
Routing-aware TDMA scheduling for Wireless
Sensor Networks

Lemia Louail, Violeta Felea
FEMTO-ST Institute, University of Bourgogne Franche-Comté (UBFC), Besançon, France

{firstname.lastname}@femto-st.fr

Abstract—In Wireless Sensor Networks, TDMA schedulings
are designed at the data link layer in the layered protocol stack
to improve some metrics as the latency. Decisions of routing at
the network layer are dissociated of the MAC communication
planning, which cannot globally optimize latency. Cross-layer
designs overcome this problem by ensuring communications
between protocols of different layers. A TDMA scheduling can
be more efficient in terms of latency when using information of
the routing protocol.

In this context, we present IDeg-LO and IDeg-ReLO, new
TDMA schedulings using information of the routing tree. We
define a new metric per node, the interference degree, involved
in the node ordering used by the slot allocation process.

The simulation results show better performance of proposed
scheduling algorithms compared to the state of the art. IDeg-LO
improves average latency from 13.19% up to 44.14% depending
on the routing tree, while IDeg-ReLO has better average latency
improvements from 33.53% up to 53.33%.

I. INTRODUCTION

Wireless sensor networks enable connectivity between
small devices, equipped with data processing and communica-
tion capabilities, intended to monitor physical or environmental
conditions and to cooperatively transmit data to a central
location commonly called sink. These devices integrate the
necessary sensors, therefore they are referred to as sensor
nodes. These nodes can easily cover large geographical areas,
requiring multi-hop communications. The network architecture
considered here is made of a single, fixed sink and fixed sensor
nodes and the communication pattern is from nodes to sink.

A sensor node has a simplified OSI stack composed of
the physical layer, the data link layer, the network layer,
the transport layer and the application layer. The OSI stack
plays an important role as independent functionalities can be
implemented in each layer. More particularly, we are interested
in two layers: the data link layer and the network layer, both
involved in communication decisions. The MAC protocol at
the data link layer is involved in coordinating communications
between a node and its direct neighbors, while the routing
protocol at the network layer is responsible of the route a
packet should take to be transferred from a source to the
sink. Both types of communication, one hop and multi-hop,
generate latencies, dependent either on the MAC protocol or
on the computed route. Generally, minimizing this latency in
layered architectures is better achieved when using cross-layer
approaches [1], [2]: information from one layer is used in
decisions taken by protocols of another layer.

The scope of this paper is to determine suitable TDMA
schedules for all nodes of a sensor network, correlated to

the route computed by the routing protocol. The coordination
between the data link and network layers makes of this solution
a cross-layer approach. We consider only tree-based routing
approaches, where each node has a single parent to forward its
packets, and this, towards the sink. It is a common architecture
for sensor network applications where a single sink collects
data sensed by the nodes. We define a suitable schedule as the
one which minimizes communication latency for every node
when it sends packets to the sink. We define heuristics based on
the idea of scheduling slots for nodes according to a particular
node order. The interference degree is the metric which gives
indication on this order.

The remainder of this paper is structured as follows.
Section II presents similar existing works in the cross-layering
where MAC scheduling decisions are based on the routing
information at the network layer. In section III are presented
our sensor network model and the representation of a TDMA
schedule. Section IV shows a motivating example together with
a similar cross-layer existing approach. Sections V and VI
describe the heuristics we propose in order to define TDMA
schedules for all nodes of the network, with the scope of
minimizing concurrently all node-to-sink latencies. Section VII
mentions the scenario description and metrics used to evaluate
the proposed heuristics. Section VIII presents and analyzes
results of simulations. The last section concludes.

II. EXISTING WORK

We cite two main classes of cross-layer approaches using
communication scheduling based on routing information: dis-
tributed (MAC-CROSS, RMAC, CL-MAC, and AreaCast) and
centralized (CoLaNet).

MAC-CROSS [3] and RMAC [4] both use the duty-cycle
principle to reduce energy consumption of nodes which are not
currently involved in communication. The main idea of MAC-
CROSS is to maximize the sleep duration of sensor nodes and
to minimize the number of nodes that are supposed to wake up.
Whenever nodes are not involved in communication (not on
the routing path), information given by the routing protocol
at the network layer, their radio transceivers are turned off.
RMAC is also a duty-cycle MAC protocol that exploits cross-
layer routing information. Each intermediate relaying node for
the data packet along these hops sleeps and intelligently wakes
up at a scheduled time, so that its upstream node can send the
data packet to it and it can immediately forward the data packet
to its downstream node. RMAC can thus deliver a data packet
much faster without sacrificing the energy efficiency achieved
by the duty-cycle mechanism.

