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Abstract—Influencer marketing has become in the recent years
a thriving industry that includes more than 1120 agencies
worldwide and with a global market value expected to reach
15 billion dollars by 2022. The advertising problem that such
agencies face is the following: given a monetary budget find a
set of appropriate influencers on a social platform and recruit
them to create a number of posts for the promotion of a certain
product. The objective of the campaign is to maximize some
impact metric, e.g. the number of impressions, the sales, or the
audience reach. In this work, we present an original formulation
of the budgeted campaign orchestration problem as a convex
program, and further derive a near-optimal algorithm to solve
it efficiently. The proposed algorithm has low computational
complexity and can scale well for problems with large numbers
(millions) of social users, encountered in real-world platforms.
We apply our algorithm to a Twitter data set and illustrate the
optimal campaign performance for various metrics of interest.

I. INTRODUCTION

In the age of Online Social Platforms (OSPs)1, audiences
trust contents generated by influential users more than adver-
tisement promoted by the platform itself. This can be observed
in the social sphere, where brands like Puma [1], advertised
their #IgniteXT line through posts created by 61 influencers
to promote their line among young public. Another well-
known example was Spotify with its #thatsongwhen influencer
campaign [2], where, the objective was to increase its new
subscribers through posts created by influencers in its favour.
Other examples are documented and can be found in different
industries as Mattel, Dreamworks, Netflix, etc.

At present, there exist more than 1120 influencer marketing
focused agencies, the average earned media value per $1
spent has increased to $5.78 [3], and it is estimated that the
influencer marketing industry is on track to be worth up to
$15 billion dollars by 2022. Due to the growing relevance and
magnitude of this market, a general framework is necessary to
determine how to select influencers to create posts in favour
of some company that can maximize the objective of the
advertising campaign subject to a monetary budget constraint.

The great majority of the objectives in an advertising
campaign aims to maximize one of the following metrics [3]:

1This work is funded by the ANR (French National Agency of Research)
by the “FairEngine” project under grant ANR-19-CE25-0011.

1) Impressions: The total number of times that the content
related to the campaign has been displayed in the News-
feeds of all users on the OSP.

2) Reach: The total number of different users that found
a post related to the campaign in their Newsfeeds. Im-
pressions and reach are ways to quantify the spread of a
campaign in an OSP.

3) Engagements: These include the total number of likes,
comments and re-posts related to the campaign. This
metric captures the interactions received in an advertising
campaign.

4) Conversion/Sales: Generally, these metrics quantify the
ROI (return on investment) which equals the value re-
ceived from content shared by an advertising campaign.

Influencers can be divided into three categories, neither ex-
clusive nor exhaustive, based on their dissemination capacity:

• Nano-influencers: These possess small, niche, and highly
engaged audience. Nano-influencers have the smallest
number of followers, the highest engagement per post,
biggest ROI, and they are easier to recruit.

• Micro-influencers: These have the characteristics of being
strongly connected with their audience, they tend to
receive a lot of engagements per post and are price-
accessible to businesses of all sizes.

• Macro-influencers: These share characteristics such as
greater reach than micro-influencers, they have a signifi-
cantly higher price per post than the micro-influencers, a
wide audience and a higher level of professionalism.

Generally the price per post of influencers varies depending
on various characteristics like: the type of the social media
platform, the number of followers, the average number of
engagements per post, the advertised product, etc. Therefore,
nowadays we even have companies that are dedicated to the
task of how to price the influential users.

Given a monetary budget over a time period where the
campaign is deployed, small and medium-sized companies will
search for a basket of influencers to maximize their campaign
objective (impressions, engagements, reach). Note here that
most influencers will not sell all their posting activity for
the promotion of a single company/product, so that they can
preserve their personal style and offer variety in posting that
keeps on feeding their followers’ interest.
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A. Related Literature

The most relevant literature about our Budgeted Portfolio
Optimization Problem in OSPs is related to the social influence
maximization problem introduced by Kempe et al. in [4]. The
elements of this problem are:
• A graph of the social network with the users as the vertex

set and social ties among the users as the edge set.
• A diffusion process describing how content is diffused

among social neighbors over discrete steps.
In this context the influencer selection problem is stated as

follows: for a given size k, choose at most k users of the social
network called the seed set, such that the number of users
influenced (reached) is maximized when the diffusion process
is over [4]. Subsequently, the classical diffusion processes have
been extended to maximize profits when user prices and valu-
ations are incorporated [5]–[7], and afterwards approximation
algorithms have been developed in this approach [8].

