
Subneting Software Defined Wireless Sensor
Networks to Support Mobility

Ahmed Nader al-Dulaimy
Institute for Computer Science
University of Koblenz - Landau

Koblenz, Germany
Email: aldulaimy@uni-koblenz.de

Prof. Dr. Hannes Frey
Institute for Computer Science
University of Koblenz - Landau

Koblenz, Germany
Email: frey@uni-koblenz.de

Abstract—Mobility in wireless sensor networks plays a signifi-
cant role in many applications, especially for the internet of things
(IoT) and industrial production workflow. However, managing the
mobility of nodes in such networks is often problematic mainly
because of the dynamics of industrial environments combined
with the limitation of the node’s resources. Since software-
defined networking is a powerful technique to support today’s
networks’ manageability and scalability, both wireless sensor
networks and software-defined networks combined are gaining
significant interest in research and industry. In this paper, we
introduce an approach to handle the mobility and disconnectivity
of the sensor nodes in a software-defined network. This approach
takes advantage of splitting the network into sub-networks by
its address based on subnetting wireless sensor networks (Sub-
WSN) and keeping the network topology up to date in the
controller by exchanging periodical hello messages. We treat all
the nodes in the network as mini controllers and implement an
application into the controllers to hand over nodes between the
subnets. We evaluated the proposed approach by using Cooja
simulator in Contiki. The simulation result yields substantial
low control messages, handover time, and latency in handling
dynamic networks against a state of the art approach.

Index Terms—Wireless Sensor Network, Software Defined
Networking, Hierarchical Addressing, Simulation study, Dynamic
Network

I. INTRODUCTION

In contrast to traditional network, a software-defined net-
work separates the functionality of the network into two parts,
data plane and control plane. The data plane is presented by
the forwarding devices of the data flow without any control
logic. The logic and intelligence of the network are moved
to a centralized controller to form the control plane. The
control plane consist of a controller (or multi controllers)
and applications that are resided in the controller to shape
the network by instructing the behaviour of the forwarding
devices.

SDN is gaining momentum for scalability and manage-
ability characteristics as the world trend toward connecting
everything through all IP-based to form the internet of things
(IoT). Intelligent applications are emerging widely in smart
water networks, agriculture, environment monitoring, smart
metering, health care, intelligent transportation. On the other

hand, Wireless Sensor Networks (WSN) play an essential
role in such innovative applications by connecting intelligent
objects.

However, whenever SDN is used in wireless networks, all
achievable gains must be traded against the overhead to keep
the controller’s view of the whole network up to date. Applica-
bility of the SDN concept stands or falls on resource-efficient
means for maintaining the necessary network organization.
One of the fundamental building blocks are message and
memory-efficient means to organize multi-hop communication
paths between nodes and controller. Nevertheless, it is easier
to manage a scalable and dynamic wireless sensor network
when separating its control from the data plane.

We introduced Sub-WSN (subnetting wireless sensor net-
work) in [1], an approach to easily manage and overcome the
control messages expenses of the network by dividing it into
sub-networks with the use of the address of the node. The
contribution of this paper is to reconnect a mobile, newly
joined node or a broken link connection to the sink in a
dynamic network by using Sub-WSN and utilizing the infor-
mation stored in the controller with less controlling messages
and faster reconnectivity to the network.

The paper is organized as follows: section II provides a
literature review on SDNs in the context of WSNs. This is
followed by section III giving an overview on Sub-WSN [1],
and SDN-WiSE [2], SDN environments for WSNs which we
used to implement and to compare our approach. Our approach
is then presented in section IV, followed by section V where
we compare the approach against SDN-WiSE by example
and in terms of a series of simulation runs. Finally, section
VI concludes this paper and points towards possible future
extensions of our approach.

