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Abstract—Low Power Wide Area Network (LPWAN) have
recently attracted attention as a potential alternative to power
affordable internet access to remote communities and help bridge
the digital divide. Nevertheless, realizing the full potential of
LPWAN devices as an alternative to bring remote communities
to the internet requires addressing two technical challenges. The
first one is making LPWAN devices suitable for exchange of data
flows running under standard protocols like TCP/IP. The second
one is devising a fully distributed management approach tailored
for a network composed of autonomous LPWAN devices that are
reachable only through unstable and unreliable wireless links. We
addressed the first challenge in a prior work, with a conceptual
solution for programmable low-end devices, i.e., LPWAN devices
whose behavior can be redefined using programming languages
for the data plane like P4. In this paper, we address the second
challenge by presenting an algorithmic approach for SDN-based
distributed management for programmable low-end networks.
In summary, we consider that each programmable low-end
device in a community network is autonomous and has its
independent SDN controller. For coordinated management, they
use control messages transmitted over unreliable and constrained
links (up to 300 kbps), hence the need for a lightweight and
fault-tolerant management approach. We experiment our SDN-
based distributed approach with LTP (Lightweight Tunnel Pro-
tocol), a proof-of-concept protocol written in P4 for powering
programmable low-end networks. We provide evidence, through
a series of experiments, that our algorithmic approach for fully
distributed SDN-based management is capable of maintaining
stable network connectivity despite running over unstable and
unreliable links.

Index Terms—Low Power Wide Area Networks (LPWAN),
Programmable Forwarding Planes, P4, Distributed SDN Con-
trollers

I. INTRODUCTION

Aiming at network management solutions that enable the
seamless incorporation of adaptive and automated manage-
ment approaches, thus offering new ways to operate and
manage computer networks, we have observed in the past
decades the vertiginous growth in the adoption of Software
Defined Networks (SDN) [1], [2] and Programmable Data
Planes (PDP) [3], [4]. These novel technologies, together,
enabled network researchers and practitioners to leave behind
closed-source and proprietary solutions and migrate to network
structures with a behavior that can be freely redefined using
Domain-Specific Languages (DSLs) like Lyra [5] and P4 [4].
With these features, it is possible to design, experiment, and

implement novel ideas on the network without going through
the industrial process of network control device suppliers [6].

As a result, the community has focused its efforts on
developing distributed control solutions and addressing its
shortcomings. Solutions such as Elasticon [7] which presents
elastic controller structures (dynamically increasing and reduc-
ing the quantity) or Hyperflow [8], ONOS [9] and ONIX [10]
which have a partitioning approach to network in various
areas reducing latency and improving resiliency [11] has
been showing good results. Nevertheless, these solutions were
designed with high-speed, large-scale networks in mind or for
use in data centers.

In contrast to these large structures contemplated by SDN
approaches and solutions, we observe the growth of the
Internet of Things (IoT) using low-end networks [12]. Numer-
ous practical applications, such as environmental monitoring,
smart cities and smart homes, and asset tracking [13] make
use of low power and low data rate devices. Combining the
flexibility of SDN networks with Low Power Wide Area Net-
work (LPWAN) devices [12]–[14] would allow the adoption of
these devices in novel solutions such as providing affordable
internet access to remote communities and helping bridge the
digital divide [15].

LPWAN devices, however, are resource-constrained, result-
ing in very low throughput on constrained wireless links1.
Such restrictions make it impossible to use traditional struc-
tures for implementing SDN networks to manage networks
with these components. Therefore, it is necessary to develop a
novel network structure, with distributed control algorithms,
to set up this point-to-point communication. This structure
must be developed considering a distributed scenario, as au-
tonomous and independent nodes, responsible for controlling
the network and processing the situation of the networks
with which it communicates, using an unreliable and unstable
channel (data plane) to manage, through low-speed links.

In our previous work [15], we introduced a conceptual
model and a proof-of-concept implementation of a solution for
programmable low-end networks, i.e., low-end devices whose
packet processing behavior can be redefined using Domain

1We considered as reference – in our research and our design of a proof-
of-concept prototype – a LoStik USB LoRa device by Ronoth [16] and a
LoRa/LoRaWAN Raspberry Pi SX127X HAT module by Dragino [17]. For
these reasons, we assumed a 300 kbps narrow-band link, achievable with the
SX127X HAT module.ISBN 978-3-903176-42-3 © 2021 IFIP
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Specific Languages (DSL) for programmable data planes like
P4 [4]. Our solution enabled using LPWAN devices for ex-
changing TCP/IP flows over constrained and ureliable wireless
links. In this paper, we take a step further and discuss an
approach for distributed management of programmable low-
end networks. In summary, we make the following research
question: can we manage low-cost programmable networks
through distributed SDN controllers? The positive answer
unlocks the use of a multitude of low-cost devices combined
with the possibility of changing their behavior dynamically
using open programming standards.

