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Abstract—Searching content in spontaneous wireless ad Hoc
networks is a complex task due to the intermittent nature
of the connections, energy constraints, the often present user
mobility and most importantly the lack of centralized network
administration. At the same time, the today’s search engines
(e.g., Google, Yahoo and Bing) are able to provide amazing
results at the blink of an eye thanks to their sophisticated
and extensive indexing of the content in the Web. Thereby, it
is worthwhile to ask if searching content in (sometimes highly
dynamic) spontaneous wireless networks could similarly benefit
from indexing. In this paper, we provide an elementary analysis
to this end. In particular, we compare the search performance
without index to a system where full index is available (without
taking into account the effort to build such an index). This allows
us to characterize the premises under which indexing can be
potentially useful, and vise versa. The concepts are illustrated
with numerous examples and network topologies arising from
different search strategies.

I. INTRODUCTION

The number of smart phones and tablets keeps on increas-
ing. Typically these devices are connected directly to the Inter-
net via an access point or a base station. An alternative form
of communication is a spontaneous wireless ad-hoc network
(e.g., the opportunistic networking paradigm), where nodes
establish direct links with their peers without any support from
the infrastructure. This scenario can be extremely useful when
the user for some reason cannot (cf. censorship) or does not
want to (cf. high roaming costs) rely on the infrastructure
[1]–[3]. Although the potential benefit of using such networks
as an alternative to infrastructured networks is exciting, there
are also a number of problems that arise due to the inherent
lack of infrastructure, which would be easy to solve in the
infrastructured world [4]. One such problem is “How do we
search for content in mobile opportunistic network?”

Searching for content in the infrastructured (server-client
type) networks like the Internet is well-studied and understood,
both in the academia and the industry. For example, today’s
search engines (e.g., Google, Yahoo and Bing) are able to
provide amazing search results at the blink of an eye thanks
to their sophisticated and extensive indexes of the content in
the Web. Searching is also well studied in the less-structured
networks such as Peer to Peer (P2P) networks [5], [6]. Unlike
traditional server-client architecture, nodes in P2P networks act
as peers with equal role which affects the network topology [6]
(centralized, Hybrid or fully Distributed) and indexing scheme
[7].

In Centralized P2P networks, there is a dedicated loca-
tion/peer that acts as a server providing indexing function
[7]. Peers can query this server to resolve the host address
of the content they are searching whereas in Hybrid P2P
networks, there is no centralized indexing server, rather many
servers across the network that provide indexing function. The
third one, Fully Distributed P2P network is where there is
no separate indexing server. One prominent example of such
network is the Internet overlay network Gnutella [8], [9].

With the complete lack of any sort of indexing server, a
query for searching content in such P2P network is forwarded
(based on some algorithm) until it is resolved by participating
nodes. With the rapid interest and popularity P2P networks
have attracted recently, there are quite many searching al-
gorithms and query forwarding methods proposed; all with
their pros and cons. Of the many solutions proposed, the two
extremes that stand out are the traditional flooding (epidemic)
search and direct delivery methods in which the latter one has
the lowest search cost at the expense of success ratio. On the
other end of the spectrum is the epidemic search algorithm
with the highest cost by flooding the network, in exchange for
a higher success ratio.

There are a number of solutions between these two ex-
tremes compromising between success ratio, response time
and cost. Examples are limiting query forwarding (flooding)
by TTL [10], hop-count or some for of its variants like [11],
[12], Probabilistic Flooding [13], and Seeker Assisted Search
(SAS) [14]. Most of the proposed solutions focus on resolving
a search query only when it arises (e.g. see [15]), where
as in [16], the authors have proposed a proactive system,
local indices, where nodes proactively index contents in their
locality for future use. In this paper, we consider the problem
of searching content in spontaneous wireless ad-hoc networks,
which is a non-trivial task due to the lack of infrastructure, the
intermittent nature of the connections, energy constraints and
the often present user mobility. We will not propose a new
search algorithm, rather introduce a new dimension, Mobile
Opportunistic Indexing, which can be used as an overlay
solution to any of the search algorithms. Searching without
an index can be seen as a reactive system, where a query
for a given content is resolved only when the need arises. In
contrast, search with index corresponds to a proactive system,
where the nodes have in advance indexed the content in the
network (either fully or partially) and also constantly update
the index. A query can then be resolved with a minimal effort.
Our aim is to gain understanding if searching content in such
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Fig. 1. Different logical topologies a query may follow.

networks could similarly benefit from indexing systems as in
the Internet or P2P networks.

