
An information flow verifier for small embedded
systems?

Dorina Ghindici, Gilles Grimaud, Isabelle Simplot-Ryl

L.I.F.L. CNRS UMR 8022
Université de Lille I, Cité Scientifique

F-59655 Villeneuve d’Ascq Cedex, France
{ghindici,grimaud,ryl}@lifl.fr

Abstract. Insecurity arising from illegal information flow represents a
real threat in small computing environments allowing code sharing, dy-
namic class loading and overloading. We introduce a verifier able to cer-
tify at loading time Java applications already typed with signatures de-
scribing possible information flows. The verifier is implemented as a class
loader and can be used on any Java Virtual Machine. The experimental
results provided here support our approach and show that the verifier can
be successfully embedded. As far as we know, this is the first information
flow analysis adapted to open embedded systems.

Keywords: information flow, type checking, confidentiality, class loading.

1 Introduction

As the use of Java-enabled embedded systems such as smart cards, mobile phones
and PDAs is growing, they are being associated with security since they provide
a partial solution to the need for personal identification and non-repudiation.
These devices evolve towards an open, multi-applicative environment supporting
dynamic class loading and unloading.

Confidential data manipulated by such systems must be protected and acces-
sible only by authorized users or programs. In a small open embedded system,
where application may share code (e.g Api) or collaborate to offer better ser-
vices, insecurity may stem from the code itself or from the code shared with
some malicious untrusted software.

In order to enforce security, the Java Virtual Machine (Jvm) [17] and the Java
Runtime Environment provide different mechanisms. For example, the bytecode
verifier [16] uses static analysis to ensure that applications comply with the Java
type system rules even for small systems [8, 19], while the sandbox model is
a dynamic mechanism, which enforces security by isolating applications. Java
access modifiers (e.g. public, private, protected) express data accessibility for
the Java language. Existing Java mechanisms control information access, and so

? Funded by the Mosäıques project, CPER TAC 2005-2008 & FEDER



they are not adequate in addressing data propagation. Ad-hoc mechanisms, like
information flow verification, must be added to guarantee safe data propagation.

Despite the considerable amount of work on information flow achieved in the
past decades, the information flow based enforcement mechanisms have not been
widely used and applied in practice [26]. A survey on language-based security
and information flow is presented in [20]. Most of the contributions in this area
are based on static analysis [2, 7, 10, 18, 25] and on the type-based approach [3,
13, 22], where a type system is used to check secure information flow.

Low-level languages are taken into consideration only in few papers [3, 15],
while the Java language is rarely specified. In [4], only a small subset of the Java
language is taken into consideration, while in [9], a compositional information
flow analysis was implemented for mono-threaded Java bytecode. In [2], authors
propose a static analysis similar to standard type verification used for Java
bytecode. JavaCard features are considered in [5] and [11]. JFlow [18] is a
powerfull tool, implemented as an extension of the Java language and structured
as a source-to-source translator. It adds reliability to software implementation,
but not to deployment and linking on a platform. The Pacap framework [5]
involves a technique to verify interactions for Java enabled smart-cards, but the
verification relies on the call graph, so it cannot be trusted in a Java/javacard
open environment.

Unfortunately, the previous models focus on correctly checking information
flow statically and do not address the challenge raised by an open computing
environment.

In this paper, we propose an efficient model for detecting illegal information
flows. Our model was successfully applied on small, open, Java-enabled systems.
Our goal is to enforce data confidentiality for standard Java mobile code. In
order to address the challenge raised by an open system, we enforce security
properties at load time by performing a static analysis. Our implementation [23]
works directly on Java bytecode and includes support for dynamic class loading
and overloading.

The rest of the paper is structured as follows: Section 2 introduces some
aspects of information flow and our approach. In Section 3 we present how we
enforce confidentiality at load time on an embedded system. Section 4 describes
how the information flow verifier can be integrated within a dedicated class
loader in the KVM, but also how it can be used on any Jvm (e.g. JavaCard
3.0) as a user-defined class loader. Section 5 presents experimental results, while
Section 6 summarizes our contributions.