To answer this question, in this paper we present an al-
gorithmic approach for a fully distributed SDN-based man-
agement of programmable low-end network. We consider a
community network structure with distributed management,
an independent controller for each programmable low-end
device, using the data plane to transmit messages between
controllers and ensure the status update network between all
devices. Based on this concept, we implement seven network
scenarios using the Lightweight Tunnel Protocol (LTP) [15] to
reduce communication overhead by replacing L2/L3 headers
with labels that identify each combination of source and
destination. This operation maximizes goodput achieving gains
of 23%. In summary, our contribution is the presentation of
an algorithmic approach for delivering fully distributed SDN-
based management to programmable low-end networks for
autonomous and independent controllers.

The remainder of the paper is organized as follows. We
cover background and related work in Section II. In Section III,
we introduce our novel SDN network structure concept, which
will be exercise in Section IV, where we present the design
and implementation of a novel Lightweight Tunnel Protocol
(LTP) and its controls. In Sec. V, we present seven scenarios
for using the LTP protocol, whereas in Section VI we provide
an extensive evaluation of the scenarios. Finally, we close the
paper in Section VII.

II. BACKGROUND AND RELATED WORK

There are numerous alternatives for implementing dis-
tributed management in the literature. Nevertheless, assuming
that every controller has an up to date view of the network
status remains an open challenge. This is particularly special in
scenarios where one does not have a communication channel
between the controllers and as such does not have a guarantee
that control messages sent are delivered.

Onix [10], Hyperflow [8], and ONOS [9] solutions are
examples of distributed control platforms that, through the
various connected controllers, store a total view of the net-
work. Each solution, however, uses different means of sharing
information and ensuring control plane scalability.

Hyperflow, for example, has in each controller the global
view of the network and uses an event propagation system
to update controllers with changes to the network state (only
events that change the state of the network). In this way,
all controllers make local decisions and propagate those that
affect the state of the network, reducing the flow of events.

However, the disadvantage of this implementation is precisely
this mechanism is designed to transmit only infrequent records
and that it has no guarantee of delivery order, which can lead
to inconsistencies.

To control the traffic of events shared between controllers,
ONOS places a timestamp on each event. When a network
change occurs and an event is registered, it is initially stored
in the device where it occurred (source) and propagated to
the other controllers with the identification information of the
source programmable low-end device, the date and time stamp,
and the event number. This way, when receiving the event, the
destination programmable low-end device is able to determine
if the information is useful or obsolete and, in the second case,
discard the event record [18].

As in ONOS, in ONIX each controller is responsible for
only a part of the network and, in this way, stores a partial
view of the network structure. In the ONIX implementation,
however, the structure of the network is stored in a NIB (Net-
work Information Base) where each controller is responsible
for a part of the NIB. The sync cost of this database that can
lead to controller overload is the main disadvantage of this
implementation [18].

Recent work comparing solutions for implementing dis-
tributed control [11], [18], [19] has highlighted OpenDay-
Light [20]. The main advantage is that, unlike the other
methods presented, which are intended for use in large net-
works and data centers or even in service providers, this
implementation for presenting open source aimed at the com-
munity, which guarantees compatibility with numerous new
applications, including works geared towards the IoT.

All solutions presented, however, make clear the depen-
dence on a secure and stable communication channel to
exchange synchronism messages between controllers. The use
of low-end devices for network communication, however, only
allows communication with low capacity links and a lot of
packet loss. Thus, a new network structure is needed to allow
the use of distributed controllers for programmable low-end
networks scenarios.

III. A DISTRIBUTED SDN CONTROLLER FOR
PROGRAMMABLE LOW-END NETWORKS

In this paper, we present an algorithmic approach for
fully distributed SDN-based network management for pro-
grammable low-end networks with distributed controllers. We
contemplate in our approach low-end devices with limited
resources (e.g., memory and processing capabilities) and that
operate under unfavorable network conditions and, conse-
quently, provide low transfer rates. To achieve this goal, we
use data plane programmability (PDP), developing protocols
that can operate in this scenario and motivating other network
professionals to use the same strategy to develop new appli-
cations for low-end devices.

