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Abstract. For security applications in wireless sensor networks (WSNs),
choosing best algorithms in terms of energy-efficiency and of small-storage
requirements is a real challenge because the sensor networks must be
autonomous. In [22], the authors have benchmarked on a dedicated plat-
form some block-ciphers using several modes of operations and have de-
duced the best block cipher to use in the context of WSNs.
This article proposes to study on a dedicated platform of sensors some
stream ciphers. First, we sum-up the security provided by the chosen
stream ciphers (especially the ones dedicated to software uses recently
proposed in the European Project Ecrypt, workpackage eStream [27])
and presents some implementation tests performed on the platform [16].
Keywords: stream ciphers, sensors, benchmarks.

Introduction

Sensor networks are made by the tremendous advances and convergence of micro-
electro-mechanical systems (MEMS), wireless communication technologies and
digital electronics. Sensor networks are composed of a large number of tiny de-
vices or sensors which monitor their surrounding area to measure environmental
information, to detect movements, vibrations, etc. Wireless sensor networks can
be really useful in many civil and military areas for collecting, processing and
monitoring environmental data. A sensor node contains an integrated sensor,
a microprocessor, some memories, a transmitter and an energy battery. Sensor
nodes communicate through a radio device in order to manage the network and
to gather the produced data to a specific node called the sink node. Despite the
relative simplicity of its basic components, sensor networking offers a great diver-
sity: various hardwares (MicaZ, Telos, SkyMote, AVR or TI micro-controllers),
various radio and physical layers (868MHz and 2,4GHz) using different types
of modulations, various OS (TinyOS, Contiki, FreeRTOS, JITS), various con-
straints (real-time, energy, memory or processing), various applications (military
or civil uses).



In such a context, a specific care must be invested in the design of the ap-
plications, communication protocols, operating systems and of course security
protocols that will be used. Lots of protocols have been proposed to enforce
the security offered by sensor networks. In despite of the increasing request in
this new area of research, few articles presented real results of implementations
or benchmarks concerning the security primitives which can be used in sensor
networks. In [22], the authors present such results concerning theoretical aspects
and benchmarks for the most famous block ciphers (including AES, MISTY1,
Skipjack,...). Even if block ciphers have lots advantages compared with stream
ciphers (they could be used for the both secure modes required for the sensor
networks: the pairwise secure links and the secure group communications), the
stream ciphers are usually used when wireless communications are required (as
done in the WEP for example) because they could reach important flows for lim-
ited costs and the use of the “one time pad” encryption do not propagate errors
induced by the communication channel. This cipher method combines using a
modular addition (for example the XOR) the plaintext with a random key or
“pad” used only once and having the same length than the plaintext. The pad
also called pseudo-random sequence is produced using a pseudo-random genera-
tor or a synchronous stream cipher and is generated from the secret shared key
K and an initial value IV , that must be different for each encryption. So, in the
context of sensor networks, stream ciphers could be useful for pairwise secure
associations.

This article then proposes to theoretically sum-up the security provided by
some stream ciphers dedicated to software uses (especially the ones recently pro-
posed in the European Project Ecrypt, workpackage eStream [27]) and presents
some implementation tests performed on a dedicated platform of sensors [16].

This paper is organized as follows: Section 1 presents several stream ciphers
and evaluates their current security based on the most recent results. Section 2
presents the dedicated platform and describes the methodology used to perform
our benchmarks. Section 3 provides our results and our analysis concerning the
benchmarking whereas Section 4 concludes this paper.

1 The studied stream ciphers

We decided to study and to benchmark the stream ciphers dedicated to soft-
ware uses (Profile 1 of the eStream call for primitives) submitted to the eS-
tream call and belonging to the Focus Phase 2 (see the website of the eS-
tream project http://www.ecrypt.eu.org/stream/phase2list.html for more
details of their choice). This project is ongoing so the security evaluation of the
proposed stream ciphers is always in hand. Even if the security study concern-
ing these primitives is not finished, it seems interesting for us to study their
performances on a dedicated architecture with strong constraints due to their
high efficiency and their high reliability in wireless context. Moreover, in most of
cases, the code size required for stream ciphers is smaller than the one required
for block ciphers.