2 Information flow analysis

2.1 General aspects

Information flow stands for data propagation in a program. There are informa-
tion flows arising from assignments (direct flows), from the control structure of
a program (implicit flow), etc. For example, the code p=s generates a direct flow

2



from s to p, while if(s) then p=1 else p=0 generates an implicit flow. If s
contains a secret, confidential value, and p a public, observable value, then the
two examples are insecure and generate an illicit information flow, as confiden-
tial data can be induced by the reader of p. In literature, confidentiality is often
seen as a non-interference [7, 25] problem, as public outputs cannot depend on
secret inputs. More exactly, for any initial value of an input secret variable, the
values of public outputs do not change.

We target open (embedded) systems, allowing dynamic class loading, over-
loading and all the Java features, and supporting multi-applications sharing
code. In this context, the insecurity for a class A may arise from the fact that
A invokes an untrusted method B.m and it passes as argument a secret value.
The system cannot guarantee that B does not make available the secret data.
As our system must fit the Java dynamic class loading paradigm, we cannot
use traditional approaches verifying the non-interference on the call-graph of a
single application. In order to deal with openness, we perform a compositional
analysis, computing for each method a stand-alone signature. The signature of a
method is independent of the context under which the method is called. It con-
tains the flows, potentially generated by the execution of the method, between
elements that survive method execution: the method parameters, the method
return value, an abstract value for the static world, one for exceptions, one for
input/output channels. One ”type” is associated with every element reflecting
the flows generated by the method between this element and the others. Based
on the knowledge of the flows, an application can check its own security policy.
Thus, direct flows inside methods will be detected by traditional analysis while
flows generated by interactions between methods will be detected by composition
of the methods signatures. (Implicit flow inside methods is a natural extension
of our approach, as the low complexity of the existing algorithms is promising
for an embedded verification.)

2.2 Algorithm

We propose a model in which, as in classical information flow, each field is
annotated by a security level, secret or public: a secret field should not be made
accessible through information flow to unauthorized parties. Tracing all the fields
of an object is expensive in time and memory and is not always possible when the
calling context is not available. Moreover, imposing some kind of ”subtyping” of
signatures constrains the use of overloading. So, we split each object in only two
parts, a secret part and a public part. The secret part of an object o, denoted
by os, stands for all access paths starting from o which contain at least one
field having the security level secret, while the public part, denoted by op is the
complementary. Experimental results showed that our simplifying assumptions
are reasonable in practice.

Considering our split of objects and the dichotomy of Java types (elementary
types and object types), the links between two elements a and b have the form

a℘(p,s) v/r−→ b℘(p,s), where v denotes a value link, r a reference/alias link, s and p

3



the secret or public part, while ℘(p, s) denotes subsets of {p, s}. As a reference
link includes the value link between the same elements, and as the public or
secret part are included in the entire element, we can define an order relation
between flows. Using this partial order relation, we obtain a lattice of links
that contains 80 possible flows between two elements. The bottom of the lattice
is represented by an empty set, meaning that there is no flow of information
between a and b, while the top of the lattice is represented by {ap,s r→ bp,s},
meaning that there is a reference link (alias) between the secret and public part
of a and the secret and public part of b. More details on the type system and
the lattice of links can be found in Appendix A.

Let’s consider a class C having a secret field s, a public field p and a method
m. Fig. 1 presents the signature of m at each point of the program, considering
that the external method foo contains a value link from the return of the method,
denoted by R, to the first parameter of the method (R v→ p1).

void m(int x, A a) {
1 iload 1

2 if(x>0) ifle 6

3 aload 0

4 iload 1

5 this.s = x; putfield C.s Sm = {thiss v→ x}
6 aload 0

7 aload 2

8 iload 1

9 invokevirtual A.foo

10 this.p = a.foo(x); putfield C.p Sm = {thiss v→ x, thisp v→ x}
11 } return with Se

foo = {R v→ p1}

Fig. 1. Example

In order to ensures threads-safety, the abstraction for static elements has the
default security level public, as all the secret data linked to static attributes and
susceptible to be accessed through different threads are considered leaky

To compute methods signatures, we perform for each method an intra-method
static abstract interpretation relying on a classical operational semantics com-
posed of a set of transformation rules. The abstract values are represented by
elements composing the signature of the method, and some other internal val-
ues needed to correctly analyze the method. The analysis does not rely on the
call graph: the interpretation of an invoke bytecode consists of applying the
signature of the called method to the signature of the calling method.

