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Abstract—We consider a novel way by which DL dynamic
MAC scheduling can be augmented based on cross-layer inputs to
provide desired performance enhancements. We describe ODDS,
an automated design process for the data-driven refinement of
downlink resource scheduling algorithms. ODDS extracts insights
from the behavior of a simulated LTE cellular system under
randomized traffic patterns and propagation conditions in a given
network scenario. An offline iterated reinforcement learning
campaign seeks to best fulfill a target set of goals, e.g. “fair
throughput with low latency”, which can be encoded in the form
of an arbitrary utility function specified by the designer. The
knowledge base obtained from the learning campaign consists in a
set of rules that a parametric scheduler leverages at run-time. We
present our learning framework and evaluation results. ODDS-
generated schedulers are shown to achieve improved performance
compared to well-known reference scheduling strategies.

I. INTRODUCTION

Channel-aware radio resource scheduling in cellular en-
vironments is a subject of long-standing interest in wire-
less research. Theoretical analysis has provided a number of
tractable results, such as those yielded by the Network Utility
Maximization (NUM) model [14]. The application of NUM to
a-fair utility functions is at the foundation of the proportional
fair (PF) resource scheduling discipline. In ideal deployment
scenarios, the PF scheduler presents desirable asymptotic
properties, such as optimality, stability, and insensitivity [5],
at the price of a computational complexity that is linear in the
number of User Equipments (UEs) to be scheduled.

Designing schedulers with interesting properties often en-
tails some form of incremental improvement of existing al-
gorithms, based on both theoretical and practical concerns. A
new scheduler definition must strike a better trade-off between
efficiency, computational complexity, and other application-
related concerns such as fairness, proportionality among users,
and QoS [8]. With the availability of vast amounts of com-
puting power, it is no longer unthinkable to supplement the
process of designing efficient algorithms with insights that can
be automatically extracted by a machine learning process.

In the broader networking context, algorithms that perform
simulation-driven exploration of problem spaces have been
successfully applied to the automated design of complex
network protocols, e.g. TCP congestion control [12], and to the
run-time modeling of the transport-layer capacity of wireless
links [13]. Examples in the cellular scheduling domain are
emerging where the results of system modeling and simulation
are used at run-time to reconfigure scheduler behavior to
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match a target fairness goal [9]. An interesting question is
then whether similar data-driven learning techniques can be
downright applied to the design of MAC scheduling algorithms
of practical interest, and what the actual behavior of such
algorithms would be in simulation and real-world conditions.

This paper presents a machine learning process based on re-
inforcement learning that can produce Optimized Data-Driven
Scheduling (ODDS) algorithms for LTE MAC downlink. By
relying on an approximate model of system behavior and
extensive simulation campaigns, we extend the awareness of
ODD schedulers to other salient properties of network traffic
that cannot be captured easily by an analytic framework of
tractable complexity. Approximation is required for it is obvi-
ously impractical to capture by enumeration the full extent of
possible system configurations and traffic conditions. However,
by a proper choice of training scenarios and state variables we
can develop algorithms showing a consistently good behavior
that exceeds the performance of the baseline PF scheduler in
a range of simulated settings. We will mainly focus on:

o Adapting a MAC scheduler metric to support learning;
o Exploring a wide range of random resource allocation

scenarios to which a scheduler-in-training is exposed; and
« Validating scheduler performance via simulations.

In the next Section, we will provide some background on
LTE MAC layer scheduling. Section III describes the structure
of our parametric scheduler and the salient aspects of the
learning process that generates optimized scheduler defini-
tions. Section IV follows up with the implementation of the
ODDS framework as a distributed system and describes its
operation. We will focus at first on building ODD scheduler
definitions that strive to reduce the average transmission la-
tency experienced by the whole UE population, presenting
the behavior of algorithms that were trained under various
scenarios. In Section V we evaluate the trade-offs among
throughput, latency, and fairness achieved by examples of
ODD schedulers and compare their behavior to well-known
reference schedulers. Section VI concludes the paper.