First, we need to understand what disciplines must be ad-
dressed for SDN to be an effective solution in a given network
scenario. According to [11], distributed control has challenges
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Fig. 1: Programmable low-end networks with each device
using its independent controller.

in scalability (decentralizing and dividing the load of con-
trollers), reliability (ensuring consistency between controllers),
consistency (finding the best relationship between consistency
and performance), interoperability (lack of standards open
for communication between controllers), monitoring (monitor
with little impact), and security (decentralize as much as
possible to reduce impact in the event of a failure or attack).

Thus, to achieve the aforementioned standards, we de-
veloped an implementation model which, as can be seen
in Figure 1, is based on providing a controller for each
programmable low-end device, thus making it independent
from the others, since there is no controller centralized nor
a master/slave hierarchy. This type of implementation in an
environment with limited connection and even processing
resources is only possible considering some requirements
that must be addressed by the programmable low-end device
and the controller to achieve traffic reduction between these
two devices or between controllers by limiting the flow to
events that are needed to write network status changes to
each programmable low-end device’s match+action tables.
Recall that the limited bandwidth available in a point-to-
point communication between low-end devices means that a
secure and stable connection between controllers is unfeasible.
Thus, we need to develop controls and guarantees so that
the synchronization is performed between devices through
the data plane causing the least possible impact. Therefore,
our approach concatenates the events transmitted between
controllers to data packets, which makes some implementation
changes necessary both in the programmable low-end device
and in the controller.

To make it easier to understand, we divide the analysis
considering the responsibilities that will be transferred to each
of the elements.

In addition to the usual activities, among the requirements
that must be met by the controller, we highlight:

• Identify the device and event. The absence of a central-
ized controller forces the devices to identify themselves
because, following the example of ONOS [9], this method

distinguishes the flow and allows another controller to
verify whether it has processed this change/instruction.

• Add to the data packet the instruction with network status
change that will be sent through the data plane to the
other controller.

• Separate from the received packet the instruction (event)
and the data that must be returned to the swith to be for-
warded in the flow. Processing the instruction is already
a controller assignment in traditional SDN networks.

• Store status of all received events. It will allow one to
analyze if the rule has already been processed (and can be
discarded) and/or if it is necessary to record this change
on this device. This control allows delivery guarantee
avoiding the problems identified in Hyperflow [8].

With the flow changes listed above, some changes are also
required in the low-end device programming, including:

• Identify and differentiate packets in the flow that have
only data (and must be simply forwarded in the flow)
from packets that have the instruction+data set.

• Store and change the status of received events (in the
same way as in the controller) to check if it is necessary
to discard, forward to the controller or retransmit an
instruction (if the processing confirmation is not received
by another controller).

In summary, our implementation meets the requirements
listed by [11]: scalability (with distributed controllers), relia-
bility (ensures consistency between controllers by controlling
the status of each event), consistency (transmitting only the
necessary events and ensuring that were processed), Inter-
operability (presents a new concept that can be adopted by
any professional), monitoring (the status of each event is
stored in the devices and does not consume flow) and security
(distributed, independent controllers responsible for only one
programmable low-end device).

To consolidate understanding of this approach, we briefly
review in the following section LTP (Lightweight Tunnel Pro-
tocol) [15], a protocol devised as an exercise of using LPWAN
devices for programmable low-end networks. We also discuss
how each of the changes suggested above was implemented
to ensure network status updates across all devices.

IV. A REVIEW OF LIGHTWEIGHT TUNNEL PROTOCOL
(LTP) AND MANAGEMENT CONTROLS

In our prior work [15], [21], we introduced an exercise of
an LTP protocol for programmable low-end networks. In this
section, we review the core concepts behind LTP and then
introduce our proposal of an algorithm for distributed control
of programmable low-end devices, exploring the mechanisms
and means used to meet the additional programmable low-end
device and controller requirements discussed in the previous
section. Thus, let us explore what needs to be considered in a
lightweight protocol to manage controllers in a distributed and
independent way, separating the new assignments that need to
be in the control plan (and it is the controller’s responsibility)
from what needs to be ensured by the data plan (programmable
low-end device responsibility).
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1
2 # omitted for brevity
3
4 LTP_CPU = "\375"
5 LTP_DEF = "\376"
6 LTP = 0
7 DEV_ID = "\001"
8
9 EGRESS_PORT = 1