We have added to those ciphers three other pseudo-random generators due
to their fame and their great use: RC4 (always used in WPA and in https),
SNOW v2 [12] (the updated version of the NESSIE call for primitives [26]) and
AES-CTR (the block cipher AES used in a particular mode, the CTR one) used
in WPA2. Moreover, the AES-CTR is in fact a modified block cipher and then
its performances correspond to those of a block cipher. We could then compare
the results obtained for it as a block cipher to those of stream ciphers.

All the stream ciphers presented in this section uses at least the following
parameters as suggested in the initial call of eStream: a secret shared key K of
at least 128 bits and an IV value of at least 64 bits, that must be absolutely
different at each new encryption.

In our security analysis, we claim that a stream cipher is secure until now if
no attack (with a complexity less than 2128 or respecting the recommendations
of the authors) has been exhibited against it until now.

RC4 RC4 was introduced in 1987 by R. Rivest [30] for the RSA laboratories.
RC4 is most commonly used to protect Internet traffic using the SSL (Secure
Sockets Layer) protocol. It is composed of an initialization phase that transforms
the secret shared key K of length between 40 and 1024 bits into an initial S
permutation from N = 2n into itself (typically n = 8). The stream sequence z(t)
is then produced by outputting particular values of the S permutation updated
at each clock.
Security In despite of many efforts provided by the cryptographers to try to break
RC4, very few attacks are known against it. The strangest remains the “Finney
property” (see [23] for more details). However, some statistical bias could be
exhibited (see [23]) that allow to construct distinguishing attacks against RC4.
An other attack proposed by S. Fulher, I. Mantin et A. Shamir [15] exploits the
bad re-synchronization of RC4 and could be applied in the WEP case (see [25]
and [24]).

RC4 stays a secure cipher for good initial choices: if the key scheduling algo-
rithm is strengthened by pre-processing the base key (of at least 128 bits) and
any counter or initialization vector by passing them through a hash function
such as MD5 or by discarding the first 256 output bytes of the pseudo-random
generator before beginning encryption (as described in [21]). Using those recom-
mendations, we say that RC4 is secure.

SNOWv2 SNOW is a stream cipher submitted by P. Ekdahl and T. Johans-
son to the NESSIE call for primitives [11]. Several attacks have been exhibited
against the first SNOW version ( [17] and [8]) and thus obliged the authors to
modify their initial submission. That has been done and a second version of
SNOW, SNOW v2, have been proposed [12]. In this version, the secret shared
key has a length of 128 or 256 bits whereas the use of an IV value of 128 bits
is optional. This stream cipher uses an LFSR of length 16 on GF (232) and a
non linear finite state machine called FSM. The first 32 bits output is generated
after 32 clocks.



Security The only attack describes against SNOW v2 has been proposed in [32]
and requires 2225 output words (2230 bits) and 2225 steps of analysis to distinguish
the output of SNOW 2.0 from a truly random bit sequence. This attack does
not really endanger the security of SNOW because it just allows to distinguish
the output sequence from a perfect random one and the required complexity is
not currently reachable. So, we say that SNOW v2 is secure.

AES-CTR The AES-CTR is not exactly a stream cipher (see for example [18]
for more details). In fact, it uses the AES block cipher (see [14] for further
details) in a particular mode of operation. The block cipher AES uses a key of
length 128, 192 or 256 bits and encrypts using a parallel structure blocks of size
128 bits. The CTR mode of operations consists in ciphering a counter value -
that must be used only one time for a given key as mentioned in the chapter 2
of [18] - with a particular key K and x-oring the ciphertext obtained with the
corresponding block of plaintext. The counter corresponding with a IV value is
then updated to cipher in “one-time pad” mode the next plaintext block.
Security The AES block cipher has been chosen in 2001 as the new block cipher
standard by the NIST after 4 years of study. So, we say that this block cipher
(used in all the known modes of operation) is secure. Moreover, the study of this
block cipher allows us to compare the performances of it as a block cipher with
the other stream ciphers.