Our premise is a semi-static scenario where the network
is dynamic in longer time scale, whereas it can be assumed
to be static in short time scale, i.e. for the duration of the
search process. We believe that such a scenario is reasonable
as searching in otherwise highly dynamic networks does not
make sense as the network is not stable (links break up very
fast), where a node’s direct neighbor could be far away in a
brief moment.

To this end, we provide an elementary analysis where we
compare the search performance without an index to a system
where a full index is available. Such comparison will allow us
to see when indexing (along with the over head cost of building
and maintaining one) is better than not indexing. Such analysis
is a very complicated task that due to space limitations, we
focus here only to the analysis of indexing gain without taking
into account the effort to build such an index, and leave the
cost consideration as a future work.

These analytical considerations allow us to characterize
the premises under which indexing can be potentially useful,
and vise versa. The concepts are illustrated with numerous
examples and network topologies arising from different search
strategies. To the best of our knowledge, this is the first
work that studies the possible gain from an indexing system
in spontaneous wireless ad-hoc networks, which in particular
quantifies the gain and optimal search parameter functions
with different search topologies. The study provides us the
maximum performance bound an indexing system can provide,
and hence gain an understanding of how much the cost of
building an index should be, if it makes sense at all.

The rest of the paper is organized as follows. First, in
Section II we introduce the basic model and the notation.
Section III gives the theoretical results for a search strategy that
forms a linear topology. This is followed by the analysis of two
and k- directional searches in Section IV and V, respectively.In
Section VI, we consider a fully connected network where
the search strategy reduces to a star topology. Section VII
concludes the paper.

II. PRELIMINARIES

We consider searching for a content in spontaneous wire-
less ad-hoc network. In particular, our aim is to evaluate the
gain from indexing the content a priori. The index has the
information about the (likely) location of the content, but not
its actual value (for the sake of efficiency, we do not want
to replicate all the content to every device, whereas the index

is assumed to be concise and “cheap” to communicate). For
simplicity, we assume that a priori every node has a fixed
probability p of having the searched content independently of
each other. We let the random variable C(↵) denote the cost
of the search with search strategy ↵. A search strategy may
follow different topologies depending on the physical (e.g. a
node’s communication range) and/or logical structure of the
network. A simple search strategy could be to check if any
immediate neighbor has the content. Typically we measure
the cost in terms of the number of transmissions (hops). For
example, if a query first travels i hops, and then a positive
response is returned along the reverse paths, we have C=2i.
Furthermore let a successfully resolved query yield a fixed
revenue of v, which characterizes the expected value of the
searched information. Our aim is to maximize the expected
net profit,

max

↵
P{S(↵)} · v � E[C(↵)],

where S(↵) denotes the event of successfully resolving a
search with strategy ↵. At this point, it is also wise to
differentiate between successfully resolving a search for a
content and retrieving it. Here, we assume that if the search
is successful, content will also be retrieved at the same time.
In the sequel, we consider two types of search strategies: (i)
search without indexing, ↵, where a query (or queries) travel
hop by hop until the searched content is found or the query is
terminated, and (ii) search with index, ↵i, where we assume
the ideal case that a global knowledge of the content locations
is available for the searching node.

Next we will consider several physical and logical network
topologies that arise from different search strategies: simple
linear network (L), two directional linear network (2D), and
generalize for k-directional topology (KD). The topologies are
illustrated in Figure 1. In other words, the search strategy ↵

determines the topology that the query (or queries) will follow
hop by hop until the search ends.