ISBN 978-3-901882-80-7 © 2016 IFIP

2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

9

CL-MAC [4] is a cross-layer MAC protocol that uses
routing information to transmit multiple data packets over
multiple multi-hop flows. It considers all pending packets in
the routing buffer and pending flow setup requests (from other
nodes) in its contention-based channel allocation. In scheduling
communication, it makes nodes later in the destination field
wait longer based on the fact that packets of shorter paths
suffer less end-to-end delay than those having longer paths to
travel.

AreaCast[5] is a MAC-layer mechanism that uses local
topological and routing information to provide a communi-
cation by area instead of traditional node-to-node communica-
tions and this by electing three implicit relay nodes within an
area close to the explicit relay node.

CoLaNet[6] constructs a tree-based routing structure at the
sink, based on the hypothesis of many-to-one applications traf-
fic. Using it, the sink applies the channel assignment algorithm
to decide the TDMA transmission schedule of each sensor
node. To ensure a collision-free transmission and maximize
the system capacity, CoLaNet first transforms this channel
assignment problem for a sensor network into a vertex-coloring
problem in its corresponding graph.

The CoLaNet assignment is dependent on both the sensor
network and the routing tree, with the scope of contention-
free scheduling. This objective does not cover the end-to-
end communication delay. Transmission slots for the nodes
in relation in the routing tree should be as close as possible,
and this in the direction of communication given by the routing
tree, from leaves to the root.

Our contribution tackles TDMA slot scheduling for nodes
in order to optimize the end-to-end communication delay
simultaneously for every sensor node communicating data
to the sink. It is a centralized approach, which makes it
comparable to the CoLaNet scheduling solution.

The main idea is to find an order for nodes to be scheduled
and to determine a communication slot for every node, trying
to minimize gap between every node and its direct predecessor
given by the routing tree.

III. SENSOR NETWORK AND TDMA SCHEDULE
MODELING

Traditionally, a sensor network is modeled as a graph with
a set of vertices representing the sensor nodes and a set of
edges corresponding to the links between nodes. The way links
are connecting nodes depends on the connectivity model. The
classical connectivity model is based on the unit-disk graph [7]
(UDG) where any two nodes are adjacent if and only if their
Euclidian distance is at most 1. Applied to sensor networks, a
node x has a wireless communication link with another node
y if y is in within x’s communication range. We consider
in this study that all nodes have the same communication
range, therefore the links in the modeled graph are symmetric.
Moreover, links are considered reliable. An example of this
kind of graph is given at the left side of Figure 1.

The routing protocols considered here construct single,
fixed, multi-hop paths: every node, except for the sink, has a
single forwarding node. Therefore, we model routing informa-
tion as an oriented tree. In the routing tree every node, except

for the sink, can be source of data and may generate packets
to be transmitted to the sink via the routing path. As the sink
in a sensor network is the destination of all collected data, it
will always be the root of the routing tree. On the right side
of Figure 1 is illustrated a routing tree for the sensor network
given on its left, where node 1 is the sink node, therefore the
root of the tree.

Fig. 1. A sensor network graph and one of its routing tree

TDMA uses the same frame length for every node. The
frame is divided in slots, a slot being the lapse of time a
node is in communication with one of its neighbors (either
in reception or in transmission). The frame length is measured
in number of slots. The minimum frame length corresponds
to the maximum node degree incremented (a node is either
transmitting or receiving data from any of its neighbors). The
maximum frame length corresponds to the number of nodes
in the network (the maximum degree of a node is n-1, where
n is the number of nodes in the network).

Let us consider the frame length to be equal to k. A TDMA
schedule for a node i is modeled by a vector schedi, with
1 6 i 6 k, as follows: schedji = i if node i transmits at slot
j, schedji = k if node i receives data from a direct neighbor
k at slot j. The value schedji may not be defined if the node
i is neither transmitting nor receiving at slot j.