DRAGON DRAGON [10] was submitted to the eStream call for primitives and
is one of the FOCUS Phase 2 stream ciphers [27]. It is left unchanged compared
to Phase 1, the initial phase of evaluation of the eStream project. Two versions
have been proposed: Dragon-256 that uses a secret master key of 256 bits, and a
publicly known initialization vector (IV), also of 256 bits; and Dragon-128 that
uses 128-bit key and IV. The two versions uses a non-linear feedback shift register
(NLFSR) of length 1024 bits and a nonlinear filter function from {0, 1}192 into
itself with a 64-bit memory component.
Security In [13], Englund and Maximov describe a distinguishing attack against
Dragon-256, under the assumption that the cryptanalyst can obtain an enormous
amount of keystream from a single key-IV pair. Both variants of the distinguish-
ing attack require 2155 words of keystream with an operational complexity of
2187 and uses 232 words of memory for the first variant and with a complexity
of 2155 in time and of 296 in memory for the second variant. However, those
attacks do not take into account the authors recommendations: “ To protect
against unknown future attacks, and against attacks that require large amounts
of keystream, [Dragon] should be rekeyed at least once for every 264 bits of
keystream generated”.

In [7], an other statistical bias has been exhibited (with a probability equal to
2−92.8). But to detect this bias the amount of keystream required for the attack
is by far larger than the limit of keystream available from a single key. So, until
now, we say that Dragon is secure.



HC-256 and HC-128 Two versions of HC have been proposed in [34] and
in [35]. The first one HC-256 generates keystream from a 256-bit secret key and a
256-bit initialization vector whereas the second one HC-128 supports 128-bit key
and 128-bit initialization vector but only 264 keystream bits can be generated
from each key/IV pair. The general principle of the keystream generation for
HC-256 is as follows: at each clock, a 32-bit word of one of the two secret tables
(initialized with the key K and the IV value) is updated using a non-linear
feedback function. Each table contains 1024 32-bit words. Every 2048 steps all
the elements of the two tables are updated. At each step, HC-256 generates one
32-bit output using a 32-bit-to-32-bit mapping. HC-128 is the simplified version
of HC-256: it uses two secret tables, each one having 512 32-bit elements. At each
clock, one element of a table is updated using a non-linear feedback function.
All the elements of the two tables are updated every 1024 clocks. At each clock,
one 32-bit output is generated from the non-linear output filtering function.
Security Until now, no attack have been found against HC-256 and HC-128. So
we say that at this moment, the two HC versions are secure.

LEX The stream cipher LEX has been proposed by A. Biryukov [5] and has
been tweaked to enter Phase 2 of estream. This new version extracts parts of
the internal state at certain rounds of the block cipher AES. The AES usual key
lengths could be used: 128, 192 or 256 bits. The size of the IV is 128 bits. The
output sequence is generated by outputting at each AES round certain four bytes
from the intermediate variables. The difference with AES is that the attacker
never sees the full 128-bit ciphertext but only portions of the intermediate states.
Security The first version of LEX was successfully attacked by Hongjun Wu and
Bart Preneel in [36] leading to a modified IV injection as done in the second
version of LEX. Until now, no attack have been found against this new version.
So we say that at this moment, LEX is secure.

Phelix Phelix is a stream cipher proposed by D. Whiting, B. Schneier, S. Lucks
and F. Muller [33]. It uses a 256-bit key and a 128-bit IV value. It has an internal
state that consists of nine words of 32 bits each. The state is broken up into two
groups: 5 “active” state words, which participate in the block update function,
and 4 “old” state words that are only used in the keystream output function.
Twenty elementary rounds are applied to produce one 32-bits output block.
Security A very recent attack has been proposed by Hongjun Wu and Bart
Preneel against Phelix in [37]. This attack is a differential-linear one assuming
nonce reuse (corresponding with a chosen nonce attack). In this context, with
234 chosen nonces and 237 chosen plaintext words, the key of Phelix can be
recovered with about 241.5 operations. Even if this kind of attacks is not clearly
authorized by the cryptographic community, it directly asks the question of the
security of Phelix.

