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Abstract—Nowadays, IEEE 802.11 networks are the most
popular option to have wireless access to the Internet and a
promising technology to tackle the digital divide that accounts
for 2/3 of the world population. However, the popularity of these
networks have raised a complex discovery and connection process,
i.e., any device has to pass through an expensive scanning process
of available Access Points in crowded and chaotic deployments.
The scanning process can be modelled by a set of metrics
exposing a trade-off between latency and the discovery rate when
searching for appropriate Wi-Fi connection. Consequently, in
order to improve the connection process, we use a multi-objective
optimisation approach for generating optimal scanning sequences.
We propose a framework to assist the network discovery within a
Community Network, and we have adapted a Cultural Algorithm
as an intelligent component for calculating optimal scanning
sequences. Results show that we can derive optimal scanning
sequences better than standard approaches for scanning in
chaotic network deployments.

I. INTRODUCTION

Today, IEEE 802.11 networks are the first option to have
ubiquitous and low-cost wireless access to the Internet. We
count on millions of Wi-Fi devices in many different new
and challenging contexts: Community Networks [1], Sensor
Networks [2], Internet of Things, and personal computers in
Home Networks. In all of these scenarios, there has been
a dramatic increase on the number of devices requiring to
connect to Wi-Fi Access Points (AP). In order to connect to
the wireless access network, a device must scan its surrounding
and find an appropriate AP. However, the scanning process
embedded in mobile and desktop devices does not follow a
standard pattern or design principle.

In Community Networks, people spontaneously deploy
APs. Nomadic users are able to access thousand of community
APs belonging to the same direct provider [3], and also have
access to virtual network operators (VNOs) such as FON1.
In both cases a user has to pass through a scanning process,
being the most expensive sub-process within the discovery
of a wireless topology. In this respect, the discovery process
is becoming iterative and time consuming in Wi-Fi dense
deployments. Recently, we have observed in [4] that in a
regular discovery process, the device has to scan multiple times
to discover available APs in a densely-covered urban area.
World-wide trends show that this is likely to be a regular case

1http://www.fon.com

in the near future2.

The current suboptimal behaviour of the scanning algo-
rithm is present in the vast majority of devices, significantly
consuming energy and impacting network performance [5].
The scanning traffic is becoming a potential problem lowering
the available bandwidth and frequently interrupting regular
transmissions. This is mostly because of the increasing number
of devices using Wi-Fi and the congestion induced by non-
adapted scanning process [4]–[6].

On the other hand, a Mobile Station (MS) may also perform
a regular scanning by testing a partial or a complete set of
channels. Approaches for partial scanning show that small
bursts of scans allow uninterrupted execution of applications
and look forward to perform seamless handovers. Whereas
regular complete-set approaches for modern devices (iOS
or Android based) perform sequential scanning without any
adaptation on the sequence nor the duration of the timers.
Considering that the later is most common scanning strategy
[7], and that the nature of the scanning process represents
about 80% of the handover time [8], an efficient scanning
will not only represent an improvement on aggregated control
traffic reduction for public Wi-Fi access [5], but also – if
specific scanning sequences are given to specific group of users
(§ III)– performing load-balancing in systems like VPuN [1]
or Meraki3.

A. Scanning process in 802.11 networks

The scanning is the first (and most time consuming) sub-
process for a client willing to attach to an IEEE 802.11
network, in which a client interface looks for available APs
for later associate to them [9]. Although the ultimate (and
common) goal of a scanning is to find all available APs to
which the station might be able to join, it is very costly in terms
of aggregated number of beacons and energy at the client.
To discover all APs, i.e., the topology within a dense area,
the device should properly be adjusted with a pair of timers,
namely MinChannelTime and MaxChannelTime, referred as
MinCT and MaxCT respectively from now on [10], [11].

IEEE 802.11 standard [9] defines two kinds of scanning

2https://wigle.net/
3https://meraki.cisco.com/
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procedures: active and passive scanning4. As shown in Fig. 1,
during an Active Scanning the client starts a timer called
MinCT to wait for responses on a single channel, then it broad-
casts a Probe Request frame waiting for Probe Responses. If
it receives no Probe Responses before MinCT, then it passes
onto the next channel of the scanning list. Otherwise, if at least
one Probe Response is received, it will trigger an extended
timer called MaxCT. After it expires, all Probe Responses are
processed before jumping onto the next channel.