10
11
12 def main(p4info_file_path, bmv2_file_path):
13 global LTP_CPU, LTP_DEF, LTP, DEV_ID, EGRESS_PORT
14
15 arp_table = {}
16 ip_cache = {}
17 tag_cache = {}
18
19 # omitted for brevity
20
21 while True:
22 print("Packet-in - BEFORE")
23 packetin = s1.PacketIn()
24 print("Packet-in - AFTER")
25 if packetin.WhichOneof(’update’)==’packet’:
26 print("Packet-in message update received")
27
28 metadata = packetin.packet.metadata
29 for meta in metadata:
30 metadata_id = meta.metadata_id
31 value = meta.value
32
33 output_metadata = "\000\000"
34
35 packet_orig=packetin.packet.payload
36 packet_string = hexlify(packet_orig)
37
38 # omitted for brevity
39
40 if packet_orig[0] == LTP_DEF:
41 # omitted for brevity
42
43 elif packet_orig[0] == LTP_CPU:
44
45 packet = packet_orig[4:]
46 pkt = Ether(_pkt=packet)
47
48 eth_src = pkt.getlayer(Ether).src
49 eth_dst = pkt.getlayer(Ether).dst
50 ether_type = pkt.getlayer(Ether).type
51
52 # omitted for brevity
53
54 if ether_type == 2048:
55 ip_src = pkt[IP].src
56 ip_dst = pkt[IP].dst
57
58 # omitted for brevity
59
60 DEVSRC_ID=packet_orig[1]
61 LTPSRC_ID=packet_orig[2]
62
63 # Check if ip_src and ip_dst combination is in arp_table
64 if (ip_src, ip_dst) not in ip_cache and (ip_dst, ip_src) not in ip_cache:
65 # omitted for brevity
66
67 # Write ip_src and ip_dst in arp_table
68 ip_cache.setdefault((ip_src, ip_dst), (DEVSRC_ID, LTPSRC_ID))
69
70 # Write ip_dst and ip_src in arp_table (return way)
71 ip_cache.setdefault((ip_dst, ip_src), (DEVSRC_ID, LTPSRC_ID))
72
73 # Write rule in switch table.
74 writeIpv4BuildRules(p4info_helper, sw=s1, dev_id=DEVSRC_ID, tag_id=

↪→ LTPSRC_ID, ip_src=ip_src, ip_dst=ip_dst)
75
76 else:
77 # omitted for brevity
78

79 else:
80 # omitted for brevity
81
82 pkt = Ether(_pkt=packet_orig)
83
84 eth_src = pkt.getlayer(Ether).src
85 eth_dst = pkt.getlayer(Ether).dst
86 ether_type = pkt.getlayer(Ether).type
87
88 # omitted for brevity
89 if ether_type == 2048:
90 ip_src = pkt[IP].src
91 ip_dst = pkt[IP].dst
92 proto = pkt[IP].proto
93
94 # omitted for brevity
95 # Check if ip_src is in arp_table
96 if ip_src not in arp_table:
97 # omitted for brevity
98 arp_table.setdefault(ip_src, (eth_src, value, eth_dst))
99

100 # omitted for brevity
101 writeARPReply(p4info_helper, sw=s1, dst_ip=ip_src, dst_mac_addr=eth_src,

↪→ sw_port=value, sw_port_mac=eth_dst)
102
103 if (ip_src, ip_dst) not in ip_cache and (ip_dst, ip_src) not in ip_cache:
104 # omitted for brevity
105 # Is a new combination, increase LTP value
106 DEVSRC_ID=DEV_ID
107 LTP=LTP + 1
108 LTPSRC_ID=LTP
109
110 # Write ip_src and ip_dst combination in arp_table
111 ip_cache.setdefault((ip_src, ip_dst), (DEVSRC_ID, LTPSRC_ID))
112 # Write ip_dst and ip_src combination is in arp_table (return)
113 ip_cache.setdefault((ip_dst, ip_src), (DEVSRC_ID, LTPSRC_ID))
114
115 # omitted for brevity
116
117 # Write rule on switch table
118 writeTagBuildRules(p4info_helper, sw=s1, dev_id=DEVSRC_ID, tag_id=LTPSRC_ID,