Py and Pypy The stream cipher Py has been proposed by E. Biham et J.
Seberry in [3]. It uses the same principles of construction than RC4 on two
larger tables with a rolling update under keys of length up to 256 bits and IV



of length 128 bits. At each clock, 64 bits of the output sequence are produced.
The allowed stream size is 264 bytes for each stream sequence. For the eStream
phase 2, an other stream cipher called Pypy (see [4]) has been proposed that
outputs every second word of Py (only 32 bits are outputted at each clock).
Security Many attacks have been proposed against Py and Pypy: the first one [28]
(improved in [9]) do not really endanger the security of Py and Pypy because
they use more than 264 bytes for each stream sequence. More recently, an other
series of attacks using chosen IVs to recover the secret key has been proposed
in [38] and in [19]. Those attacks seem to be more devastator than the previous
ones. Then the security of Py and Pypy must be more carefully studied during
the second eStream Phase.

Salsa20 The stream cipher Salsa20 has been proposed by D.J. Bernstein in [2].
It uses a key with a length from 16-byte to 32-byte and an IV of length 16-byte.
The core of Salsa20 is a hash function with 64-byte input and 64-byte output.
The hash function is used in counter mode as a stream cipher: Salsa20 encrypts
a 64-byte block of plaintext by hashing the key, nonce, and block number and
xor’ing the result with the plaintext.
Security Until now, no attack has been found against Salsa20. So we say that at
this moment, Salsa20 is secure.

SOSEMANUK The stream cipher SOSEMANUK has been proposed by C.
Berbain et al. in [1]. Its key length is variable between 128 and 256 bits. It
accommodates a 128-bit initial value. Any key length is claimed to achieve 128-
bit security. The SOSEMANUK cipher uses both some basic design principles
from the stream cipher SNOW 2.0 and some transformations derived from the
block cipher SERPENT. Sosemanuk aims at improving SNOW 2.0 both from
the security and from the efficiency points of view.
Security Until now, no attack with a complexity less than 2128 has been found
against SOSEMANUK. So we say that at this moment, SOSEMANUK is secure.

2 Methodology

In this section, we present the platform used to perform the benchmarks and we
also describe the testing framework.

2.1 The dedicated platform

All the benchmarks performed here are produced using a sensor platform built
upon an ARM9 processor. Its processing power and the current evolution in
processor size and energy consumption make it a rather good representative for
next generation sensor network nodes. Nowadays the ARM7, which used to be
a full featured processor, is considered as a 32 bit micro-controller, for example
embedded in nearly all Bluetooth devices and in some wireless devices. Today,
current sensor network data, like temperatures, require only few processing on



the nodes, but we can state that next generation sensors will capture sounds
or even images which will need more powerful nodes. We then decide to use an
ARM9 core based CPU architecture for its computing power.

The platform is an ARM based development board. It uses an ARM922T,
more precisely an Altera Excalibur EPXA10, which is a FPGA integrating an
ARM922T core and usual embedded systems peripherals (e.g. UART, Timers) on
the same chip. The processor accesses all peripherals and memory levels through
two levels of AMBA bus. Memories are organized in a three level hierarchy. First
level, the nearest from the processor are caches, two 8 kB of separated cache. At
the second level we can find two 256kB and two 128kB scratch pad memories
not used in the benchmarks. Finally, main memory, the furthest from processor,
is a 128 MB SDRAM.

As far as benchmark construction is concerned, they was compiled with the
standard GCC C compiler targeted to ARM processors. For the libc and op-
erating systems functionalities, we used a lightweight operating system called
Mutek [29]. It is Posix threads capable, but for the sack of predictability, all
benchmarks are mono-threaded.