These works result in an NP-hard problem with sub-modular
structure that can be sub-optimally solved in polynomial
time using greedy approximation algorithms. However, this
formulation does not model reality because an influencer does
not necessarily attribute his whole activity to the advertising
campaign, so it is not sufficient to make a binary decision to
include an influencer in the seed set or not. Also, the price is
in reality calculated per post or content produced rather than
per recruited user. Furthermore, the knowledge of a model
for the dissemination of information in the OSPs is generally
not available. Finally, information about the post impressions
and engagements can be measured and collected, so there are
available data sets available that track the campaign results
and the detailed mutual influence between social users.

B. Our Contribution

In this work, we introduce a new formulation of the bud-
geted portfolio optimization problem of OSPs, which aims
to find the participation ratio of each user in the campaign
acquired by the advertiser that maximizes the campaign objec-
tive under budget restrictions. Our formulation takes advantage
of the known user activity over a time period, the price
per post of each influencer and the information availability
over previously collected data about impressions and user
interactions in general. The participation ratio per user is the
proportion of user generated posts in favour of the campaign
during its realisation. The main differences between our model
and Kempe’s approach are summarized in the Table I.

To further elaborate on the differences in Table I, in [4]
the work concerns the spread of a single post, the knowledge
of the diffusion process is necessary and the user selection is
binary. On the other hand, in our model the spread of influence
is achieved by posting over time, the knowledge of the number
of impressions from each source to any other user Newsfeed
should be known, and we search for a continuous rate per user.

The formulation of the budgeted portfolio optimization
problem of OSPs as well as some further assumptions are pro-
vided in Section II. In Section III, we develop two algorithms,

Influence Maximization [4] Our Budgeted Portfolio Optimization

Discrete Continuous
Graph User set

Diffusion process Data set of Impressions
Price per user Price per post

Objective: Objective:
Maximize the number of

users influenced when Maximize the campaign objective
the diffusion process is over (Impressions, Conversion/Sales or Reach)

Return: Return:
Seed set Participation ratio per user

TABLE I
DIFFERENCES BETWEEN APPROACHES

one for linear and another for concave objective functions that
can solve three particular cases of campaign objective:

Impressions/Engagements: This case arrives when we con-
sider the advertiser’s campaign objective as linear. The optimal
solution can be found by a greedy algorithm with computa-
tional complexity of order O(max((N − 1) log(N − 1), D))
where N − 1 is the number of users minus the advertiser and
D ≤ (N−1)2 is the total number of pairs of users who create
content and appear in other users’ Newsfeeds/Walls. Hence the
solution scales well with the number of users.

Conversion/Sales: Under the assumption that the purchasing
propensity of users (or the ROI) varies depending on their
exposure to product related content, we study campaign objec-
tives that are monotone increasing and concave with respect to
user impressions i.e. functions that exhibit diminishing returns.
To achieve near-optimal solution, we propose an iterative
greedy algorithm with complexity O(max((N − 1) log(N −
1), D)) per iteration. For illustration, we work with the α-
fairness utility family. A special case is proportional fairness
with sum of logarithmic utility functions as objective.

Reach: Another special case of α-fairness is when α tends
to infinity, which gives a Max-Min fairness solution. We can
maximize the Reach by selecting such specific utility because
its solution maximises the number of selected influencers who
receive non-zero participation ratio.

In Section IV, the algorithm performance is evaluated on a
real data-trace from Twitter and finally, conclusions are drawn
in section V. The code is available in [13].

II. THE BUDGETED PORTFOLIO OPTIMIZATION PROBLEM

Let us first describe a generic social network platform, such
as Facebook or Twitter. A set of users generate and share
some content, denoted as posts, through the platform. Each
user has a list of followers and a list of leaders. A user
can simultaneously be follower and/or leader of others. As
a follower, he (she) is interested in the content posted by his
(her) leaders. With each user a Newsfeed is associated, which
is a list of received posts.

At each specific point in time, a user sees in his (her)
Newsfeed posts originated by other users who may or may
not be their direct leaders, the number of these posts seen
represents the impressions on him (her) and the impression
ratio is the ratio of the impressions originated by some given
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user over all impressions in a given snapshot. The average
ratio over several snapshots is called the average impression
ratio in the time window.

We consider a constant number N of active users in a
specific time window, forming the set N . Users are labelled by
an index n = 1, ..., N . We denote by λ(n) [posts/time window]
the rate with which user n generates new posts, and we make
the assumption that content posted instantaneously appears
on the Newsfeeds of his followers and is further propagated
through the social network. For all users n ∈ N we suppose
that they preserve their post rate λ(n) constant in the time-
window.

