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Abstract. One-dimensional wireless sensor networks are important for
such security-critical applications as pipeline monitoring and perimeter
surveillance. When considering the distribution of symmetric keys to se-
cure the communication in such networks, the specific topology leads to
security and performance requirements that are markedly distinct from
those of the more widely-studied case of a planar network. We consider
these requirements in detail, proposing a new measure for connectivity
in one-dimensional environments. We show that, surprisingly, optimal
results may be obtained through the use of extremely lightweight key
predistribution schemes.
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1 Introduction

The classical view of a wireless sensor network (WSN) is one of thou-
sands of sensor nodes with a random physical distribution, such as would
result from the nodes being scattered from an aeroplane. In practice,
however, the specific sensing requirements of a given application impose
a topology on the network that may differ significantly from this stan-
dard picture [12]. One example is the case of a one-dimensional network,
in which the sensors are arranged in a line or ring. Topologies of this sort
arise naturally from applications such as pipeline monitoring or perime-
ter surveillance, where it is necessary to take measurements at regular
intervals along a lengthy piece of infrastructure. Security is important for
such applications, hence it is desirable to use cryptographic techniques to
secure the wireless communication. Symmetric primitives provide a less
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computationally intensive solution than public-key techniques, but they
require the sensor nodes to share common keys.

Key predistribution schemes (KPSs) are a widely-studied means of
providing shared keys to the nodes [1, 8, 15]. However, most widely studied
KPSs such as that of Eschenauer and Gligor [2] are designed for planar
networks, whose properties are very different to those of a network with a
one-dimensional topology. Nodes in a one-dimensional network are likely
to have fewer neighbours (that is, nodes that lie within communication
range of them) on average and the pattern of communication within the
network will be quite different. Also, it is reasonable to suppose that the
location of the sensors will be known, at least up to the order in which
they occur along the network. In turn, the security requirements of a KPS
for such a network are not the same as in the planar case. In particular,
maintaining network connectivity is critical in one-dimensional networks,
as we will demonstrate.

The main contribution of this paper is the identification of the precise
requirements a KPS for a one-dimensional WSN, and the observation that
it is possible to achieve these properties through the use of schemes with
very low storage requirements. In Sect. 2 we discuss applications for one-
dimensional WSNs. In Sect. 3 we consider the properties of such networks
in detail, and in Sect. 4 we see that this leads to security and performance
requirements that are markedly different from those of the classical sce-
nario, particularly with respect to the connectivity of the network. We
introduce a new measure, the s-fallibility, that more closely models the
desirable connectivity properties of a KPS for a one-dimensional network.
In Sect. 5 we examine how the s-fallibility of the network is affected by
the communication range of the sensors, and in Sect. 6 we propose a
key predistribution scheme that gives optimal s-fallibility with very low
storage requirements. The advantages of such schemes are summarised in
Sect. 7.

2 Applications Requiring the Use of One-Dimensional

WSNs

The monitoring of an extended piece of infrastructure, such as a pipe,
lends itself to the use of a one-dimensional sensor network. Pipelines car-
rying oil, gas or water are critical both in terms of their commercial im-
portance and their impact on national security. Reasons for monitoring
such pipelines include the detection of leaks, the measurement of seis-
mic activity that has the potential to damage pipes, or the detection of



malicious activities such as sabotage or deliberate theft of pipes or their
contents.

In any context there are advantages to using a wireless (as opposed to
wired) network of sensors, such as greater ease of deployment and main-
tenance of the network. In the one-dimensional scenario, however, even
stronger arguments for using a wireless network are provided by consid-
eration of the reliability of the network. An attacker who cuts through
the wire can entirely disrupt communication in a conventional network
with linear topology. The use of multiple wires complicates the design and
deployment of a network, and will not necessarily make it harder for an
adversary to disconnect it. An appropriately designed wireless network,
on the other hand, can withstand the loss of several sensors without losing
connectivity. In the literature there are several proposals for the use of
WSNs in such a context [3, 4, 10, 11, 13]. Similar considerations also apply
to the monitoring of other types of linear infrastructure such as bridges
or railway tracks.

A related application that leads naturally to the use of one-dimensional
WSNs is that of perimeter surveillance (e.g. [14]). For example, sensors
may be deployed for monitoring the condition of a fence, or for intrusion
detection on the boundary of an unfenced region. The resulting networks
differ from those required for pipeline monitoring in that the sensors are
arranged in a ring, rather than in a line. In Sect. 6.1 we consider how this
affects considerations of connectivity in such networks.