Let us consider the following TDMA schedules (see Figure
2) for the nodes in the sensor network modeled by the graph
in Figure 1. The schedule on the left has a frame length of 7
slots. For example, node 4 transmits at the second slot, while
it receives from its neighbors 2, 3 and 7 at slots 1, 5 and 3
respectively.

Fig. 2. TDMA schedules for the sensor network in Figure 1

We can see that the transmission slot of node 1, the seventh
one, can be scheduled at the same time with the transmission
slot of node 7 (marked in bold) because no interference is
generated. We obtain the TDMA schedule on the right in
Figure 2, whose frame length is smaller (6 instead of 7). We
note that the theoretical inferior bound of the frame length for
this example (5 = maximum node degree + 1) does not provide

2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

10

collision free communications. Six slots are required for the
frame length to ensure this property.

These schedules are obtained in an empirical way. The ob-
jective is to schedule communication such that no interference
should be generated when a node transmits. This concerns
nodes in immediate neighborhood of the nodes and nodes in
its 2-hop neighborhood. For nodes in the 3-hop neighborhood
of a node x, they can use, for transmission, the same slot as
the transmission slot of node x. It is the case in the previous
examples for nodes 2 and 5 which use the same slot, 1, because
they are 3 hops away one from the other, so no interference
can appear when they try to communicate simultaneously.

We denote in the followings, this empirical scheduling as
random.

IV. TDMA-SCHEDULED, MULTI-HOP COMMUNICATION

When correlating TDMA schedule and multi-hop routing,
frames are repeated such that every node has its communica-
tion slot (for transmission) every new frame. This may generate
delay when data is transmitted. Let us consider the random slot
schedule (see the right side of Figure 2) for the graph in Figure
1.

Consider data transmitted by node 6, leaf in the routing tree
(see Figure 1). The first slot is considered the referential time
of the sensor network running. Before node 6 can transmit,
it has to wait its transmission slot, the forth. Transmission to
its parent, node 7 in the tree, would take 1 slot. Afterwards,
its parent forwards data further, towards the sink. Node 7
has to wait 4 slots before being able to transmit, at its turn,
during the third slot (frames are repeated). Summing up, node
4 (forwarding node for node 7) will get data of node 6 after
3+1+4+1=9 slots for this TDMA schedule.

We describe briefly the TDMA schedule based on the
routing tree proposed in [6]. Their approach, called CoLaNet,
constructs the routing tree (the MinDegree tree) considering
the sink as its root, the neighbors of the sink are its chil-
dren and then each node chooses the node with the fewest
children nodes as its parent. CoLaNet constructs a TDMA
schedule using an approximation algorithm for the vertex-
coloring problem [8]. When all nodes have a color, the colors
are transformed into a schedule where the number of colors
represents the length of the schedule, and each color represents
the transmission slot for the node.

CoLaNet first colors the node with the Maximum Degree in
the routing tree. Then, it continues to color vertices that have
an already colored neighbor. If two or more vertices have a
colored neighbor, no order is applied on them, they are taken
randomly one by one. When giving a color to a node, CoLaNet
ensures that none of its one-hop or two-hop neighbors in the
graph has this color and this to avoid collisions. If not, a new
color is generated and is given to the node.

The coloring algorithm takes two input parameters: the
graph modeling the sensor network (a Graph object) and the
routing tree giving the routing information (a RoutingTree
object). The result is a Hash Table (a ColorTable object) con-
taining each node with its corresponding color. The algorithm
is summed up in the followings, where:

• colorTable.coloring(n) colors the node n
while ensuring that none of its one-hop or two-hop
neighbors in the graph already has this color, then
saves the node with its color in the colorTable,

• addLast and removeFirst are list primitives,

• ListOfNodes is a List structure containing the
nodes.

Colo rTab le<Node , Color> CoLaNet (
Graph<Node> graph ,
Rou t ingTree<Node> r o u t i n g T r e e){

/ / g r aph : models t h e s e n s o r ne twork
/ / r o u t i n g T r e e : g i v e s t h e r o u t i n g i n f o r m a t i o n

Colo rTab le<Node , Color> c o l o r T a b l e =
new Colo rTab le<Node , Color > () ;

Lis tOfNodes<Node> nex tToCo lo r =
new Lis tOfNodes<Node > () ;

nex tToCo lo r . a d d L a s t (g raph . getMaxDegreeNode ()) ;

w h i l e (! nex tToCo lo r . i sEmpty ()) {
Node n = nex tToCo lo r . r e m o v e F i r s t () ;
c o l o r T a b l e . c o l o r i n g (n) ;
f o r (Node node : n e i g h b o r s o f n)

nex tToCo lo r . a d d L a s t (node) ;
}
r e t u r n c o l o r T a b l e ;
}

Let us consider the sensor network modeled by the graph
in Figure 1 (on the left side) and its MinDegree routing tree
given in the same Figure (on the right side). The CoLaNet
schedule resulting from this tree is given in Figure 3.