Each instruction has associated an abstract state representing the state be-
fore executing the instruction. The state contains the local operand stack, the
local variables, and the current signature of the method at an execution point.
This state contains the union of all possible states under which the associated
bytecode can be executed. The control flow structure of the Java bytecode dic-

4



tates an iteration on the set of instructions for each method. At each iteration,
the current bytecode is abstractly interpreted and the resulting state is merged
with the state already associated with its successors. For invokevirtual byte-
codes, when the exact type of the called object cannot be statically determined,
we take into consideration a global signature which is the union of all possible
signatures for the desired method implemented in the class hierarchy derived
from the static type of the object. Since the number of abstract values is finite
and we perform merge operations, a fixed point is reached.

The existence of recursive and inter-depended methods dictates an incremen-
tal inter-method analysis, starting with the set of empty signatures and iterating
on a set of classes until a fixed-point has been reached. This allows us to obtain
more precise results.

Noninterference is too restrictive for common applications such as crypto-
graphic functions, where outputs often depend on secret outputs. However, one
should not be able to derive the secret from the output. To handle this and
other intentional release of secret data, the proposed systems allows to manually
annotate trusted methods with the desired signature. A more precise approach
would be to include a mechanism for declassification [21, 12] in order to specify
what information can be released and where.

3 Information flow verifier

In the previous section, we presented a compositional information flow analysis
complying with the Java dynamic class loading paradigm. But experimental
results, as depicted in Fig. 4, show that at least 3 iterations must be performed
on the set classes and an average of 1.5 iterations on the set of bytecodes for
each method. Therefore, the analysis is already expensive for a normal system
and impracticable for a device having limited resources.

In the context of small objects, a technique known as ”Lightweight bytecode
verification” (LBV) [19] has been developed for Java bytecode type verification.
This technique, closely related to proof-carrying code [6], lies on the simple idea
that it is easier to verify a result already computed. A small device can verify
code received from an untrusted source without relying on a third party even if
it has not enough power to compute the proof itself. It is based on two phases: an
external phase which computes the type correctness and annotates the bytecode
with some proof elements, and an embedded phase, which verifies, at loading
time, the annotations obtained during the external phase. The verification op-
eration is linear in code size and uses constant memory. The off-board analysis
and the proof can be computed by any device or tool, as the small device can
verify the code it receives without relying on the external device. LBV relies on
the lattice structure of types and on unification operations on this lattice. The
lattice of links allows us to use this technique in our context. While LBV checks
explicit Java types, our algorithm has to infer information flow links. We have
to deal with type inference and with signature management.

5



3.1 Signature computation

The verification process is performed while loading a Java class. In order to ease
verification, we ship with each class C some proof: the state of the Jvm for
each target instruction in each method, the signatures of methods invoked in C,
the security levels of fields used in C. The proof elements are defined as new
attributes of the class file structure, so the annotated classes can be loaded by
any Jvm, even by those not enforcing information flow security properties.

Due to limited resources of embedded systems, the size of proof elements must
be as small as possible. As the lattice of links contains 80 possible flows, we chose
a binary and compact solution on 1 byte to encode the links. This solution allows
simple manipulation operations. For example, adding a new link to a signature
requires only a binary logical operation. Moreover, the signatures within the
states of the Jvm for each target instruction are encoded incrementally: the first
signature is encoded, while the subsequent signature is defined by the the flows
added or deleted in the previous signature. Experimental results showed that
signatures have few changes from one label to another.