Let us denote by p(j)n the average impression ratio of posts
that originate from user n in the Newsfeed of user j. This
quantity p(j)n is assumed known for the rest of the article and
can be measured or estimated in two ways: Empirically, by
taking multiple Newsfeed snapshots in the time window and
calculating the average of the ratio of impressions between
pairs of users over those time points. Alternatively, through
Markovian analysis. If we have complete knowledge of the
social graph and user posting activity, we can derive p(j)n using
the Markovian diffusion model introduced in [9].

Naturally, our average impression ratios satisfy:∑
n∈N

p(j)n = 1, ∀j ∈ N . (1)

Our model does not require explicit knowledge of the list of
followers and leaders of each user, nor a diffusion process as
in the approach by Kempe et al. [4]. However, it does require
knowledge over the average impression ratio, that contains
all this information resulting from diffusion. Furthermore, we
are interested in studying the relative impact between pairs
of users and not the absolute impact, since the Walls and
Newsfeeds can vary in size between users.

Note here that in Instagram and other OSPs, due to the lack
of a re-posting option the propagation of information is only
given to the immediate followers of a user, thus hindering
post-propagation. These networks are simpler to describe; the
user sets form a bipartite graph (leaders/followers).

A. The budgeted portfolio optimization problem

In the budgeted portfolio optimization problem an advertiser
i ∈ N with a certain monetary budget B [EUR/time window]
in his (her) disposal orchestrates an advertising campaign in
a unit of time (equal to the time window) by investing on
other users to create posts in his (her) favour. The aim is to
maximize some impact metric, e.g. the number of impressions,
the sales, or the audience reach.

We suppose that for each user n 6= i there is an associated
price per post cn [EUR/post] so that the user n will be willing
to create posts in favor of the advertiser i.

In order to formulate this optimisation problem, we need to
quantify the participation of each user n in the campaign of
the advertiser i. Hence, we define for each user n 6= i, the
continuous participation ratio an ∈ [0, 1] in the campaign as
the unknown proportion of user n’s generated posts acquired

by the advertiser i in the unit of time. We fix ai = 1 meaning
that the advertiser always posts to promote its own product.
Then, anλn [posts/time window] represents the number of
posts that the user n creates in favor of the advertiser i.

Similarly, we define by p
(j)
n (an) the campaign-related im-

pression ratio as the average value of the impression ratio in
the Newsfeed of user j originating from user n and related
to the campaign of the advertiser i. The campaign-related
impression ratio can be similarly estimated and measured as
above and satisfies:

p(j)n (an) ≤ p(j)n ∀n, j ∈ N . (2)

The empirical probability that an impression reaching user
j is related to the campaign is called the potential of user j:

ω(j)(a) =
∑

n∈N\{j}

p(j)n (an) ≤ 1. (3)

In the above a = (a1, ..., aN )T is the participation vector
of all the users into the advertising campaigns of user i.

We introduce a utility function Uj for each user j that maps
the potential of user j, ω(j), to the campaign objective of
the advertiser i. Different expressions for Uj model different
performance metrics.

The budget invested to user n 6= i by the advertiser i is
Bn(an) = cnanλ

(n) [EUR/time window] and the total budget
of the advertiser i is B [EUR/time window]. Therefore the
constraints in our budgeted portfolio optimization problem will
be naturally a budget restriction

∑
n 6=iBn(an) ≤ B and the

continuous unknown variables an ∈ [0, 1]. Alltogether, we can
formulate the general budgeted portfolio optimization problem

max{an}n 6=i

∑
j∈N\{i}

Uj(ω
(j)(a)),

s.t.
∑

n∈N\{i}

cnanλ
(n) ≤ B, [BPO]

ai = 1, 0 ≤ an ≤ 1,∀n ∈ N .

B. Variations and extensions

The above formulation allows us to to introduce further
extensions of our model:

1) We can consider that certain users want to sell no more
than a certain ratio of their posts an ≤ rn ≤ 1,∀n.