Fig. 3. TDMA CoLaNet schedule for the sensor network in Figure 1

Using the CoLaNet schedule given previously and the same
routing tree in Figure 1, data sensed by node 6 and transmitted
towards the sink, will get to node 4 after 5+1+1=7 slots.
However, when considering data transmitted from node 4, it
will take 7 slots before it arrives at the sink, using the random
scheduling, while the CoLaNet scheduling makes the data
arrive after 8 slots.

Neither of the previous scheduling algorithms (random or
CoLaNet) takes into account the routing tree to minimize data
delivery time. Nevertheless, the data delivery time is also
dependent on the routing tree. This is why we propose to
integrate routing information into the scheduling algorithm
in order to minimize delivery time for all nodes having data
to send. Optimal scheduling can be obtained by enumerating

2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

11

all valid schedules, but the complexity of the algorithm is
exponential, so only heuristics are reasonable in time. This
is the scope of the next section.

V. INTERFERENCE DEGREE LEAVES ORDER - IDEG-LO

The slot scheduling may focus only on the transmission
slots, one per every node. The reception slots may be inferred
based on the graph representing the sensor network.

In order to schedule communications for nodes, we begin
by scheduling the leaves in the routing tree. Compared to their
predecessors, their paths are the longest, so sooner their slots
are scheduled, less time they will wait before being able to
communicate. Moreover, leaves are considered by decreasing
order depending on their interference degree. The interference
degree for a node is the sum of the number of one-hop
neighbors and the number of two-hop neighbors counted only
once (if a node is a one-hop neighbor and a two-hop neighbor
at the same time, it is considered only once). Indeed, these
nodes create interference when scheduling slots. Higher the
interference degree, fewer are the options to schedule a slot
for the node, without adding a new slot. This remark makes us
considering leaves to be scheduled in the descending order of
the interference degree. After that, internal nodes are scheduled
in the same order as the leaves. Every node is scheduled
as close as possible to its children’s slots (within one hop
distance) and after them, possibly cycling to the beginning of
the schedule. The frame length is initialized to its lower bound.
When searching for a compatible slot for a node, if no solution
exists, a supplementary slot is added and the node is scheduled
on this slot.

The algorithm, called IDeg-LO, is summed up in the
followings, where Schedule<Node> models the schedule (the
slots) of a node.

S c h e d u l e IDeg−LO(Graph<Node> graph ,
Rou t ingTree<Node> r o u t i n g T r e e) {

S c h e d u l e sched = new S c h e d u l e (
g raph . getMaxDegree () + 1) ;

Lis tOfNodes<Node> l e a v e s =
r o u t i n g T r e e . g e t L e a v e s () ;

l e a v e s . s o r t B y I n t e r f e r e n c e D e g r e e (g raph) ;

f o r (Node n : l e a v e s) / / l oop 1
sched . f i n d F r e e S l o t (n , graph , r o u t i n g T r e e) ;

Lis tOfNodes<Node> t o S c h e d u l e =
new Lis tOfNodes<Node > () ;

f o r (Node n : l e a v e s) { / / l oop 2
Node p a r e n t = r o u t i n g T r e e . f i n d P a r e n t (n) ;
i f (! t o S c h e d u l e . c o n t a i n s (p a r e n t))

t o S c h e d u l e . a d d L a s t (p a r e n t) ;
}

/ / Leaves a r e t a k e n randomly i n loop 1
/ / and a r e t a k e n i n loop 2 i n t h e same
/ / o r d e r a s i n loop 1

f o r (Node n : t o S c h e d u l e) {
Node p a r e n t = r o u t i n g T r e e . f i n d P a r e n t (n) ;
i f (! t o S c h e d u l e . c o n t a i n s (p a r e n t))

t o S c h e d u l e . a d d L a s t (p a r e n t) ;
}

w h i l e (! t o S c h e d u l e . i sEmpty ()) {
Node n e x t = t o S c h e d u l e . r e m o v e F i r s t () ;
s ched . f i n d F r e e S l o t (nex t , graph , r o u t i n g T r e e) ;

}
r e t u r n sched ;

}

In the IDeg-Lo scheduling, the main algorithm which
affects a slot to a node is findFreeSlot, applied to a
schedule, which takes as input parameters: the node for which
the slot is searched for, the graph and the routing tree.