II. OVERVIEW: DL MAC SCHEDULING IN LTE

LTE uses Orthogonal Frequency Division Multiplexing
(OFDM) to transmit data. The OFDM flavor used in LTE
divides the assigned spectrum into a grid of resource blocks
given by groups of contiguous subcarriers that are 180kHz
wide in frequency domain and time slots that are 0.5ms long.
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Resource blocks are the base unit of MAC scheduling and are
assigned in multiples to system users. The goal of a scheduling
algorithm in LTE is to optimally allocate resource blocks
(RBs) to each user at every Transmission Time Interval (TTT)
of 1ms. Optimization is performed on a set of metrics such as
throughput, delay, fairness or spectral efficiency.

Many textbook scheduling algorithms have been considered
and evaluated with LTE [1]. Maximum throughput (MT)
assigns each RB to the user with the best radio link conditions.
This scheduling discipline leads to disappointing outcomes in
the case where users experience different channel conditions,
since this results in strongly unfair allocation to the benefit
of the users with better channel quality. Another algorithm
is round robin (RR), in which users take turns in sharing
resources. The drawback of RR scheduling is that users who
have poor channel conditions will be assigned a fair share of
resources which could have benefited more some user with
better channel quality. The proportional fair (PF) scheduling
algorithm improves the outcome by taking both resource
allocation history and channel conditions into account. As
discussed in [5], the PF scheduler explores the full set of
assignments between a subset of users and available frequen-
cies and maximizes a function of user rates. This heuristic
yields an optimal assignment in the case of full buffers and
i.i.d. rate distributions. At each scheduling instant and for each
RB, the PF scheduler chooses the user who maximizes the
ratio of expected transmission rate r,, and the set of assigned
frequencies S, over the average throughput R, of the user on
a previous time window:

Tu(Su)

R,

Several instances of priority-based schedulers have been
built around the ones mentioned above. These often leverage
standard facilities provided by LTE that assign quality levels
to individual bearers. For instance, Weighted PF (WPF) inserts
a term at the numerator of the PF metric that encodes a fixed
level of priority of a bearer. Priority to GBR flows can be
imparted by using a weight term that increases over time as a
function of the difference between the guaranteed and achieved
rate. In this paper, we consider only best effort bearers and
undifferentiated traffic, which constitute the prevalent type of
bearers used for everyday Internet connectivity.

scheduled user := argmax,,c,qcrs; {3,

A. Scheduling in Realistic Scenarios

Scheduling quality in the real world is subject to a number
of additional influences that are not easily covered in the model
outlined above. As an example, we consider two factors that
may lead to sub-optimal results: non-ideal traffic patterns and
errors in channel quality estimations.

Non-ideal traffic patterns may defeat the optimality of PF
scheduling as an underlying condition of PF optimality is
that the buffers are constantly full. In reality, data traffic
patterns for many popular applications are bursty and may
consist of messages whose length is smaller than the size
of a transmission opportunity. One example is in the case of
automated status notifications, which today represent a sizable
fraction of the overall smartphone traffic volume. Whenever a

small amount of data is available in a user’s transmit buffer,
assigning it the best possible resource block may negatively
affect the performance of another user that has more buffered
data but slightly worse channel quality estimates. At the other
end of the scale, when a buffer’s content is approaching its
maximum size, packet drops between protocol layers might
be avoided by prioritizing traffic based on buffer size [3].
Another possible source of inefficiencies is the presence
of bursts of erroneous channel estimates, due to fast fading,
interference from neighboring cells, and other propagation
effects. LTE adopts HARQ mechanisms in order to mitigate
the effect of losses, which are sometimes amplified by the
aggressive use of adaptive modulation schemes. While un-
correlated among separate OFDM subcarriers, fading losses
depend on the speed at which the UE moves and (via the use
of adaptive modulation) on its distance from the cell center.

B. Related Work

In the recent literature, enhanced scheduling techniques that
leverage cross-layer information have been a subject of great
interest [2]. On one hand, theoretical frameworks have been
proposed that turn optimization goals (subject to certain prop-
erties) into resource allocation algorithms. Song and Li [10]
proposed a framework to enable cross-layer optimization based
on simple analytic utility functions, which was then applied
to guarantee different levels of QoS to multiple classes of
applications [11]. On the other hand, many schemes have been
investigated that introduce new pieces of information into the
scheduling metrics with the goal of influencing the scheduling
performance towards desired outcomes. Examples are the use
of information about the buffer state, e.g., head-of-line packet
size [3] and queuing delay [8], as a part of the scheduling
metric. These schemes provide tractable ways to include one
or more additional terms into the optimization goal.