III. LINEAR NETWORK

Let us first consider search in a simple one directional
linear network as depicted in Figure 1a, before analyzing more
general topologies.

In this case, the basic linear search strategy without index,
L(n), is defined by the maximum search depth n: a search
is carried up to a distance of n nodes, and if the content is
found at node i  n, then the search ends there and a reply
is sent. This costs C

L
(n)=2i transmissions and yields a net

profit of v�2i. Otherwise, when the first n nodes do not have
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the content, the search is terminated at the nth node and no
answer is returned. As a result, the net profit is negative, �n.

With the ideal index, the situation is similar. The search
strategy L

i

(n) is defined by the maximum search depth n.
However, a query is send only if the content is known to be
within one of the first n nodes, and otherwise the search ends
already at the source node.

A. Mean Net Profit

Without Indexing: First we assume that there is no index
that the searching node could rely on. Therefore, for every
query the node has to initiate a search and see if the content is
found. As the probability of the next node having the searched
content is independent of the earlier nodes, the probability that
the searched content is first found at the distance of i hops is

pi = (1� p)

i�1

p (1)

The expected net profit with the search strategy L(n) that,
without indexing, checks at most first n nodes is thus

w

L

(n) =

nX

i=1

(1� p)

i�1

p(v � 2i)� (1� p)

n
n, (2)

where the last term takes into account the event that the search
may not be resolved after searching the first n nodes. After
some manipulation, (2) reduces to

w

L

(n) =

(2 + (n� v)p)(1� p)

n � 2 + pv

p

, (3)

so that unbounded search gives

lim

n!1
w

L

(n) = v � 2

p

.

With Indexing: Next we assume that content has been
proactively indexed and the searching node knows for each
query how far the content resides. The basic linear search
strategy with indexing, denoted by Li(n), in this case was
defined by the maximum retrieval distance n. If the content is
further than n hops away, the search is terminated immediately
at the origin. Otherwise the content is retrieved from the
nearest node. With our assumption on the distribution of the
content, the expected net profit in this case becomes

w

L

i

(n) =

nX

i=1

(1� p)

i�1

p(v � 2i), (4)

i.e., the same as (2) but the last term has been omitted due
to the availability of the index. After some manipulation, we
again obtain

w

L

i

(n) =

(2 + (2n� v)p)(1� p)

n � 2 + pv

p

, (5)

and for the unbounded search we obtain the same limit,

lim

n!1
w

L

i

(n) = v � 2

p

,

as one would expect when the information given by the index
is effectively ignored when n!1.

n n+1

optimal depth
w(n)

Fig. 2. Finding the optimal search depth n⇤.
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Fig. 3. Optimal search distance for v = 10 with and without index.

B. Optimum Search Depth

Let us next consider the optimal search depths denoted by
n

L

opt

. It follows from (2) and (4) that the expected net profit
first increases as n increases, and then starts to decrease (or if
v is too small, the expected net profit is negative for all values
of n > 0). This is illustrated in Figure 2. Therefore, we can
obtain the optimal search depth by first solving the following
equation:

w(n+ 1) = w(n). (6)

In our context, the feasible search depths are non-negative
integer numbers, and therefore, referring to Figure 2, the
optimal search depth is given by the integer when n is rounded
up,

n

L

opt

= dne (7)

Using (6), calculating the optimal search depth for the
strategy L(n) yields1,

n

L

opt

=

(
0, v  p+1

pl
p(v�1)�1

p

m
, v >

p+1

p

(8)

and for the search strategy Li(n) (with index),

n

L

opt,i =

j
v

2

k
, (9)

as any search going beyond the
⌅
v
2

⇧
hops yields a negative net

profit.

Note that when p ! 1, nL

opt

! v � 2, whereas n

L

opt,i =

bv/2c (for all p), i.e., in the absence of index we (may) search
further than with it. This is illustrated in Fig. 3 for v = 10.