The modeling of the schedule is done with a Schedule Class
in which each node has a Vector slots[] representing its
slots.
vo id f i n d F r e e S l o t (Node node , Graph<Node> graph ,

Rou t ingTree<Node> r o u t i n g T r e e){
/ / method of t h e S c h e d u l e o b j e c t which
/ / d e t e r m i n e s t h e t r a n s m i s s i o n s l o t
/ / f o r t h e node ’ node ’

b o o l e a n p laceFound = f a l s e ;
i f (node . i s L e a f ()) {

f o r (i n t i =0 ; i< t h i s . l e n g t h () ; i ++) {
i f (s l o t s [i] n o t t a k e n by any of t h e

one−hop or two−hop n e i g h b o r s) {
t h i s . s e t (i , node) ;
p l aceFound = t r u e ;
b r e a k ;

}
}

} e l s e { / / t h e node i s a p a r e n t
/ / F ind t h e s l o t s o f a l l i t s c h i l d r e n
/ / and use t h e max of them
i n t max = t h i s . f i n d M a x S l o t C h i l d r e n (node ,

graph , r o u t i n g T r e e) ;
i n t i = max +1;
w h i l e (i != max) {

i f (s l o t s [i] n o t t a k e n by any of t h e
one−hop or two−hop n e i g h b o r s) {

t h i s . s e t (i , node) ;
p l aceFound = t r u e ;
b r e a k ;

}
i = (i +1)% t h i s . g e t L e n g t h () ;

}
}
i f (! p l aceFound) {

t h i s . addSlo tAtEnd () ;
t h i s . s e t (t h i s . g e t L e n g t h ()−1 , node) ;

}
}

We used an object-oriented paradigm to present algorithms,
where this makes reference to the current object (here the
Schedule object).

Let us consider the study case in Figure 4, based on a
particular sensor network modeled by the graph at the left
side of the figure and its routing tree in its right part.

The order of the nodes to be scheduled, according to the
IDeg-LO algorithm, is the following: 5, 6, 2, 7, 4, 3, 8,

2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

12

Fig. 4. A sensor network graph and its routing tree

1 (corresponding to the interference degree of the leaves
shown in Figure 5). When equality of interference degrees
is identified, a random node is chosen (it is the case for leaf
nodes 5 and 6 or for leaf nodes 2 and 7).

Fig. 5. Interference degree for nodes of the graph in Figure 4

The schedule in Figure 6 is obtained based on the IDeg-LO
algorithm.

Fig. 6. TDMA scheduling for the graph in Figure 4 using the IDeg-LO
algorithm

The order of the nodes to be scheduled is not always
preserved in the schedule, because of two reasons:

• slots may be reused if no interference is generated (for
example, for the schedule in Figure 6 node 3 uses the
same slot as node 2),

• slot of predecessors are as close as possible to the
last slot of its children, possibly cycling when no
compatible slot exists after the children’s slots (for
example, for the schedule in Figure 6 node 1 uses the
closest slot to the last slot of its children, that is node
4, by cycling because no slot is free after the slot of
node 4).

VI. INTERFERENCE DEGREE REMAINING LEAVES ORDER -
IDEG-RELO

The previous approach may schedule parent nodes before
some of its successors. We observe in Figure 6 that node 8 is
scheduled after node 4, which is its parent (their slots are bold
in the figure). This makes node 4 wait for 5 slots before being
able to further transmit data coming from node 8. Moreover,

we also see that nodes with a great interference degree do not
have the chance to be scheduled soon, because internal nodes
are considered in the order of the successors in the tree. It
is the case, in the same allocation example (see Figure 4) of
node 8 whose interference degree is 7, while the interference
degree of node 3 is 5, but this node is scheduled sooner.