An efficient scanning approach should rely on appropriate
and independent pair of timers per channel. However, as sug-
gested by Fig. 1, a scanning function should not underestimate
the time spent on a given channel (e.g., as in ch11) nor
overestimate it (e.g., as in ch2) to discover an appropriate
number of APs. As we discuss in this article, the efficient
estimation of timers depends on the knowledge of the network
topology, hence the need for an assisted scanning.
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Figure 1. Active Scanning in IEEE 802.11 Networks

There is a high number of possibilities for timer configu-
ration. There are 22 timers in total, given 11 channels and 2
timers per channel. Adapting these timers could depend not
only on the topology, but also on the application requirements
[12]. However, from a general perspective, an appropriate
discovery process depends on the scale and the distribution of
APs within the wireless network. As the complexity of finding
an appropriate scanning sequence increases, we propose the
use of a computational intelligent technique for improving the
scanning process.

4In passive scanning, the station just listens in each channel an amount of
time defined by MaxChannelTime parameter. The interested reader can refer
to [11] for further details on the discovery process.

B. Using computational intelligence for assisting Wi-Fi scan-
ning

In this work we propose a Topology Manager that hosts an
intelligent scanning process, and uses a computational intelli-
gence (CI) technique to calculate efficient scanning sequences
that improve the Wi-Fi discovery process. As suggested in [1],
[4], [13], in future dense (e.g., community) Wi-Fi deployments,
these central entities or topology managers can help wireless
clients in the decision process for efficiently connecting to
a dense Wi-Fi network, moreover they could also serve for
coarse content or service indication by means of the 802.11u
access network query protocol.

In the CI field, there are several multi-objectives optimisa-
tion techniques that mimic the nature evolutionary principles
that are used to execute search and optimisation procedures.
Some of these techniques are based on theories proposed by so-
ciologist to model cultural evolution. In our particular case, we
adapted and implemented a Cultural Algorithm (CA) in order
to deal with multi-objective optimisation problems [14]. Our
version of the CA is based upon evolutionary programming,
Pareto ranking and elitism (i.e., individuals finely filtered)
to accomplish a more efficient search for optimal scanning
sequences.

In this work we present a novel approach to find optimal
scanning configurations using an assisted scanning approach
[15]. As the scanning problem can be stated as a multi-
objective optimisation problem [12], we use CA to produce
topology-adapted scanning sequences. We discuss a new trade-
off (see Section IV) balancing the discovery rate (in number
of discovered APs per time unit) and total latency for the
discovery process. Furthermore, we contextualise the use of an
intelligent algorithm within a Topology Manager (Section III).

Our results are based on real measurements and evalu-
ated through an emulation model [4] described in § V. Upon
this, the CA generates a set of sequences along the Pareto front
that can be used depending on the user needs. We compared
with scanning sequences that have been reversed engineered
from various devices and we show advantages of our approach.

The remainder of this paper is organized as follows.
In Section II we present the related work on the different
scanning approaches and discusses techniques for scanning
optimization. In Section III we describe the Topology Manager
for assisting the network discovery process. In Section IV we
present the design and implementation of the Cultural Algo-
rithm. In Section V we discuss the results of the emulations.
Finally, in Section VI we conclude the paper and give the
perspective for the future work.

II. RELATED WORK

The scanning process has been assessed and optimised con-
sidering two main perspectives. Firstly, some authors present
different grouping strategies to empirically find an optimal
sequence. These findings are supported with controlled ex-
perimental testbeds. Secondly, other authors discuss methods
for calculating adaptive sequences considering an unknown
number or high number of APs in the deployment, such as
those found in Community Networks.
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The optimization of the scanning sequences has been sys-
tematically addressed by means of empirical approaches, i.e.,
by modifying the timers according to a controlled topology.
The first to propose a modification to timers were Velayos
and Karlson [16], who proposed fixed timers based on the
theoretical best and estimated worse case for sending and re-
ceiving probes. Other authors have also followed this proposal
increasing the MinCT arguing that even for minimal congestion
on channels with few APs, the theoretical value is inappropri-
ate. Another approach extensively worked by Castignani et al.
[17] consisted in adapting the timers depending on the load of
the network, i.e., efficiently adapting timers while performing
the scanning process. Authors have also studied the impact of
cross-layer information for setting higher timers where pre-
sensed energy thresholds were detected [18].