The energy and time performance informations are collected thanks to a two
step simulation. The first step is the full architecture simulation. The simulator
we use for this step is derived from the open source skyeye [31] simulator. Skyeye
is a functionnal simulator targeted to ARM based embedded systems. Several
full platforms are available for simulation like full featured PDA. This simulator
is augmented in our case for our CM922T-XA10 platform support and we also
added instruction cycle accuracy timing and peripheral activity reporting. This
simulator is responsible for generating the linear execution tracelater used by the
second simulator esimu. esimu generates a full profile in terms of time and energy
of each benchmark. The results can then be visualized with profiles visualization
tools freely available like KCacheGrind [20].

2.2 Methodology

We have adopted the methodology provided with the eStream testing framework
(see [6] for more details) because it seems to be the most relevant one to evaluate
stream ciphers. Indeed, a stream cipher is composed of an initial step, called the
warm up phase, that produces from the key and the IV value an internal state
that will produce the first output bits or bytes. We then need to test the time
required to perform the “key setup” and the “IV setup”. Moreover, one of the
main advantages of stream ciphers is that they are able to produce very quickly
long sequences required for the ciphering operation. We then to measure this
particular property.

The set of tests are performed in order to study the specific requirements on
the efficiency of the primitives in various situations. The testing framework de-
scribed in [6] then proposes four performance measures to test the most relevant
implementation properties:

– Encryption rate for long streams: this aspect reflects the biggest po-
tential advantage over block ciphers and appears as an important criterion



in many applications. We have decided to measure here the encryption rate
by ciphering a long stream in chunks of about 4Kb. The encryption speed
is computed in cycles/byte by measuring the cycles required to encrypt 10
such blocks under 10 different keys. The time to setup the key and the IV
is not considered in this test.

– Packet encryption rate: while a block cipher is likely to be a better choice
when encrypting very short packets, it is interesting to determine at which
length a stream cipher starts to take the lead. The packet encryption rate
is measured in cycles/byte for three packet lengths (40, 576 and 1500 bytes)
including an IV setup and a MAC finalization if an authenticated encryption
is supported (only Phelix has this property). This test is repeated under 10
different keys on several packets.

– Key and IV setup: The last test separately measures the efficiency of the
key setup and of the IV setup. “This is probably the least critical of the four
tests, considering that the efficiency of the IV setup is already reflected in
the packet encryption rate, and that the time for the key setup will typically
be negligible compared to the work needed to generate and exchange the
key.” ( [6]). The tests are performed for several key and IV values and the
results are provided in cycles/key or cycles/IV .

– Agility: When an application needs to encrypt many streams in parallel on
a single processor, its performance will not only depend on the encryption
speed of the cipher, but also on the time spent switching from one session to
another. The testing framework performs the following test: it first initiates a
large number of sessions (filling 16MB of RAM), and then encrypts streams
of plaintext in short blocks of around 256 bytes, each time jumping from
one session to another. The results of this test are provided in cycles/byte
repeating the test on 270 blocks of 256 bytes under one key.

We also perform some tests concerning the code size required to embed such
ciphers on the platform. We refer to two types of memory: the code memory in
the form of flash memory and the data memory in the form of RAM. We have
performed those tests on the same kind of codes for each stream cipher including
a key-setup, an IV -setup and a call to the function that encrypts long streams.

3 Results

To perform our benchmarks using the previous methodology, we have used with-
out modifying them, the C codes provided in the testing framework [6]. All the
C codes are available via the webpage http://www.ecrypt.eu.org/stream/
perf/. To obtain a point of comparison, results are also given for a simple Copy
operation, this code is also provided by the testing framework.