We propose a second slot allocation heuristic where the
order of the allocation is also based on the interference degree
of nodes but the leaf considered to be scheduled is removed
from the routing tree and the process of leaves allocation is
repeated. This gives opportunity to internal nodes with great
interference degree to be scheduled sooner. Moreover, as a
result, nodes are never scheduled before their predecessors in
the routing tree.

The scheduling algorithm, IDeg-ReLO, is summed up in
the followings.

S c h e d u l e IDeg−ReLO(Graph<Node> graph ,
Rou t ingTree<Node> r o u t i n g T r e e) {

S c h e d u l e sched = new S c h e d u l e (
g raph . getMaxDegree () + 1) ;

Rou t ingTree<Node> t r e e = r o u t i n g T r e e ;

do {
Lis tOfNodes<Node> l e a v e s =

new Lis tOfNodes<Node>(t r e e . g e t L e a v e s ()) ;
l e a v e s . s o r t B y I n t e r f e r e n c e D e g r e e (g raph) ;
Node n = l e a v e s . r e m o v e F i r s t () ;
s ched . f i n d F r e e S l o t (n , graph , r o u t i n g T r e e) ;
t r e e . remove (n) ;

}w h i l e (! t r e e . i sEmpty ()) ;
r e t u r n sched ;
}

For the previous example, the order of the nodes consid-
ered to be scheduled according to the IDeg-ReLO scheduling
algorithm, is the following: 5, 6, 2, 7, 8, 4, 3, 1 and the slot
schedule is given in Figure 7.

Fig. 7. TDMA scheduling for the graph in Figure 4 using the IDeg-ReLO
algorithm

This still does not ensures that the allocation slot for a node
will always preceed the allocation slot of its predecessor, even
though, in the schedule obtained in Figure 7, slots of parents
always come after the slots of their children.

VII. SCENARIO DESCRIPTION AND EVALUATED METRICS

In this section, we present scenarios used for simulations.
We used a Java-based library called JUNG [9] to model

2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

13

sensor networks and simulate routing algorithms. We generate
random networks using n = 100 nodes with a communication
range r = 25m deployed on a square area of size a2. The
sink is placed in one of the corners of the deployment area.
The results represent averages for several simulation measures
using different randomly generated networks.

One particular parameter of the network architecture was
analyzed: its density. Based on the UDG model, the density
of the generated networks is δ = π × r2 × n/a2. We vary the
a parameter to generate different network densities. For small
densities (less than 8), the graph generator based on the UDG
model generates 99% disconnected networks. In these cases,
we used the graph generation proposed in [10].

Another parameter is induced by the routing tree used by
the heuristics: the form of the routing tree. Three routing trees
are used for simulations:

• the routing tree used by CoLaNet [6], which is the
MinDegree tree. Each node chooses the node with the
fewest children nodes as its parent.

• the hop count tree used by the Gradient-based routing
protocol (GBRP) [11]. Using the flooding technique,
each node keeps the number of hops between itself
and the sink. This is considered to be the hop count
metric. The difference between a node’s hop count and
the one of its neighbor is considered as the gradient
of the link. A packet is forwarded on a link with the
largest gradient.

• the geographic routing tree used by the greedy perime-
ter stateless routing (GPSR) [12], a common form
of greedy forwarding in ad hoc networks. Packets
contain the position of the destination and nodes
need only local information about their position and
their immediate neighbors’ positions to forward the
packets. Each wireless node forwards the packet to the
closest neighbor to the destination among its neighbors
(within radio range). We do not treat voids in this
routing protocol.

The metrics used to compare approaches are the following.

• The average of the total delivery time (average la-
tency) is computed as the average of all end-to-end
delivery times (between each node, excluded the sink,
and the sink, denoted by s); the delay is estimated
in number of hops. Formally, let us consider the
communication TDMA schedule of a node i: schedi
of length l and its routing path, of length ki (sink
excluded), given by the ordered forwarding nodes
{pj1i , p

j2
i , · · · , p

jki
i }. The corresponding routing path

is: i → pj1i → pj2i → · · · → p
jki
i → s. We consider

latency for packets transmitted by every node to the
sink. Concurrent flows are generated at the same time,
at the first slot. Therefore, the delivery time for a
packet generated at node i (considering that node i
is not the sink), equals:
dti = sj1 + (sj2 − sj1) mod l + (sj3 − sj2) mod l +
· · ·+ (sjki

− sjki−1
) mod l

where schedsjvi = jv,∀v ∈ {1, 2, · · · , ki}.