The verification consists in a sequential interpretation of bytecodes of each
method of the class. When a target bytecode is found, the current state of the
Jvm must be compatible with the proof corresponding to the target bytecode:
if the compatibility is not tested, the class is rejected; otherwise the verification
is carried on using the proof as the current state of the Jvm. Given two states A
and B of the verification process, A is compatible with B if the stack and local
variables are compatible (state B contains at least all the elements in A) and the
two signatures, SA and SB , are compatible. The stack comparison is possible, as
we assume that the bytecode was already checked by the Jvm verifier and thus
it is well typed. A signature SA is compatible with SB if SA contains at least all
the links present in SB , according to the lattice of method signatures, which is
a natural extension of the lattice of links defined previously.

Dead code is ignored by the external analysis and thus not annotated. In
order to deal with this situation, when a label bytecode without any proof an-
notation is found, we can assume it is the beginning of a block which is never
executed. In this case, all the bytecodes following the label are ignored, until
we meet a label with a proof. If the label without a proof is not the start of
a dead block, then the class is rejected when the compatibility of predecessors
instructions with the proof of the label is tested.

The embedded verification has the advantage that each instruction is inter-
preted only once and so it is linear in time with the code size. Moreover, the
proof is used only during the verification and not stored in the system. Only the
final signature of each method is kept on board. Another advantage is that each
class is verified only once, even the code shared by many applications, as the
signatures are kept on board in a dictionary. If the type inference of method sig-
nature fails, the class is rejected. If the type inference succeeds, we must ensure
that the signatures used during validation fit within the system.

The analysis guarantees noninterference for loaded classes. All the possible
flows from secret to public data are detected and present in the signatures.

6



But, due to our simplifying assumptions, we might detect false flows. Practical
experiments showed that this situation does not occur very often.

3.2 Signature management

Classes are loaded one by one. Once a class is loaded, the validated signatures
are kept in a dictionary. In order to validate a class C at loading time, we load
with C the signatures of all methods invoked in C (called ”external methods”).

When we load the class C from the example in Fig. 1, we will also load the
signature Se

foo of the method foo in the class A. If the class A has already been
loaded, the external signature Se

foo will be ignored and the signature of foo from
the dictionary will be used while verifying C. If the class A has not been yet
loaded, Se

foo will be used while analysing C. If C is accepted, the signature Se
foo

will be kept on board into a temporary dictionary until the class A is loaded.
Let’s assume that A is loaded later and the method foo has the signature

Sfoo. A will be accepted only if the signature Sfoo is compatible with Se
foo.

The external signature Se
foo should contain at least all the links from the loaded

signature Sfoo, otherwise the previous verification of C is not correct. If the
external signature contains fewer links than the loaded one, it is acceptable,
as long as we do not miss any information leakage. If the class A is certified
and loaded on the system, Se

foo and all the external signatures for A previously
loaded are erased from the temporary dictionary.

There are different possible scenarios. We now consider the following:

load class C

external method A.foo with S′
foo = {R v→ p1}

store S′
foo in the temporary dictionary

load class D

external method A.foo with S′′
foo = {R v→ p1, thiss v→ p1}

store infimum(S′
foo,S

′′
foo)={R

v→ p1} in the temporary dictionary

load class A

A.foo with signature Sfoo

We load two classes C and D, and each one claims a different external sig-
nature for A.foo. As to validate the class C we use S′

foo, and to validate D we
use S′′

foo, the real signature Sfoo should be compatible with S′
foo and S′′

foo. All
the flows in Sfoo should be in S′

foo and S′′
foo, which means that Sfoo should be

compatible with infimum of S′
foo and S′′

foo according to the lattice of method
signatures. So when we have different external signatures for the same method,
we keep the infimum in the temporary dictionary.

The correctness of a signature depends also on the security levels of used
fields. To have access to security levels of external fields of a class, we use a
procedure similar to the one used to load the external methods. Two fields are
compatible if they have the same security level. We also check the compatibility
of loaded signatures with the global signatures belonging to extended classes.

7



4 The verifier as a user-defined class loader

The loading process in a Jvm is performed by the class loaders. The standard
Jvm deals with multiple class loaders, hierarchically organized, and supports
user-defined class loaders. The KVM virtual machine [24] does not support
user-defined class loaders and has a single built-in class loader that cannot be
overridden or replaced by the user.