2) Another variation is by introducing a set of posting
categories to every user ςn and to activate an influencer-
audience member pair (n, j), only when the two users
share some common interests. In this case the potential
of influencer n is expressed as:

ω(j)(a) =
∑

n∈N\{j}

p(j)n (an)Iςn∩ςj 6=∅,

with ςn ⊂ {1, ...,Number of categories} the hobbies or
interests of user n and similarly for ςj .
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C. Assumption on ad propagation and impact metrics

An assumption for the rest of the article is that we consider
a linear propagation for the posts related to the campaign and
seen on the Newsfeeds, namely:

p(j)n (an) = anp
(j)
n . (4)

This is reasonable because if the user j is an immediate
follower of influencer n, and all posts from the influencer
appear on his Newsfeed, then a percentage an will be related
to the campaign. This is actually the case for platforms without
sharing, like Instagram, but for other platforms, impressions
could arrive through sharing of content from intermediate
users. Then, the above linear expression implies that a post
from j is shared randomly, independent of its content, which of
course is not true. We will use however the linear assumption
as a reasonable approximation to the campaign diffusion pro-
cess for any platform, because we lack of any prior information
related to how users might react to the campaign’s posts. So,
for the rest of the article, the potential of the user j is expressed
as:

ω(j)(a) =
∑

n∈N\{j}

anp
(j)
n . (5)

The utility function Uj in [BPO] of the user j, represents
from a modeling point of view the following:

• Impressions/Engagements: In this case, the objective
function for each user is a linear function. This translates
as follows: an increase in the impression potential (5) of
a user j results in a proportional increase in their utility.

• Conversion/Sales: The α-fairness utility function models
diminishing returns over the potential of each user j. As
the amount of one participation ratio increases, then after
some point the marginal conversion/sales (extra output
gained by adding an extra unit) decreases. We will use
the logarithmic function in particular to measure Sales.

• Reach: We model this case by applying user-specific
thresholds εj for each user j. If the user j sees more
than the threshold εj campaign-related impression ratio
ω(j)(a), then the user j is consider to be reached by the
campaign:

Uj(ω
(j)(a)) = Iω(j)(a)>εj . (6)

Hence, under the assumption of a linear propagation model
and activity constraints {rn}n 6=i we have the formulation
of the budgeted portfolio optimization problem in OSPs for
various objectives (corresponding to impact metrics):

max{an}n6=i

∑
j∈N\{i}

Uj(
∑

n∈N\{j}

[anp
(j)
n ]),

s.t.
∑

n∈N\{i}

cnanλ
(n) ≤ B, [BPO-G]

ai = ri, 0 ≤ an ≤ rn,∀n ∈ N .

Fig. 1. Example of extreme points for a specific campaign.

D. Feasibility set

For increasing utility functions the budget constraint is
satisfied with equality at the optimal solution. So, the feasible
set S in [BPO-G] is reduced to:

S = {(an)n 6=i ∈ RN−1 :
∑

n∈N\{i}

cnanλ
(n) = B,

∀n ∈ N \ {i}, 0 ≤ an ≤ rn}. (7)

Note that the feasible set has dimension N − 1, excluding
the advertiser who always gets a∗i = 1. We denote by E(S)
the set of extreme points of S.

In Figure 1, we show one example of a campaign in a
network of four users with advertiser user #4 (not included
in the figure since always a∗#4 = 1) accompanied by a unitary
budget B = 1 and three users #1, 2, 3 with unitary activity re-
strictions an ∈ [0, 1] and total prices (c1λ

(1), c2λ
(2), c3λ

(3)) =
( 1
2 ,

1
2 , 1) respectively. Hence, the set S is the blue plane

segmenting the brown cube and the extreme points E(S) are
the points M = (0, 0, 1), L = (1, 0, 12 ), C = (1, 1, 0), and
K = (0, 1, 12 ). Observe that these points (allocation vectors)
have coordinates with specific structure: for each point, all its
coordinates are binary {0, 1} except at most one entry which
can be in (0, 1). This observation is a general attribute of E(S)
as we prove below.

Proposition 1. (i) Let (an)n 6=i ∈ E(S) be an extreme point of
S in [BPO-G], then it satisfies the next property: there exists
at most one j ∈ N \ {i} such that aj ∈ (0, rj) and ∀l ∈ N \
{i, j}, al ∈ {0, rl}. Conversely, any point {an}n6=i ∈ S that
satisfies this property is an extreme point. (ii) Furthermore,
a global maximizer in [BPO-G] can be written as a convex
combination of points satisfying this attribute.

Proof. (i) The feasible set S is a convex polytope, defined by
the intersection of a hyper-plane (from the budget equality)
with an (N − 1)-dimensional hyper-cube (from the range of
participation ratios). Each extreme point of S, (an)n 6=i ∈
E(S) lies on an edge (or vertex) of the hyper-cube. The
points at each edge of the cube have all dimensions either
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0 or 1 except one dimension varying in [0, 1]. So the extreme
point of S will also share this property. Conversely, consider
a point (an)n 6=i ∈ S satisfying this property. Such point
cannot be written as a convex combination of two other points
s1, s2 ∈ S: to see this θs1,n + (1 − θ)s2,n = an, for n 6= i,
and θ ∈ (0, 1). Then, an = 1 ⇒ s1,n = s2,n = 1 and
an′ = 0 ⇒ s1,n′ = s2,n′ = 0, hence all coordinates of
points s1, s2 ∈ S are equal to those of (an)n 6=i ∈ S, except
in dimension j. This means that s1, s2, (an) lie on the same
edge of the hyper-cube, which is impossible by construction.