There are other similar approaches such as grouping chan-
nels to scan each group in a time-shifted fashion. This allows
the alternation between the sending of probes and data traffic
to produce minimal impact on continuous transfers. Montavont
et al. [19] use this approach using two fixed and independent
periods. Liao and Cao [20] use a smooth scanning technique
that introduces variable scanning periods. The main purpose
of this approach is to minimize the handover time. Nah et al.
[21] use the same principle of alternate scan-bursts to improve
the user experience.

Other approaches intend to minimize the scanning time by
reducing the scanning sequence. Shin et al. [22] propose the
scanning in non overlapping channels 1, 6, and 11. However,
they do not address the adaptation to the topology. Eriksson
et al. [23] propose to progressively calculate the probability
of certain AP operating in a channel, and then calculate the
scanning sequence.

On the other hand, Castignani et al. [11] have iden-
tified three metrics from which a scanning process can be
modelled: the elapsed time for scanning the whole set of
channels (namely full scanning latency), the failure rate as
the probability of finding zero APs after completing the full
scanning, and the discovery rate as the fraction of discovered
APs over the total number of available APs which, in turn,
could also be interpreted as the total number of discovered
APs after a single full scanning. Note that authors rely on a
complete knowledge of the (high scale) topology in order to
calculate the discovery rate.

In Montavont et al. [12] we have used genetic algorithms
(GA) considering the above mentioned metrics to obtain effi-
cient scanning sequences. Sequences generated by GA are used
to minimize the full scanning latency reducing the impact of
discovery on applications and, at the same time, maximize the
number of discovered APs (e.g., to have more alternatives for
connection). Differently, in this work, we focus on a discovery
rate (APs per time unit) for obtaining better fast scanning
sequences favouring real-time applications and fast connection
procedures.

Finally, some work has been done on central entities
for assisting wireless networks. Alternatives such as Meraki,
Behop project [24], VPuN [1] or PAWS [13] offer centralised
services to control wireless network deployments but focus on
traffic profiling and do not offer details about the discovery
process.

III. A TOPOLOGY MANAGER FOR IEEE 802.11
NETWORKS

As in an Information Centric Networking architecture [25],
a Topology Manager (TM) conveniently hosted by the wireless
service provider, could opportunistically assist mobile users
to better discover and control a crowded wireless network
topology. It could also help mobile users to determine link
quality and best possible connection allowing improved access
to the network. As we have observed, within a single scanning,
a subset of the available APs are discovered, and usually, a
client does not have time to scan multiple times [4]. However,
with an intelligent TM, several community users could share
their partial vision of the topology so that up-to-date and
customized efficient sequences are computed by the TM, thus
giving a global and more precise view of the access network.
The main advantage of this approach is that the TM is able to
generate efficient scanning sequences, that allow clients saving
time during the expensive discovery process.

In order to update the vision of the topology on the TM, we
rely upon two roles for participants. Firstly, new users would
act as feeders, as they push their vision of the topology from
time to time with a simple posts of their partial vision of the
network (e.g., through regular non optimized scannings) on
the TM. This update could be pushed using the IEEE 802.11u
amendment also known as Access Network Query Protocol
(ANQP). ANQP allows clients to query or to pass information
to the TM behind designated APs and before authentication.
Moreover, a client could use specific messages for finding out
about a specific VNO whose network is accessible through
a designated AP. Secondly, regular clients (RC) correspond
to those feeders that have already contributed enough to the
vision of the topology and that the TM has promoted to
RC. Hence, RCs looking for a candidate AP could retrieve
efficient sequences with special queries to the TM who, in
turn, asynchronously interacts with an intelligent algorithm
as the one proposed in § IV. Specific use-cases in which a
RC benefits from this scheme, correspond to handovers or
when needing to real-time applications. As shown in Fig. 2,
a simple round trip between the RC and the TM, or even
by retrieving the appropriate scanning sequence through an
alternative interface (e.g., GSM or 3G), could save several
hundred of milliseconds relying on the increased efficiency
of the scanning.