We built a verifier that can be run on any Jvm. It can be built in the single
class loader of KVM or installed as a user-defined class loader for a standard Jvm.
The embedded Jvm [1, 14, 24] are evolving towards the standard Java language,
and therefore towards a multiple class loader hierarchy. The recently presented
JavaCard 3.0 does the same. We describe now how the verifier can be used as
a plug-in within a standard Jvm to validate annotated bytecode.

Scl2 loads class C
external method Scl2.A.foo with signature S2

foo

Scl1 loads class D
external method Scl1.A.foo with signature S1

foo

Scl1 loads class A
Scl1.A.foo with signature Sfoo

SCL : Scl2 SCL : Scl3

SCL : Scl1

Fig. 2. Loading example in a SafeClassLoader hierarchy

Applications implement subclasses of ClassLoader in order to extend the
manner in which the Jvm dynamically loads classes. Class loaders may typically
be used to check security properties. The verifier was implemented as a subclass
of the ClassLoader class provided by the Java Api, named SafeClassLoader.
Certifying the underlying information flow of an application requires the instan-
tiation of a SafeClassLoader with which the application should be loaded.

In the Jvm delegation model, class loaders are arranged hierarchically in a
tree, with the bootstrap class loader as the root of the tree. Each user-defined
class loader has a ”parent” class loader. When a load request is made by a user-
defined class loader, that class loader usually first delegates the parent class
loader, and only attempts to load the class itself if the delegate fails to do so.
A loaded class in a Jvm is identified by its fully qualified name and its defining
class loader. This is sometimes referred to as the runtime identity of the class.
Consequently, each class loader in the Jvm can be said to define its own name
space. In the same manner, each SafeClassLoader defines its own dictionary
containing the signatures of loaded methods.

Let’s consider a hierarchy containing three SafeClassLoaders, Scl2, Scl3
and their parent Scl1, and the scenario in Fig. 2. Class loader Scl2 requests to
load class C. At first, it delegates its parent class loader, Scl1, to load C. If the
delegation fails, Scl2 attempts to load the class by itself. While loading C, Scl2
tries to find the signature of A.foo: it first searches in its dictionary, and if the

8



search fails, it delegates the search to its parent, which repeats the procedure. If
the parent also fails to find the signature, external signature S2

foo is used while
validating C and stored in the temporary dictionary. Class loader Scl1 loads a
class D also containing an external signature for A.foo. The external signature
S1

foo is stored in the temporary dictionary and is associated with Scl1.
Finally, class loader Scl1 attempts to load class A. Let Sfoo be the verified

signature of foo. Class A will be loaded by Scl1 if and only if Sfoo is compatible
with the external signatures for foo in the current class loader (Scl1) and with
the external signatures in class loaders that can delegate Scl1. In our case, Sfoo

must be compatible with S1
foo and S2

foo. Otherwise, class A is rejected.

Bootstrap

System CL

SCL: A3

CL: B1

SCL: A1

SCL: A2

CL: B2

Fig. 3. Class Loader hierar-
chy example

In order to verify this kind of compatibil-
ity, external signatures must be accessible to all
class loaders. This is why we implemented an
unique temporary dictionary which is used by
all class loaders. The example showed how the
SafeClassLoader extends the delegate model to
the look up of a signature of a method. The same
search process is extended to the look up of the
security level of a field.

We presented so far the case where all the
class loaders in the hierarchy have the type
SafeClassLoader. Actually, the hierarchy con-
tains different types of class loaders. As shown
in Fig. 3, the bootstrap class loader loads the
classes from the Jvm, as well as extensions to
the JDK. The system class loader loads all the
classes provided by the classpath. In the end, we
have several additional class loaders, where SCL defines a SafeClassLoader
and CL any other type of class loader.