3.1 CPU cycles and energy consumption

The results (computed using the skyeye + eSimu tools) concerning the number
of cycles required to perform all the tests are summed up in the table 1. The



results concerning the energy consumption are given in the table 2. The key and
the IV sizes used to perform the tests are also specified.

cycles/byte cycles/key cycles/IV cycles/byte

Algo. Key IV Stream 40 bytes 576 bytes 1500 bytes Key setup IV setup agility

Copy 80 80 2.19 3.72 1.00 7.58 4.40 4.19 7.78

RC4 128 0 26.97 610.95 58.53 33.29 76.41 23581.61 21.24

SNOW v2.0 128 128 25.08 66.38 16.82 23.71 163.41 2273.35 20.87

AES CTR 128 128 206.19 131.52 198.73 195.76 636.49 157.52 202.23

DRAGON 128 128 30.89 177.05 69.76 64.91 421.42 4497.61 33.60

HC-256 128 128 27.00 6044.76 446.11 183.17 141.75 198126.10 49.30

HC-128 128 128 19.35 1484.72 112.12 53.70 141.76 58194.93 31.67

LEX 128 128 47.07 71.41 40.32 41.92 501.41 1415.57 50.71

Phelix 128 128 25.61 90.15 28.36 26.77 1271.42 2154.61 26.99

Py 128 64 214.25 349.23 47.58 60.88 7713.83 9327.43 64.40

Pypy 128 56 44.78 360.95 103.91 74.72 7713.82 9660.11 73.46

Salsa20 128 64 57.54 84.57 55.05 73.07 367.70 118.07 72.60

SOSEMANUK 128 64 14.81 385.63 37.95 30.48 16374.01 1264.09 20.78

Table 1. Number of CPU cycles for the stream ciphers using the testing framework

nJ/byte nJ/key nJ/IV nJ/byte

Algo. Key IV Stream 40 bytes 576 bytes 1500 bytes Key setup IV setup agility

Copy 80 80 38.32 60.85 16.84 142.07 70.54 67.29 145.35

RC4 128 0 465.17 9843.25 948.49 542.06 1243.66 379636.24 354.43

SNOW v2.0 128 128 438.34 1093.46 280.59 414.20 2656.66 41749.08 365.26

AES CTR 128 128 3587.00 2197.89 3437.36 3384.26 11378.81 2861.89 3499.45

DRAGON 128 128 514.26 2912.69 1144.53 1064.58 6846.80 74109.24 575.67

HC-256 128 128 471.39 102473.69 7577.28 3112.48 2540.02 2705307.85 864.11

HC-128 128 128 342.29 24264.78 1838.04 897.21 2540.20 950661.16 559.97

LEX 128 128 804.03 1186.80 670.42 714.16 8250.66 23850.60 868.13

Phelix 128 128 421.15 1470.51 461.14 454.71 20622.78 35111.32 461.26

Py 128 64 3894.22 5822.63 827.52 1101.62 145194.31 154181.03 1141.65

Pypy 128 56 817.35 6008.43 1859.92 1361.36 145194.15 161834.16 1300.67

Salsa20 128 64 952.19 1394.11 907.17 1275.82 6884.19 2215.93 1268.12

SOSEMANUK 128 64 247.93 6727.04 648.50 528.97 286119.29 20860.01 365.30

Table 2. Number of nJ for the stream ciphers using the testing framework



3.2 Memory requirements

We have performed some tests concerning the memory requirements of all the
ciphers (using the same key and IV lengths) using only a speed option of opti-
mization under gcc (the -O2 one). The results concerning the code and the data
memory sizes of all ciphers are given in table 3, together with the results for an
empty code and always for the Copy in order to evaluate the minimum memory
size induced by the benchmark environment.

Algo. Empty Copy RC4 SNOW v2.0 AES-CTR DRAGON HC-256

Code size 4992 5040 6064 11152 17456 8512 14432

Data size 480 752 692 6836 13020 2740 692

Algo. HC-128 LEX Phelix Py Pypy Salsa20 SOSEMANUK

Code size 12496 13072 9968 8736 8512 6560 21968

Data size 692 5852 724 35248 35248 724 3164

Table 3. Code Memory Requirements and Data Memory Requirements in bytes and
in decimal notations

3.3 Analysis

First, we could see that most of stream ciphers (SNOW v2.0, SOSEMANUK,
Dragon,...) stay more efficients on the dedicated architecture than the AES block
cipher used in the CTR mode if we do not take into account the time required
for the key setup and for the IV setup. Some of them such as Salsa20 have also
a more efficient key and IV setup. Moreover, the code memory size and the data
memory size of the AES-CTR is among biggest (except for Py and Pypy for the
data memory size and for SOSEMANUK concerning the code memory size). So
using stream ciphers in sensor network applications could be a good solution to
achieve high encryption speed in high constraint environments.