(ii) A global maximizer of [BPO-G] is necessarily in S.
A point in S can be written as a convex combination of the
extreme points E(S), because S is a compact convex subset
of RN−1, and therefore S can be expressed as the convex hull
of its extreme points [12].

We can explicitly determine the extreme points in the set
E(S) of the feasible set S as follows: for every permutation
{in} of the user set, we pick sequentially one user after the
other in order and allocate full budget ain = rin to the in-
th user based on the permutation order, until the budget B is
completely consumed. Hence, only the last allocated user is
can get allocated a ratio ais ∈ (0, 1). All user with indices
larger than is will get 0 ratio.

III. SOLUTION TO THE ADVERTISER’S CAMPAIGN

In this section we present the optimization problem, for
linear and concave utility functions and in each case, we
present specific algorithms to solve [BPO-G]. The above
properties of the feasible set and Proposition 1 will be used
here to propose low-complexity fast algorithms for both cases.
Notation and parameters are summarized in Table II:

Budgeted Portfolio Optimization Problem

User set N
Advertiser i ∈ N

Average impression ratios {p(j)n }n,j∈N
Price per post {cn}n∈N

Budget over a time period B
Activity restriction (optional) {rn}n∈N

User activity {λ(n)}n∈N

Objective:
Campaign objective

∑
j∈N\{i} Uj(

∑
n∈N\{j}[anp

(j)
n ])

Return:
Participation ratio per user {an}n 6=i

TABLE II
ELEMENTS OF OUR PROBLEM AND NOTATION

A. Linear utility function

In this case, Uj(ω
(j)(a)) = ω(j)(a). Therefore, solv-

ing this problem is equivalent to maximizing the Impres-
sions/Engagements as campaign objective. By defining φn =∑
j∈N\{n,i} p

(j)
n ,∀n ∈ N \ {i}, and φi =

∑
j∈N\{i} p

(j)
i , we

express our objective function as:∑
j∈N\{i}

(
∑

n∈N\{j}

[p(j)n an]) =
∑

n∈N\{i}

(anφn) + aiφi.

The global optimum of the linear optimization problem is an
extreme point (a∗n) ∈ E(S) and can be found by a greedy
algorithm as follows:

The users {ik}k=1,...,N−1 are indexed by decreasing order
by their φik per EUR, { φn

cnλ(n) }n 6=i. Hence, the user i1
generates the largest cumulative impressions per EUR, the
user ik generates the k-th maximal number of cumulative
impressions per EUR and so on. Define the marginal budget
of user il as Bl = B −

∑
k<l aikcikλ

(ik), B1 = B, and let
us define ∀l ∈ {1, ..., N − 1}:

a∗il = rilIcilrilλ
(il)≤Bl

+
Bl

cilλ
(il)

Icilrilλ
(il)>Bl

.

Then, by construction
∑
l<N a

∗
il
cilλ

(il) ≤ B and {a∗n}n 6=i
is an optimal vector for our portfolio optimization problem
and an extreme point in E(S).

Note that if ∃n1, n2 6= i with φn1

cn1λ
(n1) =

φn2

cn2λ
(n2) , then

our optimum may not be the only optimum, but it is unique
modulo permutations of the set with equal elements φn

cnλ(n) .
Notice that this algorithm has a computational complexity of

order O(max((N−1) log(N−1), D)) where D is the number
of non-zero average impression ratios between pairs of users
(using merge sort to order the set { φn

cnλ(n) }n 6=i). Therefore, it
is a good algorithm to use in large data sets.

B. Concave utility function

In this subsection, we solve the general case [BPO-G].
Before moving on to the general algorithmic solution, we
mention that as particular choices of concave utility functions,
we could consider the α-fairness family of utility functions
[10], [11]. This is a general class of utility functions that
captures different fairness criteria such as proportional fairness
for α→ 1 and max-min fairness for α→∞. It also captures
many other fairness criteria that lie between them with a
suitable choice of the parameter α ∈ (0,∞) \ {1}.