As a consequence, we must take into consideration the validation of classes
loaded by any class loader. Let’s consider that A1 loads a class C that invokes
a method of another class D already loaded by the parent B1. As B1 is not a
SafeClassLoader, the classes it has loaded have not been validated at load-
ing time. To ensure security for C, SafeClassLoader A1 will try to retrieve,
using the getResourceAsStream method, the .class files of the classes loaded
by its parent and to verify the announced signatures. If the streams cannot be
found, or they do not contain information flow attributes, or the signatures are
not compatible with the announced ones, A1 rejects class C. Otherwise, the sig-
natures of classes belonging to a non-SafeClassLoader are stored in a special
dictionary, named ”system dictionary”. The look up for a signature in a class
loader is performed in its dictionary, if the class loader is a SafeClassLoader,
and otherwise in the system dictionary.

In order to support any JVM, we do not interfere while the Bootstrap and
System class loaders load the JVM and classpath classes, and thus we consider
their signatures as part of our trust computing base.

9



5 Experimental results

Off board analysis On board verification

Benchmark C
la

ss
es

M
et

h
o
d
s

C
la

ss
it

er
a
ti

o
n
s

B
y
te

co
d
e

it
er

a
ti

o
n
s

A
n
a
ly

si
s

ti
m

e
(s

)

A
v
er

a
g
e

m
em

o
ry

(K
b
)

M
a
x
im

u
m

m
em

o
ry

(K
b
)

E
x
ec

u
ti

o
n

ti
m

e
C

L
(m

s)

E
x
ec

u
ti

o
n

ti
m

e
S
C

L
(m

s)

V
er

ifi
ca

ti
o
n

ti
m

e
S
C

L
(m

s)

A
v
er

a
g
e

m
em

o
ry

(K
b
)

M
a
x
im

u
m

m
em

o
ry

(K
b
)

Dhrystone 5 21 3 1.35 3.1 2.66 35.80 111 373 310 0.36 2.05
fft 2 20 3 1.55 3.2 1.50 7.86 63 175 161 0.39 1.80
201 compress 12 43 3 1.84 4.4 2.02 20.68 321 522 251 0.37 2.31
200 check 17 109 4 1.18 8.7 3.87 34.45 129 883 794 0.58 3.51

crypt 2 18 3 1.32 4.1 2.91 20.58 46 268 222 0.56 3.68
lufact 2 20 3 1.75 3.4 3.90 23.22 537 876 303 0.45 1.25
raytracer 12 72 5 1.53 4.6 1.30 25.10 80 440 422 0.39 1.80
Pacap 15 92 4 1.05 4.7 3.00 92.68 30 281 275 0.38 3.19

Fig. 4. Off board analysis and on board verification measurements

Benchmark In
it

ia
l
.c

la
ss

si
ze

(K
b
)

. A
n
n
o
ta

te
d

.c
la

ss
(K

b
)

. S
ig

n
a
tu

re
s

(%
)

. L
a
b
el

s
p
ro

o
f
(%

)

. E
x
te

rn
a
l

m
et

h
o
d
s

(%
)

. E
x
te

rn
a
l

fi
el

d
s

(%
)

.

Dhrystone 8.2 11.9 3.17 23.07 2.42 0.20
fft 6.8 11.3 4.53 48.47 5.17 0
201 compress 20.1 28.3 3.79 23.36 4.21 0.33
200 check 46.3 80.3 4.62 57.25 3.82 0.05

crypt 7.0 12.3 6.04 58.34 4.66 0.19
lufact 9.3 14.3 3.37 43.00 2.06 0.40
raytracer 24.0 33.4 1.41 16.62 5.51 0.63
Pacap 26.8 36.9 5.71 18.37 3.46 0.38

Fig. 5. Size of annotations

This section describes the re-
sults of experiments run on some
significant benchmarks such as
Dhrystone, a well known bench-
mark for embedded systems, The
Fast Fourier Transform (FFT),
a common signal processing ap-
plication, crypt (a data encryp-
tion algorithm) and Pacap [5],
an electronic purse case study
for information flow checking (for
which we detected the same il-
licit flows as in literature). We
ran the experiments using a Java
Runtime Environment, Standard
Edition (build 1.5.0 09), on a
Linux system running on a In-
tel(R) Pentium(R) M processor
2.13GHz with 1Gb memory.