II. RELATED WORK

A. Introduction of the SDN paradigm in WSNs

Software-defined networking (SDN) is an evolving
paradigm that increasingly draws the attention of the
researcher. It can reduce the complexity of networks in
terms of scalability and significantly improve management
capabilities. The preceding researches that adopt SDN in
wireless sensor networks have brought many pioneering
solutions. Nevertheless, more investigations need to beISBN 978-3-903176-42-3 ©2021 IFIP

2021 13th IFIP Wireless and Mobile Networking Conference (WMNC)

1



considered regarding node mobility and highly dynamic link
changes. There is a need to cope with these obstacles by
identifying how to handle mobility by breaking the network
into smaller groups to be easily managed and updated. As
discussed in the following, the software-defined wireless
sensor network is divided into groups by clustering it, but
specific fixed nodes or terminals needed to handle mobility
in some research works.

There is a large number of papers that have dealt with SDN
in WSN (see the recent survey [3] for example). However, a
small amount of work is about clustering the network to tackle
the problem that it is often arduous or even impossible to learn
and maintain broken connections between nodes or handle
the nodes’ mobility. Reducing the amount of information
to be maintained in the existing clustering-based SDN-WSN
approaches suffer from: (1) more extra fixed controllers or
specific fixed devices have to serve as cluster heads and (2) still
control message sizes are enormous since the cluster formation
is not reflected in the addressing scheme. As discussed in
the following, none of the existing approaches has considered
using the subnetting the nodes by the address (the approach
we used from [1]) to manage mobility and links restoration,
the approach we consider in this paper.

B. Clustering for SDNs in WSNs

The authors in [4] clustered the network by using the
whale optimization algorithm. The SDN controller divides the
sensing area into virtual zones (VZ) regarding the node density
in the zones to balance the number of cluster heads. In [5] they
proposed a centralized load balancing clustering algorithm (C-
LBCA) where they moved the clustering calculation to the
SDN controller (or controllers) by using cloud resources. The
SDN controller utilises particle swarm optimization (PSO) for
clustering and load-balancing. Both proposals showed more
efficiency regarding the amount of data sent to the sink, though
they did not reduce control message overhead.

The authors of [6] discussed that the use of software-
defined wireless sensor networking (called SDWSN in the
work) might help to deal with some WSN problems (e.g.
energy-saving and the management of the network). However,
in their proposed SDN architecture, a specified base station is
needed to calculate routes.

There are some new approaches to divide the network into
clusters of nodes. In [7], the authors introduce an approach,
based on the topology characteristics and the quality of the
communication channel between the nodes, to form coalitions
of the collaborative machine to machine devices. In contrast,
the author in [8] introduced another approach by organizing
the nodes in non-overlapping clusters depending on code
division multiple access schemes.

The authors in [9] propose the integration in the SDN
controller of a traffic manager, which is a routing process to
assigning different routes depending on the different flows.
Moreover, they incorporated a modified TSCH (Time Slotted
Channel Hopping) protocol in the SDN-WISE framework in
order to send the TSCH schedule.

In our previous work [1], we introduced an approach to
divide the software-defined wireless sensor network into sub-
networks utilizing a hierarchical addressing scheme to manage
the network efficiently. It is based on a tree of address masks
that are used to split the network into subnets. Each subnet has
a range of host addresses and a subnet head, which acts as a
gateway to its children. For showing flexibility and efficiency
in reducing the controlling messages and feasibly managing
the routing in a massive network and small ones, we are
using this approach to implement our approach to handle node
mobility.

C. State of Art Implementations

Two well-known states of the art implementations of SDN
for WSN for real sensor network hardware are Tiny-SDN [10],
and SDN-WISE [2].

Tiny-SDN introduces multiple controllers to cluster the
network to reduce control messages overhead and handle mo-
bility. Tiny-SDN shows flexibility in communication; however,
it introduces memory overhead. Furthermore, it needs specific
network components, which are SDN controller nodes that
serve as SDN controller hosts (cluster heads), and it needs
SDN enabled nodes as well, which are the SDN end devices.

In SDN-WiSE, the controller is connected to the sink, and
all the other nodes are operated as OpenFlow switches. The
controllers in SDN-WISE drive applications that can shape the
network behaviour by injecting rules and actions in each node.
However, SDN-WISE does not employ clustering and neither
uses subnetting to overcome control message sizes.