It is still an open question whether it is possible to ex-
ploit new combinations of sources of cross-layer information
to enhance scheduler performance without compromising its
analytic properties. In the next section, we propose a prac-
tical attempt to answer this question based on an automated
approach to scheduling algorithm design.

III. SCHEDULING AS A MACHINE LEARNING PROBLEM

Scheduling is a process that matches a finite set of available
resources with user demand. In the LTE wireless downlink
case, the resources being assigned to multiple users are sets
of independent OFDM subcarriers, whose quality estimates
may contain errors, e.g., due to fading. The demand, on the
other hand, is known: the scheduler can observe the state of
the upper protocol layers, where the buffers with data pending
transmission are kept. This problem can be represented as
a finite-state POMDP [7], where scheduler decisions are a
function of the observation at present time of the internal state
and of the estimated state of the external process. Finding
optimal policies via analysis is an extremely difficult task,
given the large dimensionality of the state space. On the
other hand, the scientific literature offers many examples of
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heuristics that have been used to attack similarly daunting
problems in the past, with largely successful results [4].

In this work, we apply data-driven reinforcement learning
techniques to determine how to optimize a scheduler to suit
scenarios with realistic properties. Given the practical hurdles
of collecting actual measurements from a huge number of
randomized realizations of LTE cell configurations, we turn
to simulation as a tool to approximate reality. Learning is
performed on a simulated model of an LTE wireless system.
The use of simulations as a source of data points allows
to perform a randomized monte carlo exploration of the
problem: our system observes the trajectories followed by the
scheduler’s state space over a large number of realizations via
the massive use of computational resources, which today are
readily available. This extensive training process performed
over millions of simulations results in a small base of actions
that inform on-line scheduling decisions toward a chosen goal.

A. The Learning Process

An abstract model of the learning process is represented
in Figure 1. It is composed by an off-line (light orange) and
an on-line (dark blue) part. The scheduler is instrumented to
track during its execution a set of input variables Z,, for each
UE device u. The scheduler behavior and output metric M is
parametrized by a set of action variables A, that are called
upon during the ranking of users by the scheduler metric,
leading to an output schedule S = M(Z,.A). An external
knowledge base B : RIZI = RI4l is accessed on-line to read
rules that represent the mapping between intervals of Z and
values of A, where A = B(Z). Training is the iterative process
by which rules are created and improved in 5 so that they
collectively maximize the expected value of a target utility
function U(S). Training is performed off-line, starting from
an initial state in which B contains a single rule and default
action, A%, that is associated to any value of UE state.

The training process simulates a multitude of procedurally
generated scenarios which are meant to sparsely probe the
entire space of operating conditions that are liable to be
found in the target deployment scenarios. Over multiple rounds
(Section IV-B) the content of the rule base B evolves, the
number of rules increases, and the values of the actions are
modified to lead to increasingly better scheduling outcomes.

1) A Parametric Scheduler Metric: A scheduler metric that
supports learning needs to expose a number of actionable
parameters that will ultimately affect the value of the utility
function. Its outcome must therefore be expressed as a function
of A, but may include any number of other variables of
arbitrary origin, such as from Z, the external environment,
and/or the cross-layer protocol state available to the scheduler.

2) Representing the UE’s Scheduling State: The choice
of an appropriate set of input variables 7 to characterize
the state of each connected device in the system is crucial
to a successful learning process. Since our base heuristic is
modeled on a PF metric, we will opt for state variables that
capture other cross-layer variables that are available at the
scheduler and not represented in the original metric. These
variables are designed to track the differences between a

theoretical ’full-buffer, perfect channel estimates’ model and
a practical system where buffers are shaped by traffic activity
and transmissions may fail, thus triggering HARQ.

3) Utility Functions for Adaptive Schedulers: In a rein-
forcement learning system, a utility function U provides the
source of feedback by which the progress of the training
process is evaluated. Scheduler behavior is characterized by
repeatedly computing U(.S) on a large number of outcomes
of scheduling decisions and tracking its average increase (and
preventing its decrease) at each step of the training process.
The amount by which the average utility increases across
subsequent training steps can be taken as a measure of the
progress of the training, thus providing an absolute measure
of progress and eventually a stopping criterion.