A. Interaction with the Community Topology Manager

Fig. 2 illustrates the workings of the assisted scanning.
A feeder (F) arriving to the network contributes with a
raw scanning of the topology, from which the TM benefits
with every new entry. The TM is able to store information
about geo-tagged fingerprints created from previous feeders.
Eventually, the TM will have enough information about the
inter-response times of the APs on the topology under control.
Meanwhile, this information is being stored at the topology
model and being used by the intelligent algorithm to compute
smart sequences.

A feeder is expected to do regular raw scannings during
first attempts to join the network. Also contributing to the TM
vision will allow the feeder to be promoted to RC, in order
to be able to obtain efficient scanning sequences. Otherwise,
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Figure 2. Architecture for the Next Generation Wireless

a non-feeder is be considered as non-cooperative client and
would not profit from the TM estimations. In future subsequent
scannings (either raw or efficient) a client is able to know
whether it has a new fingerprint of its surrounding topology
(e.g., if it is in a different location), and then it could send new
fingerprints to the TM to improve the topology model. Finally,
a regular client is likely to be interested in requesting to the
TM a special scanning sequence based on the requirements
of the applications it is running, e.g., a client imposes latency
restrictions because it is running a VoIP application.

IV. AN INTELLIGENT MODULE FOR TOPOLOGY
MANAGEMENT

As shown in Fig. 2, the TM uses an intelligent algo-
rithm to manage an efficient network discovery. The TM
asynchronously and conveniently invokes the calculation of
smart scanning sequences through the CA. These sequences
are systematically stored into the so-called smart sequences
DB (or elite DB in the CA context) so that the TM can have
immediate access for efficient sequences whenever requested
by a client.

The CA is a dual inheritance system with evolution con-
sidering two main components for calculating approximate
solutions for a multi-objective problem [14]. The method relies
on an initial population P and further refinements directions
called beliefs. These components impact the creation of new
generations of better individuals. The CA algorithm also
allows directed mutation through which we can produce better
intermediate individuals that bring better convergence to non-
dominated individuals.

Fig. 3 is a macro representation of the CA. The approach
relies on two big processes, the operations transforming the
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Figure 3. A general perspective of the Cultural Algorithm

population P, and the adjustment of the belief space B. An ini-
tial population P passes through several cycles of (M)utation,
then (F)iltering of best performing individuals and finally an
(E)xtraction process of the non-dominated individuals going
into the elite-DB. These non-dominated individuals contribute
to the knowledge, within the belief space B, about the limits
of the studied variables and the exploration of a broader
Pareto front. Consequently B influence subsequent (M)utation
processes for future generations.

Algorithm 1: The Cultural Algorithm
Data: wireless topology model
Result: adapted (individuals) scanning sequences

1 Initialise with P random individuals;
2 Compute OF1 and OF2 for every individual;
3 Compute Super Individual;
4 Initialise belief space;
5 while i ≤ Total Generations do
6 Mutate P individuals into 2P population (Pnew);
7 Filter Pbest individuals through tournaments on

Pnew;
8 Add non-dominated individuals (Pnd) of Pbest into

elite-DB;
9 Update grid using Pnd;

10 Update phenotypical component every
M < Total Generations;

11 Update Super Individual;
12 end

Table 1 presents the pseudo-code of the CA. In line 1 we
define the initial population P to be mutated and eventually
will end-up in smart scanning sequences. The initial number
of individuals is set according to [14], however based on our
experimental results with the model, we have observed that
we could successfully reduce the number of total iterations
due to the convenient tuning of the initial population. Then
in line 2 it is evaluated the performance of every individual
of P by computing the Objective Function OF1 and OF2

for each of them. In line 3 we calculate a super individual
which is going to influence specific number of genes during
the mutation process. Then in line 4 we set up the belief space
B, i.e., we determine the minimal and maximal values for
OF1 and OF2, and we create a grid for bounding individuals
so that grouped solutions do influence the initial population
during the mutation process. The belief space B makes an
impact through the adaptation of the limits of the ranges for
each objective function. We have modified the Influencing
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process by incorporating a new mutation operator to guide
the population to have equal chances of exploring the Pareto
optimal front.