We specify that :

(x− y) mod l =
{

(x− y) mod l, if x > y
(x− y + l) mod l, if x < y

The average latency for paquets in a network of size
n is defined as:

dt = (

n∑
i=2

dti)/(n− 1)

considering that node 1 is the sink.

• The average of normalized delivery times (average
normalized latency) is computed as the average of total
delivery times per communication link.
Formally, this metric needs to normalize the latency
per path: dtni = dti/ki,∀i, 2 6 i 6 n (n being the
size of the network) and to compute their average:

dtn = (

n∑
i=2

dtni)/(n− 1)

• The schedule length (denoted by l previously) is the
number of slots used to schedule communications.

VIII. SIMULATION RESULTS

A. Performance compared to CoLaNet

We compare the two approaches, IDeg-LO and IDeg-
ReLO, to CoLaNet slot schedule as well as to the random
slot schedule. In order to be able to compare results, the
same routing tree is considered, that of CoLaNet (the min-
degree tree). For every metric, average on thousands of runs
are computed.

a) Average latency: is compared for CoLaNet, Ran-
dom, IDeg-LO and IDeg-ReLO scheduling algorithms (see
Figure 8), estimated for different densities (varying from 4
to 20).

Fig. 8. Average latency based on the MinDegree routing tree for different
scheduling approaches

IDeg-LO and IDeg-ReLO have the best performances for
this metric, the former with an average gain of 44.14%, and the
latter with an average gain of 53.33% compared to Random.
CoLaNet is performing well, but the average gain is only
12.27% compared to Random (the average gain is the average
of gains for every density value).

2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

14

b) Average normalized latency: is shown in Figure 9.
Gains are proportionaly the same, as the same routing tree is
used.

Fig. 9. Average normalized latency based on the MinDegree routing tree for
different scheduling approaches

c) Schedule length: is minimal for CoLaNet (see Figure
10), with an average gain of 7.5% compared to the schedule
length obtained by Random. IDeg-LO and IDeg-ReLO perform
similarly in respect to this metric, average schedule length
being longer of 4.5%, on average, than the Random schedule
length. When compared to the CoLaNet schedule length, IDeg-
LO schedules are 13.29% longer, on average, and IDeg-ReLO
schedules are 12.94% longer on average.

IDeg-LO and IDeg-ReLO scheduling heuristics do not aim
to minimize schedule length. The main objective is to obtain
good latency, which is the case, even though the schedule
length is longer than that of CoLaNet.

Fig. 10. Average schedule length for different scheduling approaches when
using the MinDegree routing tree

B. Impact of the routing tree

We analyze the influence of the routing tree considered for
our approaches. In order to be able to interpret results, the
same randomly generated graphs together with their routing
trees are used for all the scheduling algorithms. The routing
tree has no influence for the random scheduling.

Figures 11 and 12 show the average total latencies when
using the hop count routing tree, respectively the geographic
routing tree. We notice that IDeg-ReLO gives, as previously,
the best performances (having a gain of 33.53% compared

to Random), but IDeg-LO is less efficient (with a gain of
13.19% compared to Random) and becomes close to CoLaNet
(with a gain of 4.64% compared to Random). The previous
observations apply also on the average normalized latency (see
Figures 13 and 14).

Fig. 11. Average latency based on the hop count routing tree for different
scheduling approaches

Fig. 12. Average latency based on the geographic routing tree for different
scheduling approaches

CoLaNet and Random schedules give similar results in
terms of average and normalized latencies, since both of them
do not consider the latency metric when allocating the slots.

Fig. 13. Average normalized latency based on the hop count routing tree for
different scheduling approaches

The average gains, irrespective to density, compared to
Random normalized latencies are summed up in table I.