Uj(ω
(j)) = γj

(1 + ω(j))1−α

1− α
. (8)

Here, γj ∈ R is a given weight that we will assume unitary
in the absence of information. From a modeling perspective,
the case α→ 1 can maximise Sales, if these are modeled as a
logarithmic function of impressions, and the case α→∞ can
maximise Reach, i.e. the users who can receive an impression
related to the campaign.

Note that Uj is strictly increasing in ω(j)(a), then [BPO-G]
is equivalent to:

max{an}n 6=i

∑
j∈N\{i}

Uj(ω
(j)),

s.t. 0 ≤ ω(j) ≤
∑

n∈N\{j}

[anp
(j)
n ], ∀j ∈ N \ {i},

∑
n∈N\{i}

(cnanλ
(n))−B = 0,

ai = ri, 0 ≤ an ≤ rn,∀n ∈ N ,

where ω(j) is an auxiliary variable.
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It is common in convex optimization problems to use
primal-dual approaches, however since we are interested in
developing algorithms for real-world platforms with millions
of variables (one variable per user) and millions of constraints
(one constraint per user), then the number of primal and dual
variables will be enormous and the convergence of primal-
dual algorithms with such sizes is problematic. Hence, we
need to appeal to heuristic solutions that take advantage of
the structure of the feasibility set and can well approximate
the optimum for very large size of N . The main idea of our
algorithm is to greedily select per step an extreme point of S,
that maximises the improvement in the objective function and
average over all previous selected points.

First we write the Lagrangian function only with respect to
the auxiliary {ω(j)}j 6=i and B budget constraints.

L(a, ω; ν, µ) =
∑

j∈N\{i}

Uj(ω
(j)) + ν(B −

∑
n∈N\{i}

cnanλ
(n))

+
∑

j∈N\{i}

µj(
∑

n∈N\{j}

anp
(j)
n − ω(j)),

We can apply the KKT conditions and solve the primal
problem. We get for the ω(j) primal variables and any pair of
duals (ν, µ):

∂L
∂ω(j)

= U ′j(ω
(j))− µj = 0. (9)

So, since U ′j(ω
(j)) > 0 for all ω(j), we get at the optimum:

µ∗j = U ′j(ω
(j)∗). (10)

On the other hand, for the an primal variables:

∂L
∂an

= −νcnλn +
∑

j∈N\{i,n}

µjp
(j)
n . (11)

Observe that since the activity restrictions [0, rn] are not
considered in the Lagrangian, then we cannot set (11) equal
to 0. There are three cases for (11) given a dual pair (ν, µ):

(i) ∂L
∂an

(ν, µ) > 0, implies that a∗n = rn because the
maximum is found for the largest value of an.

(ii) ∂L
∂an

(ν, µ) < 0, implies that a∗n = 0 because the maxi-
mum is found for the smallest value of an.

(iii) ∂L
∂an

(ν, µ) = 0, implies a∗n ∈ (0, rn).
The above holds also for the optimal dual pair. Hence, we

see that given the optimal threshold ν∗ and the optimal prices
µ∗, we can decide whether some a∗j is 0, or rj , or in-between.
From the case (iii) and by (10), we observe for some k ∈
N \ {i} that ∂L

∂ak
(ν∗, µ∗) = 0 if and only if:

ν∗ =
1

ckλk

∑
j∈N\{i,k}

U ′j(ω
(j)∗)p

(j)
k := Q∗k, (12)

Altogether, the conditions (10) and (11.i-.iii) along with (12)
summarize the KKT conditions.

Hence, let us proceed to give an iterative greedy heuristic by
using the KKT conditions and the fact that the global optimum
can be written as a convex combination of the extreme points

by Proposition 1. For this purpose, we introduce the vector ∆
(to be explained latter) which is initialised at step t = 0 as
∆(0) = 0N−1, and µ(0) = (µn(0))n6=i, assigning very large
values. Large µj corresponds to a very small ω(j) close to 0
by (10) and the property of diminishing returns for the utility
function Uj . We update at step t+ 1 as follows:

- Step A: Update extreme points. With the µ(t) vector,
we calculate for all users n ∈ N \ {i}:

Qn(t+ 1) =

∑
j∈N\{i,n} µj(t)p

(j)
n

λncn
(13)

The threshold ν∗ splits (refer to (11.i,.ii,.iii)) the user set
into those users who get zero participation, those who get
maximum, and those with Q∗n = ν∗, from (12). Then we
proceed to order the Q’s in decreasing order of value and we
store the user indices Per(t + 1) = {i1, i2, ..., iN−1} given
by the order at step t + 1. The users with highest Q(t + 1)
will be much higher than ν∗ (still unknown). So, let us first
choose as participation ratio at step t+ 1:

ai1(t+ 1) = ri1 , ..., ais(t+ 1) = ris ,

ais+1
(t+ 1) = B −

s∑
j=1

cijλijrij , & ais+2
(t+ 1) = 0, ...

i.e. we allocate greedily the budget to the users with
highest Q, while satisfying the KKT condition (11.i,.ii,.iii). By
construction at each step a(t+ 1) ∈ E(S) is an extreme point
of S, see Proposition 1. Note that a(t+ 1) = (an(t+ 1))n6=i,
where n are the original indices.