B. Advantages and Limitations

Replacing the core function of a traditional scheduler,
the metric used for ranking, with an automatically-designed
heuristic presents several advantages to the system architect:
1) it allows improvements in scheduler quality by increasing
the amount of processing devoted to the learning process and
the accuracy of the simulation and traffic model; 2) it eases the
development of specialized schedulers for targeted operating
environments, since the training conditions and goals can be
specified by the system designer; and 3) it provides a way
to explore complex trade-offs between disparate variables,
ranging from the more conventional, such as throughput and
latency, to less tractable ones including computational budget
and energy footprint terms. The data-driven process enables
a designer to experiment with multiple utility functions and
scheduler structures to find the best result for her own goals.

The main drawback is the loss of control by the human
designer on the finer aspects of the behavior of the scheduler.
The limitations imposed by the training process, which hides
away most of the logic that underlies the resulting algorithm
into unintelligible combinations of non-human-serviceable
numbers, render the designer’s selection of matching utility
function and scheduler metric, together with the definition of
an appropriate training environment, a delicate choice that is
crucial to the quality of the outcomes.

IV. ODDS - OPTIMIZED DATA-DRIVEN SCHEDULERS

ODDS is a framework that allows the development of LTE
downlink MAC dynamic scheduling algorithms based on a
data-driven process. It includes three parts: a learning engine,
a simulator, and a validation and visualization suite.

The off-line learning process in ODDS is based on the
seminal work in Remy [12], whose code was graciously made
available by the authors. We introduced small modifications, in
order to account for the different characteristics of the learning
process in our case. To faithfully represent the behavior of LTE
user equipment at the cell level we leverage the NS3 system
simulator, whose LENA module [6] implements the relevant
parts of the LTE standard. We modified the LENA implemen-
tation of the downlink MAC scheduler to accommodate the
tracking of cross-layer state variables, introducing a paramet-
ric scheduler metric implementation based on the principles
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Figure 1: Automated simulation-based training process of the ODDS data-driven scheduling algorithm’s rule base

enumerated in Section III. Finally, we designed a system that
generates randomized network scenarios and organizes and
presents the results. Evaluating an ODD scheduler involves
running millions of simulations and collecting performance
statistics: automating the entire process made it easy to closely
track the behavior of the learning system and provided constant
feedback about our design decisions.

A. Designing Schedulers, the ODDS Way

As explained in Section III, using ODDS to develop a
scheduling algorithm requires different types of inputs by the
designer. The first set of inputs are decisions about how the
scheduler should operate and what its optimization objective
will be: this amounts to a choice of scheduler metric with a set
of available scheduler actions, a set of state variables that the
learning process will observe, and a utility metric to guide the
advancement of the learning process. These choices obviously
need to be informed by a certain amount of domain knowledge
about the LTE system, including its protocol stack layout and
physical layer mechanisms. The key of a successful design lies
in the way the individual mechanisms interact when exposed
to the information coming from the simulated system.

1) Scheduler Metric: The ODDS training framework uses
as its metric a simple parametric function based on the well-
known PF metric. It inherits a) the use of channel estimates,
made available from the PHY layer, b) the accounting of past
bearer throughput averaged over a certain time window, and
c) the existing assignment of modulation and coding schemes
(MCS) that translate the measured channel quality into an
estimate of available bandwidth. For each RB f, a ranking
is established among UEs based on the metric:

Ou, f

M(A>u,f =y + Bu R,

(including each UE wu’s estimated achievable rate o, f).
Values of «,, and (3, introduce a linear bias to the original
PF metric, which corresponds to the initial action A* = (a =
0, 8 =1). As usual, RBs are assigned until the current TTI’s
demand is satisfied or the available RBs are exhausted. The
use of alternative ranking functions as metrics for the training
of data-driven schedulers is an interesting possibility that we
will explore in future work.