↪→ eth_src=eth_src, ip_src=ip_src, ip_dst=ip_dst, port=EGRESS_PORT)
119
120 # omitted for brevity
121
122 writeIpv4BuildRules(p4info_helper, sw=s1, dev_id=DEVSRC_ID, tag_id=LTPSRC_ID

↪→ , ip_src=ip_dst, ip_dst=ip_src)
123
124 # Input LTP_CPU in the package
125 output_metadata = "\000" + LTP_CPU
126
127 else:
128 # omitted for brevity
129 # Write rule on switch table
130 writeTagBuildRules(p4info_helper, sw=s1, dev_id=DEVSRC_ID, tag_id=LTPSRC_ID,

↪→ eth_src=eth_src, ip_src=ip_src, ip_dst=ip_dst, port=EGRESS_PORT)
131
132 output_metadata = "\000" + LTP_DEF
133
134 # omitted for brevity
135
136 # Preparing packet to send to switch
137 packetout = p4info_helper.buildPacketOut(
138 payload = packet_orig,
139 metadata = {
140 1: output_metadata
141 }
142 )
143 # omitted for brevity
144
145 # send packet to switch
146 s1.PacketOut(packetout)
147 # omitted for brevity
148
149
150
151
152
153

Fig. 2: Excerpt of the Python Controller code for the Lightweight Tunnel Protocol (LTP).

A. Protocol Overview

To serve low-cost devices with unreliable wireless links, we
propose in [15] a lightweight data transfer protocol we call
Lightweight Tunnel Protocol (LTP). This proposal reduces the
overhead by replacing L2/L3 headers with a label (TAG) that
identifies the communication host pair (source/destination).
These TAGs are single-hop, point-to-point identifiers, meaning
they are only valid for wireless transmission between a pair
of low-end devices. Labels are created on one programmable
low-end device, replace the packet’s link and network headers,
are transmitted wirelessly to the other device where the

replacement is undone, and the packet is forwarded normally.

Note that LTP protocol does not use a communication
channel between controllers, as it injects instructions into the
data packet itself to transmit them to the other devices to
update the network status. To do so, it uses some controls
embedded in the header and processed during its handshake
and following a state machine. Next we take a closer look at
how we implement the controller features.
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B. Distributed SDN Control for low-end Networks

We present in Fig. 2 an excerpt of the algorithm for dis-
tributed control of programmable low-end networks2. In this
code, we assume a low-end network in which each node acts
autonomously and there is no reliable channel for exchanging
management information. It means that the controller must
establish communication channels between nodes and assume
that this coordination is subject to failures due to packet loss.
The key management tasks that must be performed in a low-
end network are listed next:

1) First management task: Identify the device and event.
We can see lines 6 and 7 in Fig. 2 where the controller starts
the LTP variable (identifier of the source/destination tuple)
and sets the DEV ID (Device Identification) variable with the
number of this device (in the code, number 1). As noted,
this identifier must be unique in the universe of controllers
that are communicating and must be previously configured.
The combination of the device number that originated the
traffic and a sequential event number (TAG - representing each
source/destination combination) guarantee that this identifier
will not be repeated (and was not used before). Once the flow
is identified with a unique tag, it will be possible to control all
devices if the processing of this network change has already
been carried out.

2) Second management task: Add in the data packet the
instruction with network status change that will be sent
through the data plane to the other controller. Every time it is
necessary to make a change to the network, the LTP identifier
will be incremented (line 111 of Fig. 2) and the rule recorded
in the device tables (line 122 of Fig. 2). In our protocol, the
LTP CPU variable (set in line 4 of Fig. 2) identifies that a
network status change record has been created and should be
propagated. To do so, the variable is added to the packet (line
129 and lines 141-146 of Fig. 2), allowing this instruction to
be identified in the destination device when processed.

3) Third management task: Separate from the received
packet the instruction (event) and the data that must be
returned to the device to be forwarded in the flow. Since
instruction and data are received at the device concatenate,
it is initially necessary for the device to identify that it
is receiving instruction. Subsequently, it must forward this
instruction to the controller, which needs to be able to separate
the instruction from the packet, analyze and verify that it has
not processed this change yet, and forward the rest of the
packet so that the device can handle it by sending the packet to
the next-hop or the destiny. To do so, as noted in the previous
item, we add the variable LTP CPU in the packet that was
transmitted to the destination. When a device identifies that
it has received a new instruction, that is, it has received LTP
CPU (line 43 in Fig. 2), it separates the rest of the packet (line
45 in Fig. 2) and performs the remaining deals on the packet.