- Step B: Update Averages. We update ∆(t+ 1) using the
extreme points obtained until step t+ 1 as:

∆(t+1) =
t ∆(t)

t+ 1
+

1

t+ 1
a(t) =

1

t+ 1
[a(1)+ ...+a(t+1)],

where ∆(t+1) represents the average of the extreme points
found throughout the process, and certainly ∆(t + 1) ∈ S
because it is a convex combination of the extreme points which
are in S. Intuitively, the algorithm successively over t selects
an extreme point based on the KKT conditions in (11.i,.ii.iii)
and averages it over the previously selected extreme points.

- Step C: Update ω and µ. For each user j ∈ N \ {i} we
calculate ω(j)(t+ 1) and µj(t+ 1) in function of the average
∆(t+ 1) using the definition (3) and the KKT condition (10)
respectively:

ω(j)(t+ 1) =
∑

n∈N\{j}

∆n(t+ 1)p(j)n , (14)

µj(t+ 1) = U ′j(ω
(j)(t+ 1)). (15)

- Step D: Stopping criterion. We return as output asso-
ciation a∗ = ∆(t + 1) when ||∆(t + 1) − ∆(t)|| < ε or
||
∑
j∈N\{i} Uj(∆(t+1))−

∑
j∈N\{i} Uj(∆(t))|| < ε or when

the maximum number of iterations T is attained.
Notice that at the step t + 1, (14) and (15) guarantees

us that the condition (9) of the KKT condition is satisfied
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and the condition (11) is satisfied because the budgets are
allocated to the users following a threshold policy, albeit the
value of ν∗ is unknown. Note in turn that we artificially
introduce the average of the extreme points because otherwise
the selection of extreme points alone would be unstable and
oscillate, whereas it would not allow for a selection of any
point inside the feasible set S.

Let us note that our algorithm is greedy, in the sense that
it successively chooses per step the maximum direction of
growth of the Lagrangian by applying (15) and the allocation
in Step A, which follows (11.i,.ii,.iii). Namely, we are propos-
ing a greedy gradient method on the set of extreme points. Due
to the use of average update of ∆(t+1) in Step B our algorithm
will eventually converge. The convergence to the optimum is
not garanteed, but numerical evaluations show that our greedy
approach that respects the KKT conditions stepwise performs
sufficiently well. Each iteration has computational complexity
of order O(max((N − 1) log(N − 1), D)) and the algorithm
converges sub-linearly in a finite number of steps.

In the linear utility case, the greedy algorithm reduces to
the one proposed in the previous sub-section and runs in a
single iteration with the same computational complexity.

IV. NUMERICAL EVALUATIONS

The aim of this section is to evaluate the performance of our
algorithms for various campaign objectives using information
from a real large Twitter data trace [14]. This database
represents the activity of users on Twitter during the 2018
Russian elections. In particular for our purposes, we use a 4-
uple per post with the following information obtained from this
database: [TweetID, T imeStamp, UserID, RetweetID].

The dataset is described as a list of such 4-uples. Each
participating user and Tweet have a unique associated UserID
and TweetID respectively. RetweetID represents the TweetID
which was retweeted (or −1 if it is a self-post) and TimeStamp
is the time that the Tweet was (re)-posted. The entire database
spans 57 days and involves 181, 621 different UserIDs.
Moreover, there is an average of 3.71 posts, an average of 7
re-posts per user and we find 87, 987 users who have re-posted
(shared a post) at least once. These users can be potentially
reached by any advertising campaign, since they share content.

From the dataset, we derive the empirical post and re-post
rate for every user {λ(n)}n∈N and {µ(n)}n∈N respectively.
We can further infer a friendship graph using the relationships
of retweets (RetweetID), by drawing a directed edge from
leader to follower, each time a user retweets something. We
call this a ”star” graph due to its shape: it contains 181, 621
nodes, 517, 421 edges with a mean degree of 5.70 followers
per user. Among the users, 167, 646 users lack of followers
and only 13, 975 users have followers.