2) Observed state variables: The three input variables 7 =
{a, b, ¢} we consider in ODDS are the following:

a An exponentially weighted moving average
(EWMA) of the size in bytes of the data in the
PDCP transmission buffer waiting to be sent

b A time-discounted EWMA-based estimate of the
frequency of HARQ events that accounts for the
bursty nature of fast-fading in time domain

c The time elapsed (in ms) since a UE was last
successfully scheduled (excluding HARQ)

The instantaneous scheduling state of a UE at all times can
then be represented as a point in 3d-space. Valid ranges for
T parameters generally depend on the details of the scheduler
implementation (buffer sizes) and on the simulated scenarios
(maximum latency buildup given the traffic load). We expect
that, in order for the contents of a rule base to be effec-
tive across different execution contexts, the model employed
during training must be roughly consistent with the target
deployment environment. This ensures that the support over
which state parameters vary and their approximate distribution
in the state space will be similar.

3) Utility Function: Our present choice for U is the func-
tion log(throughput) — k - log(delay) that enables a trade-
off between PF utility, represented by the first term, and
average packet delay, which is weighted by a constant k.
In this paper, we will concentrate on schedulers that aim to
optimize the latency vs. throughput trade-off. The utility score
of a scheduling outcome S is given by the summation of the
individual results in terms of average throughput and packet
delay over all the participating UEs:

U(S)= Y _ log(throughput,) — k - log(delay,)
UE;eS

The evaluation (Section V) included in this paper shows the
results we obtained for k£ = 0.5. In our future work, we plan
to investigate the effects of other values of the k parameter
and utility metrics involving other factors, such as application-
relevant deadline violations, that can be used to influence the
learning process.

B. Training a Latency-aware ODD Scheduler

The goal of the ODDS offline training process is generating
a rule database B(Z) = A that provides a mapping between
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Figure 2: A rule base B, or WhiskerTree, after several rounds
of training. Partitions (rules) are highlighted by black dots.

Parameter [ Description
PHY Carrier Frequency: 2GHz DL Bandwidth=5MHz
RLC ARQ Disabled (UM), RLC buffer is drop-tail
LTE LTE Release 8 (as in LENA, NS3 3.20)
Cell single cell, radius=2km Friis model  Rayleigh fading
UEs #UE€ [10,70] speed€ [3,60] Km/h (incr. 3 Km/h)
Traffic best effort UDP; ON-OFF (100 ms); parametric

Table I: Specification: main ODDS simulation settings

input and action variables. By construction the process aims
to optimize the utility of the scheduler behavior that B
determines. This happens in two ways:

o Action parameters A are optimized during the offline
learning process for specific ranges of state variables;

o At the same time, the layout of the state space B(Z) is
developed iteratively so that rules are created that provide
the largest potential for action optimization.

The magnitude of action parameters, together with the value
of the other terms in the ODDS metric, ultimately determines
the ranking of UEs in the online scheduling of each RB.

In our implementation, the rule database partitions the 3D
space of input variables Z and associates to each region two
action parameters for 4. The reinforcement learning engine we
adopted [12] refers to the rule database as a WhiskerTree and
each partition as a Whisker. The breeding process begins with
a one-rule WhiskerTree and proceeds by identical rounds, in
which new rules are alternatively created and optimized. The
result can be visualized as in Figure 2.

1) Exploring the State Space: Specimen Generation: We
develop a parametric specification in order to drive the explo-
ration of the state space. A specification contains the ranges
of parameters needed to generate specimens, i.e. the detailed
environments under which simulations will be performed.

A specimen encompasses a channel model (fixed, details
in Table I), a mobility model, and a traffic model. The
mobility model contains a single cell and generates a UE
population of variable size, distributed uniformly randomly
over a 2 km radius circle around the eNB. Users all move
following a random-waypoint model at a configurable speed

Specification Creation —————— > Rule Improvement

~~—— Create new sets Repeatedly loop
P of cell/traffic on WT partitions to )
specimens optimize the actiocns ~—
Tnitial ’7
Wlu:lkerTree Candidate m
, Evaluate new WT m"ﬂfﬁj Bisect the
I score against ) most-used
: initial WT partition
. n . .
Regression Test ———— Partition Split

Figure 3: A round of the training process adapted from Remy

which is matched by an appropriate Rayleigh fading pattern.
Simulations are generally of short duration (few seconds) to
contain the computational requirements of our framework.