4) Fourth management task: Store status of all received
events. As we mentioned before, this control will allow us

2Kindly note that the code shown in the paper partially differs from the one
in our GitHub repository [21], for the sake of legibility and space constraints.

Switch 2Switch 1

Controller Controller

Fig. 3: Scenario 6 with 2 programmable low-end devices and
5 hosts per switch.

Switch 2Switch 1

Controller Controller

Internet

Fig. 4: Scenario 7 with 2 programmable low-end devices, 1
host and internet access.

to analyze if the rule has already been processed (and can
be discarded) and/or if it is necessary to record this change
in this device. The controller starts the arp table, ip
cache, and tag cache lists at lines 15,16, and 17 in
Fig. 2, respectively. All instructions received and processed by
the controller are stored in these lists (line 68,71,102,115,117
in Fig. 2), thus it is possible to identify if a rule/event had
already passed through this device.

C. Management Features in the Programmable Device

To conclude the presentation of our approach, let us quickly
review the features handled by the device in the scenario as
these were explored in more depth in [15].

• Identify and differentiate packets in the flow that have
only data (and must be simply forwarded in the flow)
from packets that have the instruction+data set. Using
look ahead in the parser (P4 lookahead()) the device
is able to differentiate a packet with an instruction (it has
LTP CPU) or it is a data packet that must be treated.

• Store and change the status of received events. Through
a state machine presented in [15], the device is able
to verify if the instruction should be forwarded to the
controller, discarded, or just follow the flow.

V. COMMUNITY NETWORK EVALUATION SCENARIOS

The analysis of the feasibility of our algorithmic approach
for fully distributed SDN-based management of programmable
low end networks was carried out from the perspective of some
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scenarios. Except for scenario 6 and 7, all other scenarios use
the initial topology of 3 programmable low-end devices and 3
stations on each device (see Fig. 1). We also provide evidence
of the goodput gains considering a community network using
LTP in comparison to a network without the use of this
protocol, called standard network (STD).

1) Scenario 1: Compares structure using the LTP protocol
and standard structure with the variation of the links in 64
kbps, 128 kbps, 256 kbps and 512 kbps and varying protocol
between UDP and TCP, considering a payload of 128 bytes.

2) Scenario 2: Compare structure using the LTP protocol
and standard structure with the variation of the links in 64
kbps, 128 kbps, 256 kbps and 512 kbps and varying protocol
between UDP and TCP, considering a payload of 512 bytes.

3) Scenario 3: Compare structure using the LTP protocol
and standard structure with the variation of the links in 64
kbps, 128 kbps, 256 kbps and 512 kbps and varying protocol
between UDP and TCP, considering a payload of 1024 bytes.

4) Scenario 4: Compare structure using the LTP protocol
and standard structure with the variation of the links in 64
kbps, 128 kbps, 256 kbps and 512 kbps and varying protocol
between UDP and TCP, wih payload limited to MTU.

5) Scenario 5: Analyzes the structure with the LTP protocol
using 256 kbps links, UDP packets between 2 hosts of each
device: h1-h4, h7-h2, h5-h8.

6) Scenario 6: Analyzes the structure with the LTP protocol
using 256 kbps links, UDP packets in a network with 2 devices
and 5 stations each (see Fig. 3).

7) Scenario 7: Analysis of the download of a file from
the internet by a host connected to a programmable low-end
device (s2) that is connected to a second device (s1) with an
internet connection. The connection between the two devices
uses the LTP protocol and a 256 kbps link (see Fig. 4).

VI. EVALUATION

In our previous work [15], we provided evidence of the tech-
nical feasibility of using LPWAN as programmable networking
devices whose behavior can be redefined using languages like
P4 [4]. In this section, we present evidence of the effectiveness
of the distributed management approach for programmable
low-end networks, by depicting the results of an evaluation
considering experimental and production flows exchanged
between nodes. We wrote LTP on P4 16 and implemented it
considering a bmv2 switch on mininet. The controllers were
written in Python2.7 with the help of the packet manipulation
tool scapy [22]. To generate network flows between hosts and
measure throughput, we used iperf3.