1With some values of p and v, the solution to (6) is an integer number, in
case of which both n and n+ 1 are optimal yielding the same net profit.
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Fig. 4. The optimal search depth without index (left) and the corresponding
mean net profit (right) as a function of p and v.
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Fig. 5. Optimal search depth with index (left) and the corresponding mean
net profit (right) as a function of p and v.

C. Examples

Figure 4 (left) depicts the optimal search depth n

L

opt

as
a function of the availability p and the value of the searched
content v when an index is not available. The figure on the right
then illustrates the mean net profit per search with this optimal
search depth. We note that the flat area at bottom left corner
corresponds to case where the value of the searched content
is too small to justify sending of any queries. Let us next
consider our example in the ideal case where a global index is
available. In this case, only those searches where the content
can be found within the distance of dv/2e are actually carried
out. The expected net profit in this case is wL

i

(dv/2e). Figure 5
(left) depicts the optimal search depth n

L

opt,i as a function of
the availability p and the value of the searched content v when
the index is available. First we note that nL

opt,i does not depend
on p, obviously. Then also the expected net profit behaves more
smoothly and is clearly higher than without the index when
p < 1.

Figure 6 illustrates the expected net profit when the value
of the searched content is v = {3, 5, 10} with the optimal
search depths. On the x-axis is the availability probability p,
and the y-axis corresponds to the mean net profit (per search).
We can see that as p! 1, the gain from indexing the content
vanishes, as expected. However, when p is small, say p < 0.5,
the index is very useful and leads to a significant improvement
of the average search result.

Figure 7 depicts the mean net profit in logarithmic scale.
The left figure corresponds to a system without an index, and
the right figure to a system with an index. The dotted curves
on left figure are with a fixed search depth of n = bv/2c. We
can see that when p is too small, searching content when one
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Fig. 6. Expected net profit with and without indexing with the optimal search
depths for v = {3, 5, 10}.
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Fig. 7. Performance without (left) and with (right) index in linear network
in logarithmic scale

should not can be very costly and yield a negative mean net
profit. However, as soon as searching content makes sense,
the difference between the optimal depth, given by (8), and
the maximum sensible one, n = bv/2c, is not very significant.
Comparing the two graphs, we also observe that as p! 1, the
gain from index becomes negligible, as expected.

D. Indexing Gain

We define indexing gain as

� :=

w

L

i

(p)� w

L

(p)

v

. (10)

which is the difference between the expected net gain with and
without index normalized by the value of the content v. This is
illustrated in Figure 8, where we can see that the gain is high
when p is smallish and v increases. At the limit p ! 1, the
gain converges to zero, naturally. We can also see that for large
values of v, there is a small content availability p at which the
gain remains about (0.2, 0.25). That is, wL

i

(p)�w

L

(p)!1,
i.e., the absolute performance with index can be better by an
arbitrarily high amount.
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Fig. 8. Indexing gain � illustrated as a function of p and v.
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IV. TWO LINEAR NETWORKS

Next, we consider search in a two directional linear net-
work of nodes. A node searching for a content in a two
directional linear network nodes has two sets of linear network
to search from. Figure 1b illustrates a search in two directional
linear networks.

A. Mean Net Profit

Without Indexing: The basic search strategy in two linear
networks without indexing, denoted by 2D(n), is defined by a
search depth of n, where the search is first carried up to a depth
of n

1

hops in one direction. If the search is not successful after
some time t, the search is further carried out up to a depth of
n

2

hops in the second direction. In terms of cost, switching to
the other direction after n

1

depth is always better as there is no
return cost incurred for the first n

1

nodes. But this comes at the
expense of latency t, the time the searching node has to wait
before deciding to issue a new query in the other direction.