Various practical aspects of the performance of one-dimensional ad
hoc networks have been studied [6, 7, 9, 16, 17]. However, the security of
the communications in such networks has received comparatively little
attention. In Secs. 3 and 4 we discuss how the properties of these net-
works lead to quite specific security requirements when considering the
performance of key predistribution schemes.

3 Characteristics of One-Dimensional Sensor Networks

The properties of a one-dimensional WSN differ substantially from those
of the two-dimensional analogue. Here we examine those properties that
are particularly relevant to the design of KPSs.

Restricted number of neighbours: If we assume that each node has
a particular communication range r, then for a given density of node
deployment, the number of nodes within communication range of a
sensor in a planar network is proportional to r2. In a one-dimensional
network, however, this number is proportional to r.



Location knowledge: It is possible to consider two-dimensional net-
works in which there are differing degrees of a priori information about
the nodes’ locations, ranging from none at all, up to complete knowl-
edge (see [8], for example). In the one-dimensional case it is reasonable
to assume that the order in which the nodes occur along the network
is known, since they are likely to be deployed sequentially along the
object being monitored. In particular, this implies that the neigh-
bours of each particular node are known with high probability prior
to deployment.

Pattern of communication: In a one-dimensional network, informa-
tion is constrained to flowing back and forth along the network. This
has particular implications for aspects such as the capacity of the
network [7], and the design of routing algorithms [17, 16].

Density of node deployment: Depending on the quantities that are
being measured by the sensors, it is likely that density of node de-
ployment required to ensure adequate sensing coverage will exceed
the density required for the wireless network to be connected.

4 Security Considerations for Key Distribution in

One-Dimensional Sensor Networks

When evaluating the performance of a KPS for a WSN, we are gener-
ally interested in the trade-off it provides between storage requirements,
network connectivity, and resilience in the face of an adversary that can
eavesdrop on all network traffic, as well as capture a certain number of
nodes and extract any keys they contain. It is common to measure the
connectivity in terms of the probability Pr1 that two neighbouring nodes
share a key, and the resilience in terms of the proportion of link keys that
are compromised when a given number of nodes are captured at random
[2, 5].

In the case of a one-dimensional WSN, the combination of nodes hav-
ing a small number of neighbours with the fact that the expected neigh-
bours are known prior to deployment suggests that it may be feasible to
employ a KPS that assigns a distinct key to each pair of neighbouring
nodes; we refer to this as the local pairwise KPS. This scheme has the ad-
vantage of having an optimal value of Pr1 (since any two neighbours share
a key with probability 1) and optimal resilience (since any key is shared
by just two nodes, and thus the compromise of a node does not expose
keys that pairs of uncompromised nodes rely on for communication).

Nevertheless, this is not the end of the story for key predistribution
in one-dimensional WSNs. The quantity Pr1 is useful in that it provides



a means of comparing in some sense the relative network connectivity
achieved by KPSs in the case of a planar network with no location knowl-
edge, where the formulation of absolute measures of connectivity is prob-
lematic. However, in the one-dimensional case, our detailed knowledge
of the network topology enables us to quantify more precisely the con-
nectivity behaviour that is desirable from the point of view of network
functionality, in terms of a quantity we refer to as the s-fallibility of the
network. We will see that while the local pairwise KPS performs well with
respect to this measure, there exist schemes that perform equally well,
yet require less storage.

In what follows, we assume our network consists of n identical nodes
arranged in a line at regularly spaced intervals (in Sect. 6.1 we will con-
sider how the situation changes if the nodes lie in a ring.) We suppose each
node can communicate with all nodes located within distance r (where
the distance between two adjacent nodes is taken to be 1). We restrict
our attention to KPSs in which each key is shared by at most two nodes,
as this provides optimal resilience. Furthermore, we focus on KPSs that
can be used to distribute keys to networks with arbitrarily large values of
n: the available location knowledge makes it possible to avoid assigning
shared keys to pairs of nodes that are not within communication range,
and hence extending a scheme to a large number of nodes does not ad-
versely affect the storage requirements of any given node. Finally, instead
of considering only adversaries that capture nodes at random, we analyse
resistance against a “worst-case” adversary that chooses which nodes to
capture based on the amount of damage it can do to the network.

Sensor nodes are small, cheap devices that are deployed with sufficient
density that the performance of the network is not affected if a number of
them fail. Thus the loss of a small number of sensors through adversarial
capture is not in itself critical. However, it becomes a serious problem
if the adversary is able to capture nodes in such a way as to prevent
large sections of the network from communicating with each other. We
formalise this notion in the following definition.