We present the results of the first analysis on Table I and
Table II, which together present 32 variations of experiments
performed in our scenarios varying link speed, payload size
in addition to the use or not of the proposed protocol. The
tables present the result of 30 rounds of experiments in each
with 30-second intervals between them. Observe in the the
percentage gain column compared to the payload size column
that the biggest gains are related to low payload sizes, exactly
because the ratio between the reduction offered by replacing

L2/L3 headers by TAG are greater than to this ratio when
the payload tends to the maximum MTU size. Thus, as we
emphasize, our solution is interesting for environments where
the flow of packets with low payload is intense, such as in
networks with low-end devices, where we achieved a gain of
approximately 23% using UDP/IP.

Another important analysis, considering the Table II is that,
even if the gain and the average are visibly higher, due to the
large standard deviation of the averages in the measurements
resulting from the behavior and controls imposed by the
TCP/IP protocol, it is not possible to say in every experiment,
with a 99% confidence level, that our solution gives a better
result.

If we analyze Fig. 5, which demonstrates throughput mea-
surements with experiments using iperf3 in scenarios varying
payload size between 128 bytes, 512 bytes, 1024 bytes, and
maximum MTU size comparing scenarios with and without
LTP and 256kbps link speed with TCP/IP traffic, it is easier
to verify what we claim. Results measured with LTP, even if
they show a slight advantage over measurements without LTP,
often overlap, due to TCP/IP’s flow control and congestion
control mechanisms that lead the protocol to constantly adapt
its throughput.

Analyzing, however, in isolation the figure 5(a) with the
measurements of this same comparison, but considering only
the 128-byte payloads, we observe that the gain is about
26%, even higher when compared to the gain seen in UDP/IP.
The low payload makes the link limit not reached, thus the
flow and congestion controls are not triggered. Note that
the gain in the UDP observations [15], which demonstrates
throughput measurements with experiments using iperf3 in
scenarios varying payload size between 128 bytes, 512 bytes,
1024 bytes, and maximum MTU size comparing scenarios
with and without LTP and 256kbps link speed with UDP/IP
traffic, is easier to observe exactly because it does not have
these throughput limiting controls.

Even if this solution is implemented in an environment that
has the characteristic of sending packets predominantly with
the maximum payload (reaching MTU), the result achieved in
both TCP/IP and UDP/IP is 3% as can be seen in the two
tables. Even if first impressions are not considerable results,
in a resource-constrained environment, any gain is important.
Anyway, in the Sec. VII we list some projects to maintain this
gain in a network environment with unfavorable conditions
such as networks with low-end devices, as well as list works
that aim to improve these values.

VII. FINAL CONSIDERATIONS

The use of distributed controllers as a method to achieve
scalability in SDN has been a target of the research community
for a long time. The solutions currently offered still need to
solve new challenges of this approach, such as ensuring the
synchronism of the state of the network in all equipment and
balancing the load between controllers, in addition to being
aimed at large networks, data centers or service providers.
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TABLE I: UDP/IP Experiments with various link speeds, payload lengths, and confidence level 0.99.

# Link speed
(kpbs)

Payload size
(bytes)

LTP UDP/IP Gain %Avg SD CI Avg-CI Avg+CI Avg SD CI Avg-CI Avg+CI
1 64 128 57.1 0.15 0.08 57.03 57.18 46.3 3.05 1.54 44.73 47.80 23.44
2 64 512 61.1 0.09 0.05 61.01 61.10 56.5 2.75 1.39 55.11 57.88 8.07
3 64 1024 61.7 0.39 0.20 61.52 61.91 59.0 2.69 1.36 57.66 60.37 4.57
4 64 1448 61.9 0.44 0.22 61.72 62.17 59.8 2.58 1.30 58.46 61.06 3.66
5 128 128 114.0 0.41 0.21 113.76 114.17 93.1 2.58 1.30 91.83 94.42 22.38
6 128 512 121.9 0.55 0.28 121.62 122.18 113.0 4.95 2.49 110.51 115.49 7.88
7 128 1024 123.0 0.79 0.40 122.60 123.40 118.0 4.04 2.03 116.00 120.06 4.21
8 128 1448 124.0 0.00 0.00 124.00 124.00 119.3 4.28 2.15 117.11 121.42 3.97
9 256 128 227.8 3.04 1.53 226.27 229.33 184.4 3.82 1.92 182.48 186.32 23.54

10 256 512 243.8 0.91 0.46 243.37 244.29 229.6 4.73 2.38 227.22 231.98 6.20
11 256 1024 246.1 2.32 1.17 244.90 247.23 237.6 5.70 2.87 234.73 240.47 3.56
12 256 1448 246.1 3.55 1.78 244.32 247.88 238.6 5.95 2.99 235.64 241.63 3.13
13 512 128 447.3 7.52 3.79 443.55 451.12 364.7 4.19 2.11 362.59 366.81 22.66
14 512 512 487.8 1.52 0.77 487.00 488.53 453.4 7.89 3.97 449.43 457.37 7.58
15 512 1024 493.6 2.01 1.01 492.62 494.64 472.9 7.78 3.91 468.99 476.81 4.38
16 512 1448 495.2 1.21 0.61 494.56 495.77 480.6 4.51 2.27 478.36 482.91 3.02

TABLE II: TCP/IP Experiments with various link speeds, payload lengths, and confidence level 0.99.