We have then compare our benchmarks obtained on the dedicated platform
and the results provided on the page of the eStream testing framework (see [6] for
more details) that are given for traditional architectures such as Intel Pentium
4, Power PC,... (using several compilers). A really interesting point is that the
most reliable stream ciphers on traditional platforms, Py and Pypy, do no longer
work rapidly on our platform whereas SNOW v2.0, SOSEMANUK or HC-128
stay relatively fast.

This unusual property comes from the intrinsic structure of the ciphers Py
and Pypy: they both uses two rolling tables of 256 bytes. The use of many memcpy
to build at each iteration those tables explains the bad results obtained: the num-
ber of DC-misses is huge compared with the other studied stream ciphers. On our
platform, and this is the case on other current sensor nodes, when the CPU ac-
cesses memory, it is stalled since it is not superscalar as many high performance



architectures are (the Pentium architecture for example). Our platform embed
caches, but their size are about the quarters of level 1 caches of current high
performance processors and it has no level 2 cache. Thus this cache architecture
is not compatible with the memory access hunger of Py and Pypy algorithms,
even if the results obtained for Pypy are rather better. The data are not pre-
served in data cache at each access and need to be refetched from main memory.
This characteristic was underlined by table 3 with the data segment size of the
implementation of these two algorithms. In summary, whereas Py and Pypy are
really efficient on traditional high performance architectures, they could not be
used without modifications in a such constrained environment. Moreover, the
structure of Pypy is the same than the one of Py and the results obtained for
Pypy stay reasonable so we think that because the Pypy performances are more
reasonable, Py is the only algorithm that is totally incompatible with this cache
geometry.

An other surprising result concerns the number of cycles required by the Key-
setup of SOSEMANUK that is very huge compared with the results obtained on
the other traditional platforms. This very bad result could be explained by the
excessive code size (shown by table 3) that involves in our highly constrained ar-
chitecture a performances reduction. When we are looking at the SOSEMANUK
C source, we could notice that loops were unrolled for performance purposes.
This code is in fact optimized for more powerful architecture. But this improve-
ment induce the same behavior in the instruction cache than Py and PyPy in the
data cache. Cache often misses and instruction are fetched from memory while
the CPU is stalled. Then, if we want to improve the performances of SOSE-
MANUK, a good solution seems to be to reduce the code size to make it fit in
the cache.

The other observed results here go in the same direction than the one pre-
sented in [6]: the most rapid algorithms stay approximatively the same (except
for the particular case of Py and Pypy): HC-128, SOSEMANUK, SNOW v2.0,
Phelix, RC4 and HC-256. We do not have modified the C code provided on the
eStream web page but we think that it could be a solution to improve the results
of some algorithms if we use a lower level programming language.

4 Conclusion

We have presented here some benchmarks performed on stream ciphers, the tra-
ditional ones (RC4, SNOW v2.0,...) and the candidates of the ECRYPT project.
Some results could appear very strange but are in fact conditioned by the phys-
ical constraints of our platform.

Due to the ongoing state of the stream ciphers studied here, we do not have
to give any recommendation about their use in such constraint environment but
in the case of well-known and well-studied stream ciphers, we could notice that
SNOW v2.0 is swift as well on traditional platforms as on the highly constrained
environment.



As part of future work, we will benchmark the same ciphers on a MS430 16
bit micro-controller. Then, the comparison between the results obtained in [22]
concerning the performances of block ciphers using several modes of operation
and the stream ciphers presented here will be more pertinent. We also want to
estimate the general loose of performance produced by the addition of a stream
cipher in a real sensor communication environment.
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