When a search is successful in the first direction, the total
cost of the search, C

2D

(n), will be 2i

1

for i
1

n
1

and n

2

=0,
(the same as that of a linear network). For i

2

>0, meaning
search is also carried out in the second direction, the cost
will become 2i

2

+ n

1

. This is because there is no return cost
incurred for the first n

1

nodes as the content is not found in
the first direction. Otherwise, the search is terminated at the
n

th node. This will cost n=n

1

+ n

2

.

We can represent the mean net profit with search strategy
2D(n), i.e. without an index, as

w

2D

(n

1

, n

2

) =

n1+n2X

i=1

[(1� p)

i�1

p(v � C

2D

(n

1

, n

2

))]

�(n
1

+ n

2

)(1� p)

n1+n2
,

(11)
where,

C

2D

(i

1

, i

2

) =

⇢
2i

1

, ifi

2

= 0,

2i

2

+ n

1

, otherwise

(12)

We note that for i

2

= 0, Eq.(11) reduces to the simple linear
network discussed in Section (III).

With Indexing: Searching in two linear networks with
index, 2Di(n), follows the physical topology of the network
as the index helps to effectively ignore one of the directions
that is known not to host the content (or at a higher cost
than the other). With the availability of the index, a searching
node knows in which segment of the network the content
is located, if it exists. Similarly, the search strategy in two
linear networks with indexing, 2D

i

(n), is defined again by the
maximum search (or retrieval depth) n. However, a query is
sent only if the content is known to be located in two linear
branches of the network. Otherwise the search ends already
at the source node. The expected net profit with the search
strategy 2D

i

(n), i.e. with index, will therefore be:

w

2D

i

(n

1

, n

2

) = w

2D

i

(n

1

, 0) =

nX

i=1

(1� p)

i�1

p(v � 2i), (13)

which after some manipulation also reduces to

w

2D

i

(n

1

, 0) =

(2 + (2n

1

� v)p)(1� p)

n1 � 2 + pv

p

. (14)

For the unbounded search, we obtain the limit,

lim

n1!1
w

2D

i

(n

1

, 0) = v � 2

p

,

as expected.

B. Optimum Search Depth

We mentioned above that when searching in two linear
networks, switching the search direction is better. Since the
searching node can not search one node at a time and switch
back and forth repeatedly, there should be some optimal depth
n

2D

1,opt to search in the first direction before deciding to search
the other direction, again up to an optimal depth of n

2D

2,opt,
such that Eq.(11) is maximized at (n2D

1,opt, n
2D

2,opt). In colloquial
words, it is always better to search for some depth, then switch
direction and search a little more, and hence the following
theorem.

Theorem 1: The optimal search depths n

2D

1,opt and n

2D

2,opt,
maximizing w

2D

(n

1

, n

2

), are such that n2D

1,opt  n

2D

2,opt.

Proof: We proof this by comparing w

2

(n

1

, n

2

) and
w

2

(n

2

, n

1

). The case n

1

= n

2

is trivial, and hence we can
assume that n

1

< n

2

< v/2.

First we break the search process into two parts: First part
is the going “forward” until the content is found or the search
is dropped, and the second part is the going “backwards” when
the content found is returned. The expected cost of the forward
part, denoted by F , can be written as:

F(n

1

, n

2

) =

n1+n2X

i=1

(1� p)

i�1

pi+ (n

1

+ n

2

)(1� p)

n1+n2
.

We note that exchanging n

1

and n

2

makes no difference to
F (·). For the backward part, occurring when the searched
content is found, the expected net gain, w2D

(n

1

, n

2

), is

w

2D

(n

1

, n

2

) =

n1X

i=1

(1� p)

i�1

p(v � i) +

(1� p)

n1

n2X

i=1

(1� p)

i�1

p(v � i),

which reduces to

w

2D

(n

1

, n

2

) = [n

1

(1� p)

n1
p+ n

2

(1� p)

n1+n2
p

�(pv � 1)[(1� p)

a+b � 1]]/p.