The traffic model’s goal is to create all sort of contention
among the participating UEs on a small timescale, exposing
the scheduler to a random variety of packet buffering and
delay conditions. A Cell Load parameter sets the total rate of
traffic generation in a specimen. Traffic is generated in a non-
elastic fashion: the use of RLC in unacknowledged mode (UM)
introduces packet drops between PDCP and RLC layers when
channel conditions do not support the demanded rate. Other
parameters made available by the traffic model control: the
time-domain behavior of UEs, which is set to be periodic, by
defining the duty cycle of the downlink traffic generation; the
allocation of traffic across users, which can be made unequal
at will; and finally, the packet size.

Specimens are used as a frame of reference, ensuring that
simulations to evaluate the behavior of a scheduler algorithm
will take place under the exact same conditions. This is the
case in the validation step, where the macroscopic behavior
and performance of schedulers needs to be evaluated, but also
during several phases of the training process.

2) Training Rounds and Rule Base Improvements: Training
develops a WhiskerTree with the goal of maximizing its utility
function score. This process is based on a series of identical
rounds, such as the one represented in Figure 3. Each round
yields a new WhiskerTree, which may or not be different
compared to the outcome of the previous round. A family is
the set of WhiskerTrees all generated by the same training
process in subsequent rounds.

Each round starts by improving all the rules in B for a
fixed number of generations. During a generation, each rule
is examined once and a range of alternative A’ values are
considered. Evaluating the modified WhiskerTree produces a
score and contributes to identify the partitions of Z that are
most popular and thus likely to provide some optimization
potential. These evaluations are carried out in a steady set of
network conditions, provided by a set of random specimens. At
the end of a rule evaluation, the alternative A’ with the highest
score that exceeds the original score (if any) becomes the
partition’s new .A. When that happens, a new set of alternatives
A’ is created from it, and in turn evaluated. This cycle ends
when no alternative A’ has a higher score than A.

After all generations have completed, the focus of training
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switches to improving the structure of the freshly modified
B’ rule base. A new evaluation identifies the partition of the
WhiskerTree that is most often accessed. This partition is then
split along all of its dimensions (i.e., 2 children) at the median
of the state values that were looked up. Each new rule inherits
the A of its parent. The final step of a training round is a
regression check of the resulting WhiskerTree B’ against its
predecessor in the family. If the test passes, the round yields
as its result B, else the previous WhiskerTree B is returned.

C. Distributing the Computation

A training session requires millions of simulations, most
of which may be run in parallel. Our training framework
distributes evaluations over a pool of servers. The training
supervisor may add and remove servers during training. The
software automatically removes servers that encounter net-
working issues. A recent server pool contained more than 200
cores from about 20 machines, the pool’s size being limited
only by the amount of hardware we were able to procure.

V. PERFORMANCE EVALUATION OF ODDS

This section evaluates the performance of a single set of
ODD scheduler families developed following the guidelines
presented in the previous Section. Given the focus of this
paper on a latency-aware utility function, our analysis will
be considering the following metrics:

a) Latency and Throughput: for all simulations, we
characterize the outcome of individual UEs in terms of the
overall amount of data they were able to correctly receive
over the duration of the experiment (average throughput), and
the average latency with which they received individual data
packets. When we need to aggregate the results of multiple
simulations, e.g., when evaluating a batch of specimens de-
rived from a same specification, we use as metrics the total
throughput across all UEs and the average latency computed
on all the delivered packets. This choice of aggregate metrics
renders the results robust against variations in the number of
UEs across randomized specimens.

b) Utility / Fairness: we are interested in characterizing
the behavior of ODD schedulers in terms of the utility function
U they were built to maximize. However, when applied to any
scheduler, U also provides a metric for combined fairness1 in
both, throughput and delay. We calculate utility on a per-UE
basis, resorting to a conventional choice of finite negative val-
ues to deal with the case of UE throughput equal to zero, which
may emerge in certain simulation scenarios. A simulation
outcome’s utility is given by the sum of the utility of individual
UEs. To aggregate utility across multiple simulations, we take
the arithmetic mean of all outcome utilities.

A. Comparison: ODDS families

The framework’s validation component compares the per-
formance of ODD schedulers against NS3’s implementations

'Our chosen U derives from the PF definition of utility target, namely
the sum of logarithmic UE throughputs which PF is proved to maximize, to
which a second term logarithmic in latency is subtracted. Physically, it extends
proportional fairness to include the average packet latency observed by UEs.