The paper in [11] present an SDN approach, which is built
upon SDN-WiSE, to handle node mobility and scheduling in
Industrial Wireless Sensor Networks (IWSN). The approach is
based on the Time Slotted Channel Hopping (TSCH) protocol
of the IEEE 802.15.4 standard, which they call Forwarding
and TSCH Scheduling over SDN (FTSSDN). However, this
approach has three different sets of nodes: Fixed nodes, Mobile
nodes and Sink nodes. Therefore, it can control only the
mobility of some network nodes, while the rest should be
stationary in their positions.

We contribute to SDN in WSN research by implementing
and building an application to handle mobility in a hierarchical
addressed network based on trees of subnet masks. Each
node in the network is acting as SDN mini controller. The
SDN controller is used to calculate the best path and update
addresses to hand over mobile nodes from one parent to
another. By example and simulation, we show that the control
messages, path packets, handover time and latency are signif-
icantly reduced compared to if we would handle mobility in
SDN-WiSE. SDN-WiSE represents the so far existing WSN-
SDN approaches that are all not challenging mobility using
this type of hierarchical subnet organization. Though, we
are not comparing against TinySDN or the approach in [11]
because they require specific network hardware that acts as
a controlling fixed cluster head. It is not as flexible as our
approach with SDN-WiSE, where any node can be a cluster
head and move freely.

2021 13th IFIP Wireless and Mobile Networking Conference (WMNC)

2



III. SUBNETTING SOFTWARE DEFINED WIRELESS SENSOR
NETWORK IN A NUTSHELL

Subnetting the wireless sensor network by its address was
introduced in [1]. It is developed as an application in the
controller of a modified SDN-WiSE.

A. SDN-WiSE

An approach by [2] is meant as a solution for software-
defined networks in wireless sensor networks to lower control
messages between controllers and nodes and to make the
nodes programmable in order to process and execute openFlow
operations. SDN-WiSE is the first OpenFlow-like solution
implementation for WSN [1].

OpenFlow is a standardized protocol for software-defined
networking which operates as an interface to join network
switches with a controller. Within the OpenFlow protocol
specification, there are flow rules that impact the forwarding
switches’ performance. The switch forwards packets by using
one or more flow tables as shown in figure 1. These flow
tables consist of (1) sets of rules matching the flow packets
passing the switch, (2) the action to be exerted by the switch
for these packets and (3) counters for statistics. The controller
installs these flow rules on the switches. More specifications
are introduced as the OpenFlow revision is developing (e.g.
matching against multiple flow tables in protocol specification
v1.2 and combining meters and queuing traffic to perform
quality of service in v1.3), yet the essential idea of matching
flows and taking action is nevertheless the same [12] [1].

Table

0

Table

1

Table

n

Excute

action

set

Packet

in

Packet

Action
set

Packet

out

Fig. 1. Packets matching against multiple tables

Each node in SDN-WISE holds an array of accepted IDs and
each packet’s header includes an accepted ID in order to deal
with the broadcasting nature of wireless communication. On
receiving a packet, the node will iterate through its WISE flow
table entries, if the ID is listed, searching for a match in the
matching rule field. Once the matching rule is found, the linked
action in the action field will be performed. The matching
rule can consider any bit or part of the current packet and
compare it with a particular rule. The action on that packet can
be forwarding, dropping or and modifying. A request packet
would be sent from the node to the controller if there were no
matches in the flow table, requesting an instruction to handle
such packets [1].

B. Operation of Sub-WSN

The network address is divided into subnets as illustrated
in figure 2. Each subnet has a range of addresses covering its
tree of nodes. These addresses can be filtered by applying a
mask to each subnet [1].

Sub-WSN is using the topology discovery protocol (TD) of
SDN-WISE for i) managing the network layout and identifying
the next sink hop for each node; ii) determining the current
distance to the sink; iii) including the battery level and iv)
creating a list of neighbours for each node. After obtaining all
network information in the controller (by the TD protocol),
Dijkstra’s algorithm is applied to determine the shortest path
from each node to the sink. Nodes along each one of these
paths receive new addresses. Each node in each path is the
subnet head to the following nodes in that path from the sink
downwards, as shown in figure 2 [1].