We then compare the gain by exchanging n

1

and n

2

, such that
w

2D

(n

1

, n

2

)� w

2D

(n

2

, n

1

) becomes

w

2D

(n

1

, n

2

)�w2D

(n

2

, n

1

) = n

2

(1� p)

n2
[(1� p)

n1 � 1]

�n
1

(1� p)

n1
[(1� p)

n2 � 1].

But, for n
1

< n

2

, changing the multiplier n
2

in the first term
of the above by n

1

gives us

w

2D

(n

1

, n

2

)�w2D

(n

2

, n

1

) > n

1

(1� p)

n2
[(1� p)

n1 � 1]

�n
1

(1� p)

n1
[(1� p)

n2 � 1],

which, after some manipulation, reduces to

w

2D

(n

1

, n

2

)�w2D

(n

2

, n

1

) > n

1

[(1� p)

n1 � (1� p)

n2
].
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Fig. 9. Search in a two directional Linear Network

Since p  1, and n

1

[(1�p)n1�(1�p)n2
] � 0 for all n

1

< n

2

,
it follows for n

1

< n

2

,

w

2

(n

1

, n

2

) > w

2

(n

2

, n

1

),

which concludes the proof.

Alternatively, the optimal search depths n

2D

1,opt and n

2D

2,opt
can also be computed numerically by maximizing Eq. (11) or
by using the following greedy algorithm.

n

1

 0

while Max Gain(n
1

+1) > Max Gain(n
1

) do
n

1

 n

1

+ 1

end while
return (n

1

)

The Max Gain(n
1

) is a subroutine that returns the maxi-
mum of Eq. (11) for a fixed search depth n

1

in the first linear
network. For n

2

, the algorithm is as follows:

n

2

 0

while w

2D

(n

1

, n

2

+ 1) > w

2D

(n

1

, n

2

) do
n

2

 n

2

+ 1

end while
return w

2D

(n

1

, n

2

)

C. Example

Suppose next that the availability of the content is p = 0.2,
and the value of the content is v = 10. Figure 9 depicts
the equi-value contours for the search strategy with depths
(n

1

, n

2

). We can see that it is beneficial to first search only
up to a short distance, and then if that fails, the second
query may travel a bit longer. In this case, the optimal policy
(n

2D

1,opt, n
2D

2,opt) that maximize the mean net profit is (3, 4) or
(3, 5), both yielding the same expected net profit of about 2.37.

On the other hand, when an index is available, the searching
node will not issue any query in the direction where the content
is further away, but chooses the other direction immediately,
given the content lies within a distance of at most bv/2c hops.
In this case, the optimal policy (n

2D

1,opt, n
2D

2,opt) that maximizes
the mean net profit becomes (0, bv/2c).

V. K LINEAR NETWORKS

In this section, we generalize search in k-directional linear
network. In this type of topology, the searching node has
k-directly connected linear network of nodes forming a star
topology. Figure 1c shows an example of a k-directional
network for k=4.

A. Mean Net Profit

Without Indexing: The basic search strategy in k-linear
networks without indexing, denoted by KD(n), is defined by
search depths {nj} with n =

Pk
j=1

nj ; where the search is
carried up to a depth of nj hops in the j

th direction before a
new search is issued at the (j+1)

th direction, until the search
is resolved, or j = k and the search fails.

A search that is terminated (successful or failed) in the first
direction is similar to search in linear network and results in a
mean net profit similar to Eq.(2). If the search is further carried
out in the second direction, the mean net profit will become

w

KD

(n)=(1�p)

n1

n2X

i=1

[(1�p)

i�1

p(v�2i�n

1

)]�n(1�p)

n
,

and

w

KD

(n) = (1� p)

n1+n2

n3X

i=1

[(1� p)

i�1

p(v � 2i� (n

1

+n

2

))]

� n(1� p)

n
,

for when the search has progressed up to the third direction.