[ vs.PF ] L scenario [ Mscenario | Hscenario ]
ODDIL) || AT 7~ 61 [ A} 7] o~ -
ODDM) || At 7@ éd~ | At 7~ ¢~ [ AT T ¢~
ODDH) || AT 70 ¢~ | AT 7] ¢~ | AT 7] ¢~

[ vs. FAMt ] L scenario [ Mscenario | Hscenario |
ODD(L) AL 7 ot [ AL T 97 -
ODDM) || A} 7~ ot | A 7~ ot [ A 71 &1
ODDH) [[ Al 7~ o [ AU 7] o [ AL 7] o1

Table II: Overall performance of ODD scheduler families com-
pared to PF and FdMt (A=latency, 7=throughput, ¢=fairness;
1 much better, 1 better, ~ same, | worse, {much worse)

of PF, frequency domain maximum throughput (FdMt), and
round-robin (RR) schedulers in a common set of randomized
scenarios. In order to exploit parallelism, our framework dis-
tributes problem instances containing {specification, specimen,
scheduler, WhiskerTree, utility function} across a pool of
servers, storing the simulation output for further analysis.

1) Scenario Definition: The results we present are obtained
using the same parametric traffic generation model we intro-
duced in the training phase. The baseline settings for all the
specifications are detailed in Table I. We define three scenarios
based on the transmission power? of the eNB:

TxPower set to 3 dBm
TxPower set to 9 dBm
TxPower set to 15 dBm

2) Qualitative Assessment : We generate three ODDS
families using the scenarios above: ODD(L), ODD(M), and
ODD(H). To evaluate their performance, we write specifi-
cations that differ by Cell Load for the three (L, M, H)
scenarios. Each specification is used to generate a set of
random specimens of cellular networks in which scheduler
algorithms will be evaluated.

In Table II we capture at a glance the qualitative per-
formance of these ODD schedulers after thirty rounds of
improvement, compared to PF (top) and FdMt (bottom) at
a high level of Cell Load (as defined for each scenario). We
see clear evidence that training in low-power circumstances is
ineffective, and that the quality of the outcomes is consistently
bad. In the second and third family, we observe on the other
hand a large improvement in the outcomes: while maintaining
a level of fairness close to PF and definitely higher than FdMt,
ODD(M) obtains much lower latency than PF. Interestingly,
the latency edge that ODD(H) has on PF is smaller than
ODD(M)’s; however, both schedulers’ outcomes are similar
in the H scenario latency-wise. Throughput of ODD(M) and
ODD(H) is slightly lower than both PF and FdMt only in the H
scenario. It is interesting to note that ODD(M)’s performance
remains respectable even outside of the scenario used in its
training, both toward the lower and higher power levels.

Low Power Scenario (L)
Medium Power Scenario (M)
High Power Scenario (H)

2The L scenario was chosen based on the observation of a UE CQI~1 at
the edge of the cell.The simulation scenarios we use are power-constrained but
do not yet include interference effects. The objective of this early evaluation
is to determine whether training can effectively inform scheduler outcomes
by highlighting correlations between fading losses and node buffer status.
We expect that interference will induce a comparable effect on the internal
scheduler state and could also be exploited by the learning process (e.g., via
correlations based on the position and speed of a UE inside the cell).
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Figure 4: Comparison of behavior of ODD(M) against reference schedulers in Low, Medium, and High TxPower scenarios

We conclude from this wide-ranging overview that algo-
rithm design by the ODDS framework is effective at meeting
its goal as encoded in the chosen ’fair throughput, low-latency’
utility function. When trained in sufficiently good signal power
conditions, ODD schedulers demonstrate a behavior which is
intermediate between PF and FdMt. We will from now on
concentrate our attention on ODD(M) and present in finer
detail the results of its comparison against reference schedulers
across the three scenarios and at variable levels of load.