To each node that sends an openFlow request packet, the
Sub-WSN application responds with a path packet. The path
packet contains the parent’s address, the node’s new address,
and the mask. As the path packet reaches the parent node,
the parent appends a matching rule entry in its flow table
containing:

• The address of the new child
• The mask that belongs to that child sub-network
• Along with the action to be taken to any future coming

packets matching the rule
The rule is to match the masked destination address of the

incoming packet with the child’s address. If there is a match, it
will forward the path packet to that child. The child node also
appends a matching rule entry to its flow table by receiving
the path packet. This entry is a rule for packets destined to the
sink and the action to forward this kind of flow to the node’s
parent address [1].

IV. MOBILITY ON SOFTWARE DEFINED WIRELESS
SENSOR NETWORK

Keeping track of the nodes in dynamic wireless sensor
networks is not an easy task, especially when each node
should be reachable individually with its specific address or
ID to be updated and do a particular task. We introduce an
approach to reconnect disconnected mobile nodes or moved
away from their parent nodes for a dynamic network; by
applying periodical hello messages and handover application
in the controller, the node will get a new address (from an
address inventory) to connect to a new parent, as illustrated
in figure 6. In this section, we are describing in detail this
approach.

A. Mobility and Hello Messages

A hello-packet is periodically sent through the network. The
sink is initiating this process by sending a hello packet. This
hello packet will trigger every node receiving it to respond
with a hello packet in turn. That will trigger the nodes which
receive these packets to send one and so on. During this
process, a hello packet from the sink will propagate through
the whole network; hence every node still connected to this
network can observe the change within its surrounding.

The hello packet consists only of a packet length, a packet
ID, packet type and the source address as shown in figure
3. Since the packet is destined to all reachable nodes, no
destination address is needed in the packet, which is saving

2021 13th IFIP Wireless and Mobile Networking Conference (WMNC)

3



SH

SH

SH

1101 0000 0000 0000

Sink

1101 0010 0000 0000

1101 0011 1000 0000

1101 0011 1010 1000

SH

1101 0011 1010 1110

Destination Node

Subnet ID Host ID

Fig. 2. Subnetting SDN WSN by the network address

some resources. In our implementation, hello packets received
with RSSI lower than threshold of -60 dBm will be neglected
as of [2]. The packet ID in the hello packet is to identify each
packet, so the node can recognize if it has already responded
to this packet with a hello packet or not.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 Packet Length Packet ID Packet Type

2 Source Address

Bit

B
y
te

Fig. 3. Hello packet header

The sink sends a hello packet every precalculated period.
This period can be calculated in the network controller de-
pending on the average number of neighbours per node and
the number of the handover in a certain time (average speed
of the nodes). Figure 4 is the diagram of handling the hello
packet in the node. The node will check first the packet ID.
If it has not responded to this packet ID, it will send a hello
packet with the same ID and updating its hello counter.

As in the diagram, any node that receives a hello packet
will check the packet source address against its neighbours’
list. If the source is not in the list, the list will be updated
with a new neighbour entry. Since the subnet ID part of the
address of any node can show at which level the node is (how
far it is from the sink), no need to send the number of hops
from that node to the sink compared to that of TD protocol.

source address in

the neighbour list

reset that neighbour counter to 0

add to neighbour

list

neighbour counter

>= 2* number of

nighbours

add 1 to the counter of the other neighbours

remove from

nighbour list

hello packet

received

No

Yes

No

Yes

Hello packet ID >

hello counter |hello

counter - hello

packet ID > 10

hello counter = hello packet ID

No

Yes

send a hello packet

Fig. 4. Hello packet received in a node daigram

The neighbour’s list contains a counter for each neighbour
to check if the neighbour is still connected. It is set to 0
each time a hello packet is received from that neighbour and
adding one to the other neighbours’ counters in the list. Then
the node will check the neighbours’ counter; if the counter
value is more than double the number of neighbours, two hello
messages were missed; hence That neighbour is no longer in
the surroundings of the node (either disconnected or moved
away), and it will be removed from the node neighbours’ list.