Now if we let ñj =

Pj�1

i=1

ni, and ṽj = v � ñj , we can
generalize the mean net profit for a search in k linear networks
without index, as

wKD(n) =
kX

j=1

(1�p)ñj

njX

i=1

[(1�p)i�1p(ṽj�2i)]�n(1�p)n. (15)

With Indexing: Searching in K-directional linear network
with index, a node will search k branches and at most n nodes.
Since the node knows where the content is, it will forward
its queryto the dimension that has the content at the shortest
distance, if any.

The expected net profit per query in k-directional linear
network with indexing can thus be expressed as

w

KD

i (n) =

nX

i=1

P{ ˜D=i}(v � 2i), (16)

where P{ ˜D = i} is the probability of finding a content at a
distance of i hops in any of the k-directions in the network.
But the probability of a content being located at a distance of
i hops in a linear network is (1 � p)

i�1

p, which can also be
generalized for k directions by replacing p with p

(k)
=1� (1�

p)

k, yielding

P{ ˜D = i} = [1� p

(k)
]

i�1

p

(k)
. (17)

Putting (17) in (16), gives the mean net profit with index,

w

KD

i (n) =

✓
v � 2

1� (1� p)

k

◆�
1� (1� p)

kn
�

+ 2n(1� p)

kn
.

(18)
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Fig. 10. Effect of topology with index.

B. Optimum Search Depth

Similar to the optimum search strategy in two-directional
linear networks discussed in Section IV-B, the optimum search
policy when searching in k-directional topology without an
index is to search in one direction and if that fails, then search
a bit more in the next direction2 and so on, i.e., {nj} with
n

1

 n

2

 . . .  nk. For large k or when k ! n, the
searched content will be more closer to the searching node
and the network will reduce to a star-topology. Therefore, it
is beneficial to switch direction than search deeper, and the
optimum search depth becomes 1.

Obviously, with an index the optimal search depth is bv/2c.

C. Example: Effect of Directions with Index

Let us next vary the number of directions k in the case with
index. Figure 10 depicts the gain from having more than one
direction as a function of availability p in logarithmic scale for
v = 10,

�i(k) :=
w

KD

i (k)

w

KD

i (1)

.

We observe that the gain behaves linearly as a function of k

when p is small, in case of which a multi-directional search is
useful. In fact, it is easy to show that

lim

p!0

�i(k) = k, and lim

p!1

�i(k) = 1,

for all v > 2.

VI. STAR NETWORK

Next, we consider search in a star network of nodes, where
all k other nodes are directly connected to the searching node
forming a star topology. This topology follows as a special case
of K linear networks when we restrict the search perimeter to
a single hop (see Figure 1c).

A. Mean Net Profit

Without Indexing: The basic search strategy in a star
network without index, ST(n), is defined by the maximum
search depth n: a search is carried up to n neighboring (directly
connected) nodes, and if the content is found at node i  n,
then the search ends there and the reply is sent. Search strategy
ST(n) is in fact a special case of KD(n), where n=k, and
nj=1.

2Due to space limitation, we omit the formal proof for k>2, but the result
itself is self-evident from the case k=2.

The mean net profit with the search strategy ST(n) that
checks at most n directly connected nodes is

w

ST

(n) =

nX

i=1

(1� p)

i�1

p(v � i� 1)� (1� p)

n
n,

which reduces to

w

ST

(n) =

(1� (1� p)

n
)(p(v � 1)� 1)

p

. (19)

We note that (19) is negative if p(v � 1) < 1, in case of
which the optimal search depth is zero, n = 0. Otherwise, (19)
is maximized when n! k. Consequently, the optimal search
depth in star topology without index is

n

ST

opt

=

⇢
0, if p(v � 1)  1

k, otherwise. (20)

With Indexing: With an ideal index, the situation becomes
a bit different. The search strategy in physical star networks
with indexing, a query will be sent only if the content is known
to be carried by one of the neighboring nodes, and otherwise
the search ends already at the source node. Hence, the expected
net profit with the search strategy ST

i

with an index is

w

st

i

= [1� (1� p)

k
](v � 2), (21)

which follows from Eq.(18) as a special case.