B. ODDS Behavior under Load

Figure 4(a) compares the bandwidth and latency behav-
ior of the four scheduler algorithms when executed in one
hundred randomly-generated specimens for each scenario and
each Cell Load increment. Results are represented on the
throughput/latency (TL) plane, with the relative load setting
overlaid. In order to concisely represent and compare the
outcomes of many simulations, we draw a 1-o ellipse around
the coordinates of the mean result value and provide an
overlaid line marking the trend of median result values. We can
thus glean a quick understanding of the underlying distribution
of outcomes both directly, by observing the relative position
between an ellipse and its relative median, and indirectly, by
comparing the shape of the ellipses for different schedulers
when executed in the same conditions.

Figure 4(b) provides a comparison of the composite fairness
of the four schedulers for each scenario and load increment.
We can notice by looking at Figure 4(a) that the load trajectory
of the ODD scheduler on the TL plane lies between FdMt

(above) and PF (below). FdMt’s latency flattens out with load
while Figure 4(b) reports increasing unfairness. PF’s latency
degrades with a steeper slope while preserving fairness. ODD
shows a sustained advantage in latency over PF, which is main-
tained as cell load keeps increasing. Furthermore, ODD(M)’s
inferior composite fairness observed in the L scenario at low
traffic loads can be explained with the impact of small changes
(few ms) in the numerator of a ratio with a small denominator.
It is interesting to observe the faster growth of the area of
the PF 1-o ellipse in (H), whose center also slowly diverges
from the median. This corresponds to a more sparse point
distribution on both dimensions compared to FdMt and ODD.
Quantitatively, we see that the latency obtained under higher
level of loads by the ODD(M) scheduler is better than PF’s
latency both on average and median results, by a margin that
reaches about 100 ms for the median (and is larger for the
average). A study of UE behavior achieved by the scheduling
policies at increasing distance from the cell’s center, omit-
ted because of space constraints, highlights how the results
achieved by edge UEs with ODD(M) are roughly similar to
the ones achieved by PF. The latency advantage brought by
ODD(M) applies mostly to the UEs located in the cell core.

C. Effect of Learning on Scheduler Performance

Finally, we investigate the effects of the learning process
over several milestones in the training of a same scheduler
family. Figure 5 represents the behavior of the ODD(M)
scheduler observed at three different milestones in its growth:
the first was extracted after ten rounds of improvement, with
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Figure 5: The ODD(M) family is evaluated for

|B| = 50, the second after twenty rounds, with |B| = 85, and
the third and final milestone after thirty rounds, with |B| = 99.
We can notice, besides the decrease of the average growth
speed of the rule base over subsequent training iterations,
that there is a marked improvement in performance between
the first two milestones in all three scenarios. The transition
between the second and the third milestone has a mixed
impact, with benefits for some data points and drawbacks for
others. It should be kept in mind that the network specimens
were randomly selected across the milestones: the variability
observed is partly to be attributed to this fact. We conclude
that learning has a continued beneficial effect on average
scheduler performance and that effects of over-training are not
yet impacting our results after thirty rounds of learning.

VI. CONCLUSIONS

In this paper we presented ODDS, a framework based on
reinforcement learning for the development of LTE MAC
downlink scheduler algorithms with a user-specified optimiza-
tion goal. We described the use of data-driven techniques
applied to scheduler algorithm design, first in abstract terms,
then based on a set of design decisions aiming for a fair
and low-latency scheduling outcome. We evaluated the be-
havior of a first batch of ODD schedulers against reference
schemes such as PF and FdMt. While highly sensitive to
the circumstances of the learning process, we showed that
data-driven scheduling algorithms can meet their optimization
goals and are thus a viable alternative to schedulers based
on analytic considerations. Moreover, the good properties of
ODD schedulers extend across diverse settings and scenarios
and seem to hold beyond the range of training conditions.

The evaluation presented in this paper is just an early
assessment of the possibilities of the ODDS framework, and
its scope and development is therefore limited. More work is
required to extend the underlying system model, by adding
inter-cell interference and introducing more realistic traffic
models. From a practical perspective, it is important to estab-
lish whether the algorithms generated by the ODDS process
behave consistently also outside of simulation, i.e., as part
of a real-world LTE eNB scheduler implementation. Finally,
we aim to extend our scheme toward application awareness by
introducing policies that recognize application types from their

|B| =50, 85, and 99 rules (L, M, and H scenarios; 30 specimens/point)

observed traffic behavior and consequently adapt the scheduler
response based on application-specific utility functions.
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