A node will send a request packet to join another tree in case
the node is not receiving a hello-packet from its parent node,
or the parent node RSSI difference to another neighbouring
node of the same level is more than 15 dBm and the parent
RSSI is between -60 to -50 dBm, or the new neighbour is in
a higher level than the parent node level. In short, the node
will send the request packet to the neighbour with fewer hops
to the sink and with higher RSSI.

B. Addressing Inventory

To accommodate the need for addresses of the moving
nodes, we use an address inventory to calculate the number
of the levels needed and distribute the addressing to create

2021 13th IFIP Wireless and Mobile Networking Conference (WMNC)

4



redundancy of addresses for each level, i.e. when a newly
joined node is asking for an address, it will find one.

In the controller, after the network’s initiation, we are using
an algorithm to calculate the maximum needed addresses for
each level and split the address’s bits accordingly. In our
simulated network, the 16 bits of the address is split into
groups of bits for each level. Each level gets several bits to
cover the most significant number of child nodes in any cluster
of that level and more extra for mobile nodes. For example, if
the largest cluster in a second level has nine child nodes, the
number of dedicated bits for that level will be 4 (16 addresses)
as shown in figure 5. That will cover the addresses for the
nine nodes and seven more nodes for future joining or moving
nodes.

Moreover, if there will be extra bits after splitting the
address for the entire network, the extra bits will be added
one by one for each level, starting from the levels with the
least number of spared addresses and the highest to the lowest
levels. The example in the figure shows that level three has no
spare addresses, so the first extra bit is added to it. Although
both the first and the fourth level have just one spared address,
the first level is higher in the hierarchy. That is why the second
extra bit is added to the first level.

Max. Child

Nodes per Level

Bits Needed for Each Level / Number of 

Addresses left for The Inventory

Level 1 = 3 Childs 2 bits / 1 2 bits / 1 3 bits / 5 3 bits / 5

Level 2 = 9 Childs 4 bits / 7 4 bits / 7 4 bits / 7 4 bits / 7

Level 3 = 8 Childs 3 bits / 0 4 bits / 8 4 bits / 8 4 bits / 8

Level 4 = 15 Childs 4 bits / 1 4 bits / 1 4 bits / 1 5 bits / 17

Number of The Used 

Address Bits out of 16 13 bits 14 bits 15 bits 16 bits

Fig. 5. Addressing inventory table example

C. Hand Over to New Cluster

We introduced to the nodes in the network an application
HOSub (Hand Over Subnet) to handle node mobility so that
any node in the network can act as a mini controller of the
tree below it. This application will be triggered after receiving
the request packet mentioned above sent to the new potential
node parent. HOSub will react first by finding a new address
in the address inventory then send back an update packet to the
source node. The update packet contains only the source node
address as the destination address, the new parent address as
the source and the new address. This packet will trigger the
HOSub application in the source node to change the address of
the node, update its flowtable and broadcast an update packet
to its child nodes where the application will be triggered again
to change their addresses, update their flowtables and send
update packets to their child nodes and so on along the whole
tree to get updated as shown in figure 6. As the figure show,
the node ID part of the addresses of the nodes will not change.
Hence, the source node will send an update packet to its tree
nodes of the changed part of its address only.

Fig. 6. Handover from a parent to a new parent during node mobility

If the new parent node can not offer a new address (its
address inventory is full), HOSub will send a rejection to that
request. Then the node will look for a new potential parent.

D. Handover principle Example

Figure 6 shows an example of a node reconnecting to the
sink through a new parent (it could be due to loss of connection
to the original parent node or because of mobility).