Definition 1. Two disjoint sets S1 and S2 of nodes in a one-dimensional
WSN are isolated from each other if no node in S1 is in range of and
shares an uncompromised key with a node in S2.

Example 1. Consider the network given by the following diagram, in
which dots represent nodes and lines connect nodes that share a key:



The capture of the white node and compromise of the corresponding keys
isolates the set of black nodes on the left from the set of black nodes on
the right, as none of the leftmost three nodes shares a key with any of
the rightmost three nodes.

Example 2. Consider a one-dimensional network in which the nodes are
labeled 0, 1, 2, . . . in turn. If each node with label i shares a key with the
nodes labelled i + 2 and i − 2 then the set of nodes with odd labels is
isolated from the set of nodes with even labels.
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In a network where each node stores k keys, then an adversary can always
isolate a single node Ψ from the rest of the network by capturing up to k
other nodes that between them possess all the keys stored by Ψ . However,
it could be argued that the adversary could achieve the same effect more
easily by simply capturing Ψ directly. Hence the standard graph-theoretic
notion of vertex connectivity does not quite serve to measure how well
a KPS for a one-dimensional network stands up to node compromise.
The exclusion of a small number of nodes from the rest of the network
is not a major source of concern, however the partitioning of a network
into two halves that cannot communicate with each other is a serious
problem. In order to give a more practical measure of the extent to which
an adversary can damage a network in which the KPS is deployed, we
define the s-fallibility of a KPS to be the smallest number of nodes an
adversary has to capture in order to cause a catastrophic failure in the
connectivity of the network.

Consider a KPS that can be applied to a one-dimensional network of n
of nodes (where n can be made arbitrarily large). If the KPS is s-fallible,
then an adversary who captures at most s − 1 nodes can only isolate a
small (i.e. constant with respect to n) number of nodes from the rest of
the network, whereas an adversary who captures s nodes can partition
the network into two (or more) large sets of nodes that are isolated from
each other. We formalise the definition of s-fallibility as follows:

Definition 2. A KPS for a one-dimensional network consisting of a set
N of n nodes, where n is arbitrary, is s-fallible if the following two con-
ditions hold:

1. After the capture of any s − 1 nodes, there exists a set E ⊂ N of size
at most O(1) such that N \ E is connected.



2. It is possible to choose s nodes whose capture partitions the network
into two (or more) isolated networks of size Ω(n).

For example, the KPS in which each node shares a key with the two
immediately adjacent nodes (as illustrated in Example 1) is (trivially)
1-fallible, since if no nodes are captured the network is connected, yet
it suffices to capture a single node from the centre of the network to
partition the network into two isolated networks of size ≈ n/2. We note
that in general a KPS that yields a connected network prior to any node
capture is necessarily s-fallible for some s ≥ 1, and hence this quantity is
well-defined for any scheme of practical interest.

We are interested in KPSs that are s-fallible for as high a value of
s as possible. In Sect. 5 we consider factors affecting the fallibility, and
provide upper bounds on the s-fallibility that can be achieved for given
network parameters.

5 Bounding the s-Fallibility of KPSs for Linear

One-Dimensional WSNs

The communication range of the nodes affects the number of neighbours
they have. It is unsurprising, therefore, that it should have an effect on
the s-fallibility.

Theorem 1. If a KPS for a one-dimensional WSN in which the nodes
have communication range r yields a connected network, then it is s-fallible
for some 1 ≤ s ≤ r.

Proof. If a KPS leads to a connected network, then it is s-fallible for some
s ≥ 1. Suppose an adversary captures r adjacent nodes from the centre
of the network. Then no uncaptured node in the “left-hand half” of the
network is within communication range of any node in the “right-hand
half,” and hence the network consists of two isolated components each of
size ≈ (n − r)/2, as shown in the following diagram.

— out of range —

Thus, for a KPS deployed in a specific network to be s-fallible, it is
necessary (although not sufficient) for the communication range of the
nodes to be at least s. In fact this condition can be strengthened, as
shown by the following theorem.



Theorem 2. Suppose a KPS that yields a connected network assigns keys
to nodes such that the largest distance between two nodes that share a key
is b. Then it is s-fallible for some 1 ≤ s ≤ b.

Proof. As above, consider an adversary that captures b adjacent nodes
from the centre of the network. By construction, no node in the “left-hand
half” of the network shares a key with any node in the “right-hand half”,
as shown below.

— no shared keys —

Thus we see that a KPS can be at most r-fallible, and that for this to be
the case the KPS must assign shared keys to pairs of nodes at distance r.
There do exist r-fallible schemes: one example is the local pairwise KPS1.
This scheme requires each node to store 2r keys. However, we will show
in Sect. 6 that r-fallibility can in fact be achieved using storage that is
independent of both r and n.