After the initialization process, subsequent refinement of
the population start at line 5. The refinement starts with a
mutation process (line 6) to obtain 2P individuals, for then
filtering of the best individuals (P ) through a tournament-like
procedure (line 7). Afterwards, it follows the calculation of
the non-dominated individuals (line 8) that help on the re-
adjustment of the grid. Finally, the iteration process for refining
the current individuals consist on making a new generation.

After a predefined number of generation, resulting individ-
uals are the input to decision maker that actually adapts further
the scanning sequence to the application needs.

A. Optimisation Model

The problem of optimizing the performance parameters of
the scanning in IEEE 802.11 networks is modelled as follows:

max

11∑
i=1

NminCi
/MinCTCi

+NmaxCi
/MaxCTCi

(1)

minL =

n∑
i=1

(MinCTCi
+ pi ·MaxCTCi

)∀Ci ∈ [1, 11] (2)

We have built a model based on the inter Probe Response
time based on an extensive measurement campaign [4]. After
analysis of several thousand of scanning traces, we imposed
the following restrictions on the timers: 5 ≤ MinCT ≤ 15,
3 ≤ MaxCT ≤ 90.

NminCi and NmaxCi correspond to the number of APs
discovered in channel i, with MinCT and MaxCT respec-
tively. Hence, Eq. 1 corresponds to an index on the total
discovery rate. The interval values for MinCT and MaxCT
are expressed in milliseconds, and were obtained considering
percentiles 20 and 80 respectively [4], [19]. L corresponds to
the aggregated latency, expressed in milliseconds (ms). Within
the latency, pi correspond to the probability of having at least
one response within any channel. This probability is obtained
per channel, considering that (1) every channel has different
effect on overlapping APs and (2) the time between Probe
Responses varies according to the total number of APs living in
a single channel. Ci represents the i channel from a total of 11
channels in the 2.4 GHz band for the crowded AP deployment
[4]. Finally, our min/max model specified in Eq. 1 and 2, were
used by the CA as objective functions.

Structure of the population. The population of a CA is
conceived as individuals that represent candidate solutions and
their characteristics are translated into an OF. In order to per-
form the evolutionary search we propose an individual with the
following structure: < X1, ..., X11 >< OF1, OF2 >. In which
each subgroup Xi is conformed as < Ci,Mini,Maxi, APi >
with i = 1, ..., 11, where: Ci is the channel numbered i,
MinCTi is Min Channel Time (ms) for channel i, MaxCTi
is Max Channel Time (ms) for channel i, APi is the number
of discovered access points in channel i, OF1 is the value that

maximizes the discovery rate of APs, and OF2 is the value
that minimizes the latency. An individual will have a total of
44 parameters and two values of objective functions (value of
discovery of APs and latency value).

Mutation. The main advantage our version of the CA
consists in directing the mutation process. The mutation is
performed to the parameters xi (i = 1, ..., 44) mapping into
every timer of the P individual of the population. The Gaussian
mutation is used to obtain the mutated value of a variable xi
of an individual as follows: x′i = xi +N(m,σ). N(m,σ) is a
random variable with a normal distribution with mean m and
standard deviation σ. In our particular case, we considered
m = 0. Observe that this directed mutation allows confined
and gradual changes to individuals.

The guided mutation. As we have previously described,
the execution of the process of Mutation is based on the
normative knowledge within the belief space B (see Fig. 3).
For better results we have further defined executing a guided
mutation (GM) with probability PGM = 0.3. The goal of a
randomly applied GM is to guide new individuals to regions
in the solution space that have been little evaluated, and do
exercise influence on younger generations. The GM finds cells
of the grid within (B) with the smallest number of individuals
but in which there are at least two non-dominated individuals.

The GM process uses a model individual built from the best
genes of P in order to modify similar genes of new individuals
on the knowledge base, stored in the grid of the belief space.

The tournament selection. This process is carried out
by considering the population with size 2P . Each individual
will face C confrontations, chosen at random from the main
population. There are two basic tournament rules. Firstly, if
an individual dominates the other, then the non-dominated
individual is the winner. Secondly, if they are not comparable
or their values of the objective functions are equal, then: (a)
Being both within the grid of the belief space, then wins the
one within a cell less populated (according to the counter of
the cells), (b) otherwise, if one falls off the grid, then this one
wins (in order to increase the space of exploration).