The sink periodically sends a hello packet with a hello
packet ID. This hello packet propagates through the whole
network, as the signalling diagram 7 illustrate. Every node that
receive this packet will update its neighbour list and forward
the packet with its address as the source address. When a link
is broken between a parent and its child, the child node will
miss the hello packet from its parent and start the handover
process.

The handover process starts by initiating the HOSub appli-
cation in the node with the missing parent. The HOSub will
search for a neighbour with the least number of hops to the
sink and then the highest RSSI value. Then it will send a
request packet to that neighbouring node.

The HOSub application in the neighbouring node will be
triggered by the request message. HOSub starts with searching
for a node ID (address) to accommodate the newly joined
node from its address inventory. If it finds one, it will send
an update packet containing the address of the newly joined
node as destination and the source address is its address as a

2021 13th IFIP Wireless and Mobile Networking Conference (WMNC)

5



new parent and the new address. At the same time, it will add
this address to its flowtable as a child node.

The node will receive the update packet, and it will change
its node ID to the new one. As shown in 6, the new Node-ID
for this child is changing from 001 to 011. Then the HOSub
will change the parent address in the flow table to the source
address in the update packet. Its child nodes addresses in
the flowtable will be changed accordingly. Then the HOSub
application will send an update packet broadcast to its direct
child nodes with the node’s old address (1101 0010 0000 0000)
as the destination. The source address will be its new address
(1100 0110 0000 0000). at the same time it will send these
updates to the controller to be informed of the new address.
The controller will change its database and the graph network
for the whole tree of that node.

The child nodes will receive this broadcasted update packet.
They will keep their node IDs but change the part of their
address with the source address (the new parent address of
1100 0110 0000 0000). As in the example in the figure, the
child with the address 1101 0011 1000 0000 will change it to
1100 0111 1000 0000. Its node ID is staying the same (11 in
this example). Then the HOSub application in the child nodes
will broadcast an update packet with the same procedure as
above to update their child nodes addresses until the end of
the tree.

sink/

controller

new

parent

disconnected

parent

weak link / no response

request-

packet

update-packet

update-

packet

update-packet

hello-packet

hello-packet

hello-packet

hello-packet

the

node

the

node tree

Fig. 7. Signalling during handover

V. SIMULATION RESULTS AND EVALUATION

We used the Cooja simulator of Contiki OS to test and run
our dynamic SDN and implement the controller’s applications
along with Sub-WSN application. We are then comparing it
against SDN-WISE. Contiki is an operating system for the
network with memory-constrained nodes that designed for

low-power wireless system devices [13]. Cooja is an extensible
Java-based network simulator that can emulate motes.

In order to create a dynamic network, the mobility plugin
of Cooja was used to re-position the nodes. We used a random
number generator to calculate the new coordination and fed
them to Cooja through positions.dat file. Initially, the nodes
are randomly positioned in the Cooja simulation area. The
transmission range r for the nodes was set to 50m. The width
and height l of the simulation area was set such that each
node had approximately an average d of 4 neighbors nodes.
We computed l according to the following equation:

l =

√
πr2

d
.n (1)

where n is the number of nodes.
We are using a random waypoint model [14] (namely

random walk model) as a model for the movement of the nodes
in this evaluation. A randomly generated number (either 1 or
-1) is added to the nodes orientations once for every step and
for each of the x axis and y axis of each node in order to
move each node one step up or down and left or right. In case
that the resulted coordination is out of the simulation area, the
new addition is being ignored.

According to SDN-WiSE approach’s settings, in the first 60
seconds, no node is transmitting in order to initiate and build
the network. The running time for all the simulations is set to
10 minutes (600 seconds).

A. Average over Fully and Partially Mobile Network

To evaluate the performance of this approach, we ran fifty
simulated networks for 30 minutes each of five different
scenarios with 10 nodes with varying numbers of total mobile
nodes 20%, 40%, 60%, 80% and 100% mobile nodes plus one
Sink fixed node.

This section uses a speed of 2 meters per seconds (7.2 km/h)
for our evaluation test, by setting the random number generator
to either 2 or -2. We chose this speed to evaluate the network
in an intense environment while this speed reflects the average
human jogging speed, and it is double the preferred speed for
robots or machines in working places [15]. We will analyse
the performance of this approach for different speeds in the
next section.