2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

15

Fig. 14. Average normalized latency based on the geographic routing tree
for different scheduling approaches

Average gains of normalized CoLaNet IDeg-LO IDeg-ReLO
latency compared to Random
MinDegree tree 9.91% 39.30% 47.45%
hop count tree 3.37% 7.52% 29.06%
geographic tree 2.17% 9.3% 31.21%

TABLE I. GAINS OF NORMALIZED LATENCY OBTAINED BY COLANET,
IDEG-LO AND IDEG-RELO COMPARED TO RANDOM DEPENDING ON THE

ROUTING TREE

The schedule length is close to that obtained by CoLaNet
(see Figures 15 and 16), which is the best of the four heuristics.
This was expected because CoLaNet is using an approximation
algorithm for the vertex coloring problem, which tends to
reduce the number of slots used for the schedule. The two
routing-based heuristics perform well when using the hop
count routing tree (average losses of 7.2% for IDeg-LO and
of 6.48% for IDeg-ReLO). Average losses are similar when
using the geographic routing tree: 8.39% for the IDeg-LO slot
scheduling and 6.63% for the IDeg-ReLO slot scheduling.

Fig. 15. Average schedule length for different scheduling approaches when
using the hop count routing tree

IX. CONCLUSIONS AND FUTURE WORK

This paper presents IDeg-LO and IDeg-ReLO, new TDMA
scheduling techniques for sensor nodes, using information of
the routing tree and a particular node ordering based on the
interference degree of each sensor node.

The slots are allocated to each node using information from
the routing tree to gain latency. The interference degree is used
to first schedule nodes with high interference. Consequently,
latency for every node communication is reduced.

Fig. 16. Average schedule length for different scheduling approaches when
using the geographic routing tree

Compared to the state of the art, results show that IDeg-LO
improves average latency up to 44.14%, while it is improved
up to 53.33% with IDeg-ReLO which demonstrates the im-
portance of the routing information and the neighborhood of
a node when designing its schedule.

A number of open problems arise from this work; we may
analyze the behavior of the two methods if another metric than
the interference degree were used for node ordering.

REFERENCES

[1] L. D. Mendes and J. J.P.C. Rodrigues, “A survey on cross-layer solutions
for wireless sensor networks,” Journal of Network and Computer
Applications, vol. 34, no. 2, pp. 523–534, Mar. 2011.

[2] T. Melodia, M. C. Vuran, and D. Pompili, “The state of the art in
cross-layer design for wireless sensor networks,” in Wireless Systems
and Network Architectures in Next Generation Internet. Springer, 2006,
pp. 78–92.

[3] C. Suh, Y.-B. Ko, and D.-M. Son, “An energy efficient cross-layer mac
protocol for wireless sensor networks,” in APWeb Workshops, 2006, pp.
410–419.

[4] M. Hefeida, T. Canli, and A. A. Khokhar, “CL-MAC: A cross-layer
mac protocol for heterogeneous wireless sensor networks,” Journal of
Ad Hoc Networks, vol. 11, no. 1, pp. 213–225, 2013.

[5] K. Heurtefeux, F. Maraninchi, and F. Valois, “Areacast: A cross-layer
approach for a communication by area in wireless sensor networks,” in
International IEEE Conference on Networks (ICON), 2011, pp. 112–
117.

[6] C.-F. Chou and K.-T. Chuang, “CoLaNet: A Cross-Layer Design
of Energy-Efficient Wireless Sensor Networks,” Wireless Technolo-
gies/High Speed Networks/Multimedia Communications Systems/Sensor
Networks, International Conference on, pp. 364–369, 2005.

[7] S. Schmid and R. Wattenhofer, “Algorithmic models for sensor net-
works,” in 14th WPDRTS, 2006, pp. 450–459.

[8] S. Pemmaraju and S. Skiena, Computational Discrete Mathematics:
Combinatorics and Graph Theory with Mathematica. NY, USA:
Cambridge University Press, 2003.

[9] J. O’Madadhaina, D. Fisher, P. Smyth, S. White, and Y.-B. Boey,
“Analysis and visualization of network data using JUNG,” Journal of
Statistical Software, vol. 10, no. 2, pp. 1–35, 2005.

[10] F. A. Onat and I. Stojmenovic, “Generating Random Graphs for
Wireless Acuator Networks,” in IEEE WoWMoM, 2007, pp. 1–12.

[11] C. Schurgers and M. Srivastava, “Energy efficient routing in wireless
sensor networks,” in IEEE Military Communications Conference (MIL-
COM), 2001, pp. 357–361.

[12] B. Karp and H. Kung, “GPSR: greedy perimeter stateless routing for
wireless networks,” in 6th Intern. Conf. on Mobile computing and
networking, 2000, pp. 243–254.

2016 12th Annual Conference on Wireless On-demand Network Systems and Services (WONS)

16