First, we ran the external application computing the information flow signa-
tures and annotating the classes (Fig. 4, Off board analysis) in order to find out
how the algorithm performs in practice. We measured the number of iterations
for the inter-method analysis (iterations on a set of classes), the iterations for
the intra-method analysis (iteration on each meathod’s instructions set) and the
time needed to perform the analysis. The results showed that the computation

10



algorithm is quite expensive in terms of time complexity: in average, we need
3 iterations on the set of classes, 1.5 iterations on the instruction set and 4.5s
for each application. For the Jvm spec benchmarks, we performed the library
analysis before carrying out the experiments.

Secondly, we loaded the annotated applications generated by the off board
analysis (Fig. 4, On board analysis). In order to find out how the Jvm loading
process is hampered by our verification, we measured the execution time in two
cases: with (SCL) and without (CL) information flow verification. We observed
that the verification implies an average execution time 3 times as large as the
standard one. But the information flow verification is performed only once, at
loading time, so any subsequent running of the applications is not hindered.
Moreover, the average verification time (342.25ms) is more than 10 times smaller
than the average analysis time (4.25s). As expected, the verifier performs much
faster than the computation algorithm.

Lastly, we measured the size of the proof and the signatures loaded with
the code (Fig. 5). The proof, the external methods and external fields represent
39.73% of the total size of initial .class files. This data is used only during the
verification process, at loading time, and it is not stored on the device, so its
size does not have a significant impact on the embedded system. The signatures,
which are stored in the dictionary and kept in the system, make up only 4.01%
of the initial .class size, an acceptable overhead.

6 Conclusion

Confidentiality represents a real concern in embedded systems manipulating sen-
sitive data. Practical information flow models are almost non-existent, despite
the quality of the underlying theory. As the algorithm for detecting illegal infor-
mation flows in an application has a high complexity, we propose a lightweight
verification for embedded systems. The information flow is certified at load-
ing time, using some proof elements previously computed and shipped with the
code. The information flow verification is performed in linear time and uses al-
most constant memory. Experimental results conducted for the external analysis
and for the embedded verification support our approach. The time penalty and
the memory consumption introduced by the verifier are acceptable. We think
that we can cut by at least 50 percents the size of the elements embedded within
the code by modifying the encoding of proof and signatures.

References

1. Aonix Inc. Perc products.
2. Avvenuti, M., Bernardeschi, C., and Francesco, N. D. Java bytecode veri-

fication for secure information flow. SIGPLAN Not. 38, 12 (2003), 20–27.
3. Barthe, G., Basu, A., and Rezk, T. Security types preserving compilation:

(extended abstract). In Verification, Model Checking, and Abstract Interpretation,
5th International Conference, VMCAI 2004 (2004), vol. 2937 of Lecture Notes in
Computer Science, Springer, pp. 2–15.

11



4. Barthe, G., D’Argenio, P., and Rezk, T. Secure Information Flow by Self-
Composition. In Computer Security Fundation Workshop (CSFW’17) (2004),
IEEE Press, pp. 100–114.

5. Bieber, P., Cazin, J., Girard, P., Lanet, J.-L., Wiels, V., and Zanon, G.
Checking secure interactions of smart card applets: extended version. J. Comput.
Secur. 10, 4 (2002), 369–398.

6. Colby, C., Lee, P., Necula, G. C., Blau, F., Plesko, M., and Cline, K. A
certifying compiler for java. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000
conference on Programming language design and implementation (New York, NY,
USA, 2000), ACM Press, pp. 95–107.

7. Denning, D. E., and Denning, P. J. Certification of programs for secure infor-
mation flow. Commun. ACM 20, 7 (1977), 504–513.

8. Deville, D., and Grimaud, G. Building an ‘impossible” verifier on a Java card.
In Proc. 2nd USENIX Workshop on Industrial Experiences with Systems Software
(WIESS’02) (Boston, USA, 2002).