Figure 8 shows the performance of the scenarios with 20%,
40%,60%,80% and 100% moving nodes through the network
with our approach. As the figure shows, the more the number
of moving nodes, the more is the handover. However, the figure
also shows that the higher the number of moving nodes, the
less the handover process increases. For example, the 100%
moving nodes are closer to the 80% in terms of performance
than the 80% from the 60% ones. After analysing the data
in hand, it shows that it is because of the random movement
of the nodes; therefore, they stay longer around their original
parents. Furthermore, the fact that some parents are already
moving in the same direction as their child nodes hence no
need for handover updates for the child nodes as explained

2021 13th IFIP Wireless and Mobile Networking Conference (WMNC)

6



in section IV. That is reducing control messages, update-
packets, handover time and latency. For the original approach
to handling mobility, the whole network must be reinitiated.
That needs, for a similar network of 10 nodes and one sink,
over 5.7 Kilobytes and 70 seconds to reconnect one moving
node (or disconnected link). While in our approach for the
same network, the average of bytes needed for one handover
is 64 bytes.

0

5

10

15

20

25

30

35

0% 20% 40% 60% 80% 100%

N
u

m
b

e
r 

o
f 

h
a

n
d

o
v
e

rs
 i

n
 3

0
 m

in
u

te
s

Moving nodes in the network

Fig. 8. Average evaluation over low and high Network mobility

B. Average over Different Network Scenarios

To evaluate the performance of this approach for different
network sizes, we ran fifty simulated networks of five different
scenarios with different numbers of nodes 5, 10, 15, 20 and 25
nodes plus one sink node with 100% of the nodes are moving.
This section is also using the node speed of 7.2 km/h.

The number of total average handover numbers in our
approach for different scenarios with different network sizes
is illustrated in figure 9. And it shows that the more the
nodes, the more the handovers over through the same period.
Although, the figure shows that 3% of all send packets are the
mobility handling packets needed for the five node network.
However, in the 25 nodes network, though it is five times the
area and five times the node numbers compared to the five
node network, the mobility handling packet is less than 8%.
That is also because of the nodes’ random movement and that
some parents are moving in the same direction as their child
nodes; consequently, there is no need for handover updates for
the child nodes. That means again reducing control messages,
update-packets, handover time and latency. Furthermore, the
distance between the nodes in a wide area and more extensive
network allows more than one node to transmit simultaneously.

C. Average over Different Node Speed Scenarios

In this section, we are evaluating the performance of our
approach by running fifty simulated networks of 10 nodes with
100% moving nodes for four different node speeds scenarios
with:

• 3.6 km/h, the robots preferred speed [15].
• 5.58 km/h, the walking speed.
• 7.2 km/h, the jogging speed.
• 10.2 km/h, the average running speed.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

25 Nodes 20 Nodes 15 Nodes 10 Nodes 5 Nodes

Data packet Handover packet

Fig. 9. Percentage of handover packet to data packet for different network
sizes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3.6 km/h 5.58 km/h 7.2 km/h 10.2 km/h

Data Packet Handover Packet

Fig. 10. Percentage of handover packet to data packet for different node
speeds

Figure 10 illustrates the percentage of the number of packets
needed for handover in contrast to the data packets. The
speed is affecting the performance equally, as the figure
reveals. The more the speed, the more are the handovers from
one parent node to another. Though, it does not add to the
network’s performance with the higher speed of the nodes
compared to the previous scenarios. However, this approach
can handle mobility with a tiny percentage of packet loss
0.0083% average.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposes an approach over SDN-WiSE controller
in a hierarchical addressed network by Sub-WSN application
to handle mobility of the nodes. A handover application
was implemented and deployed into mini controllers for that
purpose. The result yields a message-efficient update between
the nodes and the controller with a very low data loss of about
0.0083% in the studied simulation.

