filter a long time
to recover and track the true hypothesis, which then will lead
to large position estimation errors.

VI. CONCLUSION

The proposed grid-based filter shows the ability to han-
dle multimodal distributions arising from a ambiguous DOA
estimation based on RSSI measurements. The localization
performance even in presence of massive fading is remarkable.

Filter type Noise (σzi)

2 dB 5 dB 10 dB

Snapshot positioning 2.60m 6.54m 17.09m
Forward-only filter 2.41m 3.99m 6.48m
Forward-backward filter 1.94m 2.65m 3.76m

Table I: RMSE for grid-based filter.
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Figure 8: localization errors by way points for a forward
filter implementation and a forward-backward smoothing filter
implementation

One major drawback of the grid-based filter is the high
computational load, it scales linear to area of observation and
cell size, therefore, it scales badly to enlarging the observation
area. Furthermore, the density of cells is fixed even in areas
with low spatial probability of a bat. Simulations showed a cell
size of 1 m by 1 m is sufficient up to a localization accuracy
of 1.5 m.

For further investigation a particle filter should be addressed.
Scaling down the number of particles lowers the computational
load. However, this approach, most likely, will bring up new
challenges, e.g. particle depletion. Future work will include
results from field trials in the Franconian forests and will be
compared to the simulation results presented in this paper.
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Furthermore, sub-optimal Bayesian filter algorithms and more
sophisticated channel model are a subject a further research.
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