We classify the 13, 975 potential influencers into 3 cat-
egories: 8, 615 users have 1 − 3 followers and are poten-
tially Nano-influencers; 3, 986 have 4 − 34 followers and
are potentially Micro-influencers; and 1, 374 have more than
34 followers and are potentially Macro-influencers. Having
complete knowledge of the social graph and the posting and

re-posting rates, the average impression ratios {p(j)n }n,j∈N
and the average engagement ratios {q(j)n }n,j∈N can be es-
timated by the Markovian method introduced in [9] (see
Section II.A). By definition, the engagements are the shared
impressions during the 57 days. We introduce a constant
δ :=

∑
n∈L

|L(n)|(λ(n)+µ(n))
|L| equal to the average number of

impressions in the Newsfeed seen by some user in the network
within a unit of time. In this expression |L(n)| is the number
of leaders of user n and L is the set of users in N who are
leaders of at least one user.

As a next step, we need to determine the price per post cn
charged to the advertiser user i by user n. On Twitter, it is
a common market practice to consider the price per post of
user n as 2 #Followersn

1000 [EUR/post]. Since that our database is
of the order of 105 users and Twitter is of the order of 108,
we will assume a normalization constant in the number of
followers of 103, so our price per post of user n to consider
is 2 #Followersn [EUR/post].

For the evaluations we will consider no restrictions on user
participation ratios (rn = 1,∀n ∈ N ) in the absence of
information. Finally, we select as advertiser the user with
UserID = 2513730044, who has 15 #Followers. This user
is potentially a Micro-influencer, like many stores that provide
services in a certain medium-populated area.

We proceed to solve and to find the optimal solutions
a∗L,a

∗
Log and a∗M of [BPO] according to three functions

respectively: Linear function, Logarithmic function and Max-
min function. The stopping criterion in our second algorithm
is when the number of iterations reaches a maximum equal to
30, or when the infinite norm of solutions between iterations
is less than 0.1%. Using these solutions a∗ ∈ {a∗L,a∗Log,a∗M},
we evaluate the metrics:
• Total number of Impressions: δ

∑
j∈N\{i} ω

(j)(a∗).
• Total Sales:

∑
j∈N\{i} log(δ ω(j)(a∗) + 1).

• Total Reach:
∑
j∈N\{i} Iω(j)(a∗)>ε, ε is a threshold and

denotes when a user has been reached by the campaign. We
select two values: ε = 0 for an upper reference curve, and ε =
δ obtained as the average rate of impressions in the Newsfeed.
• Selected number of Nano-, Micro-, and Macro-influencers:

The number of users with a∗j 6= 0. Specifically: those up to
3 followers are Nano- (fewer followers than 60% of users
in our database), those with 4 − 34 followers are Micro-
(more followers than 60% of users but fewer than 90% in
our database), and those with more than 34 followers are
Macro- (more followers than 90% of users in our database)
respectively.

The plots in Fig. 2 illustrates how the above metrics change
with increasing monetary budget per day, for each of the
three different campaign objectives (Linear, Logarithmic and
Max-min). Note here that the second algorithm has sub-linear
convergence as empirically observed. More precisely, from
Figure 2 we observe the following:

Linear objective - This campaign gives the most impressions
performance because this metric coincides with the objective.
It gives very high sales for large budgets (more than 50
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Fig. 2. Metrics across different campaign policies and number of selected influencers across different campaign policies.

[EUR/day]), but has the worst reach performance everywhere
independent of ε. Interestingly, it selects the least number of
influencers in all categories, for any budget given.

Logarithmic objective - This campaign has the best sales
performance because this metric coincides with the campaign.
Also, it has a very high impressions and a moderate reach
performance. It selects more influencers than the linear, in all
categories.

Max-min objective - This campaign gives the best audience
reach for any given budget and ε chosen, but performs bad in
Sales and impressions. In fact, for a budget > 40K [EUR/day]
the campaign can reach all possible users for both ε values.

For all three objectives, the optimal policy selects
mostly Nano- and Micro-influencers in low budgets. Macro-
influencers are selected for larger budgets.

V. CONCLUSIONS

In this work, we have presented an original formulation
of the budgeted campaign orchestration problem to maximize
some impact metric. We have derived a convex program and
then a near-optimal algorithm to solve it efficiently. This
algorithm has low computational complexity and can scale
well for problems with large numbers (millions) of social
users, encountered in real-world platforms. We have applied
our algorithm to a Twitter data set and illustrate the optimal
campaign performance for various metrics of interest.
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