Upon completion of the tournament, the P individuals with
a greater number of victories are selected to be promoted to
the next generation.

Insertion of individuals to the elite DB. The elite DB con-
tains unique non-dominated individuals. To add an individual
to the elite DB, if the candidate individual (CI) is dominated
by any individual within the DB, then the CI is discarded.
Otherwise, it replaces the set of individuals it dominates
leaving other (pairs) non-dominated individuals in the DB.
Hence, all individuals living within the DB corresponds to
non-dominated among themselves, i.e., are spread along the
Pareto front.

V. RESULTS

The emulation model. The cultural algorithm was imple-
mented using C++ programming Language in an Intel Core
i5 computer. Source code is available in a GitHub repository
at https://github.com/antonioaraujob/omocac. The parameters
used for simulations are shown in Table I.
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Table I. PARAMETER VALUES FOR SIMULATIONS

Parameter Value
Initial population (P) size 20
Max. generation number 200

Standard deviation for Gaussian mutation MinCT 1
Standard deviation for Gaussian mutation MaxCT 3

Grid subinterval number 10
Update frequency for phenotypical normative part M = 5

Tournaments by individual 10
Directed mutation probability 0.3

The Wi-Fi deployment is emulated, based upon results
derived from an extensive measurement campaign in Rennes,
France [4]. We war-walked 2.5 km of an urban area densely
covered by Wi-Fi. We have registered regular AP character-
istics such as SSID, BSSID, RSSI and, we have managed
to carefully and orderly trace the time-difference between all
probe responses. Later, we computed a CDF for inter-probe-
response time for each individual Wi-Fi channel (i.e., from
1 to 11). We further modelled an empty channel out of the
probability of receiving no Probe Response before MinCT,
otherwise our model is able to emulate the discovery of
recorded APs based on the empirical probability distribution
for inter-probe-response time.

Computing smart sequences. After few hundreds of
generations, we got channel sequences with optimized values
of scanning parameters (MinCT, MaxCT) as it is shown
in Table II. In this table, each channel is represented as
follows: Chl

<m,M>→AP where Ch is a channel within the se-
quence (between Ch1 and Ch11), l is the latency obtained as
MinCT+MaxCT for which previous values get accumulated, m
is MinCT, M is MaxCT, AP is the number of APs discovered
in the channel. Note also that the order of channels is different
for every sequence. This is because the CA has adapted
channel speed according to the response of the system on
every different channel, hence finding the maximum rate of
useful APs per time unit in every channel. Finally observe
that the optimal sequence improves the scanning time in 65%
compared to the reference sequence. This reference sequence
was obtained by reverse engineering the scanning sequence of
an iPhone 4 using iOS 7. The sequence consist of an increasing
scanning on all channels from 1 to 11 using a fixed timer of
37 ms on each channel [7].

Table II show scanning sequences sorted by average num-
ber of APs, found per channel, in descending order calculated
after the TM has computed enough sequences. We can see that
the number of APs per channel for the reference sequence (in
the last row) is systematically higher than an optimal sequence
(on the rest of the rows). This higher appearance is because
more (hidden) APs appear if we wait longer. The main reason
for an AP showing late is because the Probe Responses from
those APs get through after several retransmissions. However,
given that we are restricting the latency, we are interested on
those APs that appear at the beginning of the waiting time-
window (i.e., MinCT). Note that these are the average number
of APs appearing after 30 independent scannings. The smart
sequences correspond to non-dominated individuals calculated
by the Cultural Algorithm.

Fig. 4 show the comparison of various smart sequences
derived from the CA. Originally, the algorithm was fed with the
reference sequence (on the last row in Table II), and afterwards

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 Ch10 Ch11

Channels

0

0.1

0.2

0.3

ra
te

 (A
P/

m
s)

Original Sequence Rates
Efficient Sequence Rates

Figure 4. Comparison rates for the Cultural Algorithm smart sequences

the algorithm derived a variety of sequences whose discovery
rates are shown within the dark grey region. Note that all
sequences have considerably higher discovery rate compared
to the reference. Moreover, delay improvements range from
30% to 70% respect to the reference.