Mobility handling in the network is enhanced by adding ap-
plications to the controllers within the SDN-WiSE framework.
This demonstrates the influence of SDN in WSN in general,
though some adjustments were needed at the motes’ software
to deal with hello and update packets. We conclude that further
research is required at the system level so that, in the future,
just injecting applications into the controller of SDN-WSN

2021 13th IFIP Wireless and Mobile Networking Conference (WMNC)

7



platforms is feasible without the need to adjust components
of the framework implementation. The nodes information in
the controller can also be utilized and analyzed even further
in many ways, for example, to predict the movement of the
nodes by using machine learning.

REFERENCES

[1] A. N. al Dulaimy and H. Frey, “Subnet addressing in software defined
wireless sensor networks,” in 2019 12th IFIP Wireless and Mobile
Networking Conference (WMNC). IEEE, 2019, pp. 32–38.

[2] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks,” Proceedings - IEEE INFOCOM, vol. 26,
pp. 513–521, 2015.

[3] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A Survey on
Software-Defined Wireless Sensor Networks: Challenges and Design
Requirements.” IEEE Access, vol. 5, no. 1, pp. 1872–1899, 2017.

[4] T. A. Al-Janabi and H. S. Al-Raweshidy, “Efficient whale optimisation
algorithm-based SDN clustering for IoT focused on node density,” 2017
16th Annual Mediterranean Ad Hoc Networking Workshop, Med-Hoc-
Net 2017, 2017.

[5] ——, “Optimised clustering algorithm-based centralised architecture for
load balancing in IoT network,” in 2017 International Symposium on
Wireless Communication Systems (ISWCS). IEEE, aug 2017, pp. 269–
274. [Online]. Available: http://ieeexplore.ieee.org/document/8108123/

[6] A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor network
management based on software-defined networking,” in Communications
(QBSC), 2014 27th Biennial Symposium on. IEEE, 2014, pp. 71–75.

[7] E. E. Tsiropoulou, S. T. Paruchuri, and J. S. Baras, “Interest, energy and
physical-aware coalition formation and resource allocation in smart IoT
applications,” in 2017 51st Annual Conference on Information Sciences
and Systems (CISS). IEEE, 2017, pp. 1–6.

[8] C. R. Lin and M. Gerla, “Adaptive clustering for mobile wireless
networks,” IEEE Journal on Selected areas in Communications, vol. 15,
no. 7, pp. 1265–1275, 1997.

[9] F. Orozco-Santos, V. Sempere-Payá, T. Albero-Albero, and J. Silvestre-
Blanes, “Enhancing sdn wise with slicing over tsch,” Sensors, vol. 21,
no. 4, p. 1075, 2021.

[10] B. Trevizan de Oliveira, L. Batista Gabriel, and C. Borges
Margi, “TinySDN: Enabling Multiple Controllers for Software-Defined
Wireless Sensor Networks,” IEEE Latin America Transactions,
vol. 13, no. 11, pp. 3690–3696, nov 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7387950/

[11] L. L. Bello, A. Lombardo, S. Milardo, G. Patti, and M. Reno, “Software-
defined networking for dynamic control of mobile industrial wireless
sensor networks,” in 2018 IEEE 23rd International Conference on
Emerging Technologies and Factory Automation (ETFA), vol. 1. IEEE,
2018, pp. 290–296.

[12] R. Kloti, V. Kotronis, and P. Smith, “Openflow: A security analysis,”
in Network Protocols (ICNP), 2013 21st IEEE International Conference
on. IEEE, 2013, pp. 1–6.

[13] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and
flexible operating system for tiny networked sensors,” in 29th annual
IEEE international conference on local computer networks. IEEE,
2004, pp. 455–462.

[14] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc
wireless networks,” in Mobile computing. Springer, 1996, pp. 153–
181.

[15] J. T. Butler and A. Agah, “Psychological effects of behavior patterns
of a mobile personal robot,” Autonomous Robots, vol. 10, no. 2, pp.
185–202, 2001.

2021 13th IFIP Wireless and Mobile Networking Conference (WMNC)

8