# Link speed
(kpbs)

Payload size
(bytes)

LTP TCP/IP Gain %Avg SD CI Avg-CI Avg+CI Avg SD CI Avg-CI Avg+CI
1 64 128 38.3 4.01 2.02 36.27 40.30 30.0 3.18 1.60 28.41 31.60 27.59
2 64 512 58.4 22.21 11.18 47.21 69.56 49.0 12.28 6.18 42.83 55.19 19.13
3 64 1024 57.2 16.05 8.08 49.14 65.30 55.0 15.55 7.83 47.12 62.78 4.13
4 64 1448 59.1 26.03 13.10 46.02 72.21 57.1 22.89 11.52 45.61 68.66 3.47
5 128 128 80.3 3.15 1.59 78.71 81.88 65.1 1.34 0.68 64.44 65.80 23.30
6 128 512 108.2 21.61 10.87 97.28 119.03 101.4 21.23 10.68 90.76 112.12 6.62
7 128 1024 115.7 28.01 14.09 101.62 129.81 111.0 20.90 10.52 100.50 121.54 4.23
8 128 1448 117.9 25.95 13.06 104.88 130.99 113.6 37.86 19.05 94.56 132.66 3.81
9 256 128 165.9 2.78 1.40 164.50 167.30 130.9 1.30 0.65 130.25 131.55 26.74

10 256 512 218.0 21.13 10.64 207.33 228.60 201.0 14.91 7.50 193.53 208.54 8.42
11 256 1024 231.8 19.09 9.61 222.16 241.37 221.7 19.84 9.99 211.68 231.65 4.56
12 256 1448 235.7 39.16 19.71 215.99 255.41 227.1 32.42 16.31 210.79 243.41 3.79
13 512 128 305.1 29.36 14.78 290.32 319.88 258.0 13.21 6.65 251.39 264.68 18.24
14 512 512 441.2 17.32 8.71 432.49 449.91 406.5 22.68 11.41 395.12 417.95 8.53
15 512 1024 466.9 17.44 8.78 458.16 475.71 446.6 11.76 5.92 440.68 452.52 4.55
16 512 1448 473.4 24.67 12.42 460.98 485.82 460.0 33.80 17.01 442.95 476.98 2.92
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(b) MTU @ 512 bytes, TCP
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(c) MTU @ 1024 bytes, TCP
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Fig. 5: Flow performance with LTP and with standard TCP/IP.

Bringing the benefits of SDN and the possibilities aris-
ing from the programmability of the control plan for low-
cost devices unlocks this equipment for a multitude of new

applications, such as enabling internet access in low-income
communities.

But how to implement an SDN solution with distributed
controllers on low-end equipment with low throughput and
unstable links, without a secure channel for the controllers to
communicate? A new approach is needed, with independent
programmable low-end devices that use the unreliable link for
exchange of management information.

In this paper, we demonstrate that it is possible to implement
and manage a network with distributed, independent and
individual controllers per programmable low-end device. Our
protocol guarantees the update of the state of the network for
the controllers through information embedded in the packets
that travel on the network, that is, it sends messages to update
the control plane through the data plane.

The analysis of the results presented proves the feasibility of
an interesting throughput gain for the communication profile of
this type of network (packets with low payload). These positive
results open the doors for new professionals and researchers
to explore new applications for low-end equipment, as well
as using the approach presented for other scenarios where the
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behavior and requirements are similar to those faced.
We are working on the implementation of sending pe-

riodic telemetry messages with meteorological information
that, together with machine learning, can parameterize the
antennas to make the best use of the equipment under current
atmospheric conditions. Likewise, aiming to increase the gain
achieved, especially in scenarios where the payload tends to
the maximum MTU size, we are working on the development
of scenarios with payload compression, which would further
reduce traffic, increasing throughput.
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