9. Genaim, S., and Spoto, F. Information Flow Analysis for Java Bytecode. In
Proc. of the Sixth International Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI’05) (Paris, France, January 2005), R. Cousot,
Ed., vol. 3385 of LNCS, Springer-Verlag, pp. 346–362.

10. Ghindici, D., Grimaud, G., and Simplot-Ryl, I. Embedding verifiable infor-
mation flow analysis. In Proc. Annual Conference on Privacy, Security and Trust
(Toronto, Canada, 2006), pp. 343–352.

11. Hansen, R. R., and Probst, C. W. Non-interference and erasure policies for
java card bytecode. In 6th International Workshop on Issues in the Theory of
Security (WITS ’06) (2006).

12. Hicks, B., King, D., and McDaniel, P. Declassification with cryptographic
functions in a security-typed language. Tech. Rep. NAS-TR-0004-2005, Network
and Security Research Center, Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA, USA, May 2005.

13. Hunt, S., and Sands, D. On flow-sensitive security types. In Proceedings of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2006 (2006), ACM, pp. 79–90.

14. Java In The Small. http://www.lifl.fr/POPS/JITS/.
15. Kobayashi, N., and Shirane, K. Type-based information flow analysis for low-

level languages. Computer Software 20(2) (2003), 2–21.
16. Leroy, X. Java bytecode verification: Algorithms and formalizations. J. Autom.

Reason. 30, 3-4 (2003), 235–269.
17. Lindholm, T., and Yellin, F. Java Virtual Machine Specification. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.
18. Myers, A. C. Jflow: practical mostly-static information flow control. In POPL

’99: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages (1999), ACM Press, pp. 228–241.

19. Rose, E., and Rose, K. H. Lightweight bytecode verification. In Workshop
“Formal Underpinnings of the Java Paradigm”, OOPSLA’98 (1998).

20. Sabelfeld, A., and Myers, A. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1), 2003. 21, 1 (january 2003).

21. Sabelfeld, A., and Sands, D. Dimensions and principles of declassification. In
CSFW ’05: Proceedings of the 18th IEEE Computer Security Foundations Work-
shop (CSFW’05) (Washington, DC, USA, 2005), IEEE Computer Society, pp. 255–
269.

12



22. Smith, G., and Volpano, D. Secure information flow in a multi-threaded imper-
ative language. In POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (1998), pp. 355–364.

23. STAN - STatic Alias aNalyser. http://www.lifl.fr/˜ghindici/STAN/.
24. Sun Microsystem. Connected Limited Device Configuration and K Virtual Ma-

chine, http://java.sun.com/products/cldc/.
25. Volpano, D., Irvine, C., and Smith, G. A sound type system for secure flow

analysis. J. Comput. Secur. 4, 2-3 (1996), 167–187.
26. Zdancewic, S. Challenges for information-flow security. PLID’04 The First In-

ternational Workshop on Programming Language Interference and Dependence,
August 25 2004, Verona, Italy, August 2004.

A The type system

For each element a from the set of abstract values we define the flow relation as
a tuple composed of four elements: the security level of a (in ℘(p, s)), the type
of flow (v or r for value or reference), the element to which a points to and its
security level. The type associated with a is the union of all possible flows from
a to b. For example, a value link from the publicpart of a to the secret part of b
corresponds to the type (p, v, b, s). For convenience, we will denote this flow by
ap v→ bs.

If both public and secret parts of an element can be accessed, the whole
element can be accessed. Thus, a link to the entire element (bp,s) is greater than
the same link to only one part of the element(bs, bp). Moreover, having access to
a reference means having access to all its values. Thus, the value link is included
in the reference link. Using this partial order relations, we obtain a lattice of
links (Fugure 6) having union as upper bound computation and inclusion as
order relation.

ap,s r→ bp,s

ap,s r→ bs ap r→ bp,s

as r→ bs ap,s v→ bs ap r→ bs ap v→ bp,s ap r→ bp

as v→ bs ap v→ bs ap v→ bp

�� ��

��� ���

��

HH HH

HHH HHH

HH

Fig. 6. Extract of the lattice of links

13