6 An Ultra-Lightweight KPS Providing Optimal

s-Fallibility

By an extension of the proof of Theorem 2, we can see that for a KPS to
achieve r-fallibility, it is necessary for each pair of nodes at distance r to
share a key (except perhaps for a constant (with respect to n) number of
pairs at either end of the network). However, this alone does not provide
r-fallibility, since this distribution results in a network consisting of r
isolated sets of (n/r) nodes (as was the case in Example 2 for r = 2). In
order to achieve r-fallibility, it is necessary to introduce more keys into
the network. The following construction leads to the surprising result that
it is possible to obtain r-fallibility when each node stores only four keys.

Construction 1 Assign keys to the nodes of a one-dimensional network
such that each node shares unique pairwise keys with each of the nodes at
distance r and 1.

1 The addition of extra pairwise shared keys to a KPS will evidently not decrease
its s-fallibility, and may even increase it. As the local pairwise scheme ensures that
every pair of nodes within communication range shares a key, you would thus expect
its s-fallibility to be as high, or higher, than that of any other scheme. The fact that
it is indeed r-fallible is a direct consequence of our proof of Theorem 3.



Example 3. If Construction 1 is applied to a one-dimensional network
with twenty nodes for which r = 3, then the nodes share keys as illustrated
by the following diagram.

Theorem 3. The KPS of Construction 1 is r-fallible.

Proof. Let the nodes of the network be labeled sequentially by the integers
0, 1, . . . , n−1. Suppose an adversary captures r−1 nodes from the network
and extracts the keys they contain.

Let Ψ1 and Ψ2 be two nodes that occur at distance at least r + 1 from
any captured node; without loss of generality we suppose the label of Ψ1

is greater than that of Ψ2. None of their keys are known to the adversary.
As the number of captured nodes is r − 1, there must be some integer
x with 0 ≤ x ≤ r − 1 such that no node with a label equivalent to x
(mod r) has been captured.

Then a secure path from Ψ1 to Ψ2 can be found as follows:

1. Take hops of length one from Ψ1 towards Ψ2 until a node whose label
is equivalent to x (mod r) is reached. This requires at most r−1 hops,
hence each of these hops is secure by the assumption that no captured
node lies within distance r + 1 of Ψ1.

2. Take hops of length r towards Ψ2 until a node at distance less than r
from Ψ2 is reached. As the keys required for these hops all belong to
nodes whose label is equivalent to x (mod r), none of them is known
to the adversary.

3. Finally, complete the path by hops of length one until Ψ2 is reached.
The fact that no captured node lies within distance r+1 of Ψ2 implies
these are also secure.

The number of nodes within distance r + 1 of a captured node is at most
2(r + 1)(r − 1); this does not depend on n. Hence we have shown that
no matter which r − 1 nodes are compromised, it is possible to exclude
a constant (with respect to n) number of nodes such that the remaining
nodes form a connected network, and thus the s-fallibility of this scheme
is at least r. Together with Theorem 1, this shows that this KPS is in
fact r-fallible.

6.1 Lightweight Key Predistribution for Ring Topologies

The scheme of Construction 1 can also be applied directly to one-dimensional
networks where the sensors are arranged in a ring. For instance, for a



network of twenty nodes with r = 3, the pattern of key sharing can be
depicted as follows:

The behaviour of a ring network with respect to s-fallibility is slightly
different to a linear network. An adversary has to “cut” the network
twice in order to disconnect it; the first cut essentially turns it from a
ring network to a linear network. It is debatable as to what is the most
useful definition of fallibility in this scenario, since for a large ring making
even a single “cut” greatly increases the average number of hops required
for two nodes to communicate. In any case, the proof of Theorem 3 can
be adapted for the case of a ring network, hence we can argue that the
security of the KPS of Construction 1 is at least as strong when it is
applied to a ring network as when it is used in a linear network. Hence this
scheme is also suitable for networks designed for perimeter surveillance
and other such application.

7 Conclusion

We have seen that the topology of a one-dimensional network affects
its potential connectivity, due to the restricted number of neighbours
posessed by each node. This leads to the unexpected result that the KPS
given in Construction 1 performs as well as the local pairwise KPS in
terms of both connectivity and resilience, despite requiring each node to
store only four keys. To summarise, the advantages of this scheme include
the following:

– optimal resilience;
– optimal s-fallibility;
– very low storage.

In short, this scheme is thus ideal for use in WSNs for monitoring linear
infrastructure, no matter how constrained the memories of the nodes.
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