Different configurations of channel sequences can be used
for applications that support specific values of latency, e.g.,
elastic applications could consider channel sequences with
longer timers. Obtaining sequences for these restrictions is
easier since the application becomes delay tolerant and we
have observed that in crowded environments APs keep sending
probe responses within 100 ms span. Hence this is an upper
bound that makes scanning sequences independent of the
deployment.

VI. CONCLUSION AND FUTURE WORK

In this work we have shown that the scanning process
can be significantly improved in Community Network (Wi-Fi)
deployments by using computational intelligence techniques
such as Cultural Algorithms. We have successfully charac-
terized the trade-off for a better discovery process by using
the discovery rate (APs per time unit) versus the total latency
for scanning. Having efficient sequences produce direct energy
savings, because resources are dedicated to channels that worth
interaction with an appropriate waiting time.

We have also presented the design of a Topology Manager
(TM) and discussed the interaction with wireless users. We
have proposed two separate functionalities for the TM: the
wireless topology model abstraction and the channel sequence
calculation engine. For the topology model we require feeders
to send their partial vision of the topology so that the TM
can incrementally build the model. Eventually, the calcula-
tion engine computes efficient sequences through the Cultural
Algorithm so that client’s queries could be asynchronously
attended.

We are working on the implementation of a distributed
TM that allows separating the network into cells for obtaining
better scanning sequences on smaller and more cohesive por-
tions of the network. We have observed that the model behind
the TM could be more precise if we include areas with the
same characteristics, for example, a commercial zone in down-
town can be on its own managed by a separate TM building
a different network model.
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Table II. CHANNEL SEQUENCES ORDERED BY DESCENDING NUMBER OF DISCOVERED APS.

Channel scan sequence ordered by total discovered APs OF1

(AP/ms)
OF2

(ms)
1112
<7,5>1.63333
0.26

125
<10,3>1.16667
0.12

245
<15,5>0.833333
0.13

659
<11,3>0.733333
0.22

1072
<7,6>0.533333
0.09

981
<6,3>0.5
0.15

391
<7,3>0.5
0.10

8104
<8,5>0.5
0.06

7115
<8,3>0.366667
0.12

5124
<6,3>0.3
0.11

4134
<7,3>0.0666667
0.03

1.39 134

1124
<15,9>3.53333
0.31

141
<9,8>2.03333
0.29

662
<14,7>1.96667
0.13

973
<8,3>0.766667
0.10

287
<8,6>0.6
0.07

596
<6,3>0.533333
0.11

8109
<7,6>0.433333
0.07

10121
<9,3>0.4
0.15

7131
<6,4>0.333333
0.06

3140
<6,3>0.133333
0.11

4152
<6,6>0.0666667
0.02

1.43 152

1125
<15,10>3.33333
0.24

643
<15,3>1.9
0.14

160
<9,8>1.73333
0.21

573
<10,3>1.06667
0.17

986
<10,3>0.666667
0.09

1099
<10,3>0.633333
0.12

3116
<11,6>0.566667
0.13

7132
<10,6>0.533333
0.12

8144
<6,6>0.433333
0.09

2154
<7,3>0.233333
0.13

4164
<7,3>0.0666667
0.05

1.49 164

1114
<10,4>1.76667
0.22

631
<10,7>1.6
0.19

144
<10,3>1.56667
0.30

564
<12,8>0.866667
0.08

779
<11,4>0.833333
0.14

293
<11,3>0.766667
0.09

10114
<15,6>0.7
0.06

8132
<13,5>0.633333
0.06

9152
<15,5>0.6
0.10

4166
<11,3>0.266667
0.06

3184
<15,3>0.266667
0.22

1.52 184

1139
<39,0>3.63333
0.11

178
<39,0>3.26667
0.06

6117
<39,0>3.16667
0.08

5156
<39,0>1.4
0.03

7195
<39,0>1.16667
0.04

10234
<39,0>1.16667
0.02

2273
<39,0>1.16667
0.03

8312
<39,0>0.566667
0.01

3351
<39,0>0.533333
0.02

9390
<39,0>0.5
0.02

4429
<39,0>0.2
0.01

0.43 429
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