B. Asymptotic case k !1
Let us next assume a dense network with an infinite number

of nodes, k ! 1. In this case, the net profit without index
reduces to

lim

k!1
w

ST

(k) = v � 1� 1/p, (p(v � 1) > 1)

and with an index,
lim

k!1
w

st

i

(k) = v � 2.

The absolute difference is thus (1� p)/p.

C. Indexing gain in star network

Let us again study the indexing gain defined in (10). For
p(v � 1) > 1, we obtain

�

ST

=

�
1� (1� p)

k
�
1� p

pv

,

which is a decreasing function of p. For p(v � 1)  1 (and
v > 2), it is not worth it to search content if there is no index,
and the indexing gain reduces to �

ST

= w

st

i

(n)/v, yielding

�

ST

=

�
1� (1� p)

k
�
v � 2

v

.

The above is an increasing function of p. Therefore, the maxi-
mum gain from having an index is obtained at p = (v� 1)

�1,

�

ST

max

=

 ✓
v � 2

v � 1

◆k

� 1

!
v � 2

v

,

which achieves maximum when k, v ! 1, yielding �

ST

max

!
1. The same limit is in fact obtained for any 0 < p  (v�1)�1.
In other words, in star topology, the absolute gain from having
an index can be as high as it in theory can be.
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VII. CONCLUSION

In this paper, we provided the basic analysis of indexing
gain when searching content in spontaneous wireless networks
that lack the infrastructure to utilize an indexing server. We
compared search performance of a system without an index to
that of a system with a global index of available contents.

Our analysis is very important in two ways. First, it gives
us a preliminary understanding of indexing in infrastructure-
less networks to see if the success of indexing contents in the
Internet can also be replicated. To this end, we have shown
with numerous search topologies and examples that indexing
indeed provides a clear gain. Without indexing, the critical
decision is to decide if it is worth to trigger a search at all,
which requires a good understanding of both availability and
valueof content.

For linear networks, we have shown in Figure.6 that
indexing is especially useful when the content sought after
is rare, i.e. p is small, and its value v is high enough. Figure 8
on the other hand gives us insight as to how much the cost
of building and maintaining such an index can be, as the gain
with indexing in linear networks seems to be less than v/4 for
all (p, v).

For search in more complicated networks, such as two
and k directional linear networks, the basic search strategy
is to search a bit more whenever a search switches to a new
direction, i.e., the optimal search depth without an index is of
form n

1

n
2

 . . .nk which we have shown for k=2. With
the availability of an index, we have found closed form results
(14) and (18) that quantify the expected mean gain with an
indexing system.

Search in star networks is interesting in its own, as a
node without index will search infinitely, or not at all. This is
because in star topology, the additional cost for searching one
more node is minimal, and a node should keep searching until
the content is found. In contrast, with an index, the optimal
search depth is always one.

We have considered specific regular topologies in this
work as it gives us insight into more general cases, where
topologies can be, e.g. random or change more dynamically.
In this paper, we did not look at the cost of building an index,
but rather analyzed the gain an index can provide so that
we can characterize the premises under which indexing can
be useful. Accounting the effort of building and maintaining
an index provides a better understanding of indexing gain in
mobile opportunistic networks, and hence it will be one of our
topics for future study. Another question that can be further
investigated is the gain of partial indexing, if global indexing in
the network is difficult to achieve. It would also be interesting
to study more realistic scenarios which for the assumed mobile
opportunistic network setup, would probably entail asymmetry
between forward and return paths (in terms of query/content
forwarding costs) in a single linear search path, cost asymmetry
among different paths, and so on.

Furthermore, it is also important to study and adopt ex-
isting systems on how a “global index” becomes available in
spontaneous wireless networks, such as mobile opportunistic
networks which are inherently infrastructure-less. To this end,
we propose “floating index” as another potential future work,

where schemes like floating content [1] could be used to
provide an indexing functionality in spontaneous wireless
networks.
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