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Abstract—Millimeter wave (mmWave) technologies have the
potential to achieve very high data rates, but suffer from inter-
mittent connectivity. In this paper, we provision an architecture
to integrate sub-6 GHz and mmWave technologies, where we
incorporate the sub-6 GHz interface as a fallback data transfer
mechanism to combat blockage and intermittent connectivity of
the mmWave communications. To this end, we investigate the
problem of scheduling data packets across the mmWave and
sub-6 GHz interfaces such that the average delay of system
is minimized. This problem can be formulated as Markov
Decision Process. We first investigate the problem of discounted
delay minimization, and prove that the optimal policy is of the
threshold-type, i.e., data packets should always be routed to the
mmWave interface as long as the number of packets in the system
is smaller than a threshold. Then, we show that the results of the
discounted delay problem hold for the average delay problem
as well. Through numerical results, we demonstrate that under
heavy traffic, integrating sub-6 GHz with mmWave can reduce
the average delay by up to 70%. Further, our scheduling policy
substantially reduces the delay over the celebrated MaxWeight
policy.

I. INTRODUCTION

The annual amount of mobile data is projected to surpass
130 exabits by 2020 [1]. With such rapid increases in mobile
data traffic, we are facing unprecedented challenges due to
the shortage of wireless spectrum. To mitigate the problem
of spectrum scarcity, the millimeter wave (mmWave) band,
ranging from 30 GHz to 300 GHz, provides a promising
solution [2]. However, before mmWave communications can
become a reality, there exist several significant challenges that
need to be overcome. In particular, mmWave channels can
be highly variable with intermittent on-off periods. Due to
small wavelengths in the mmWave band, most objects, such
as concrete walls, a human body or even rain drops, may
cause blocking and reflections as opposed to scattering and
diffraction in the sub-6 GHz frequencies. In this case, blockage
may completely break the mmWave link and result in an
almost zero delivery rate [3, 4]. In the provisioned applications
of mmWave, human blockage is one of the main challenges
that can increase the path loss by more than 20 dB [5, 6].

To demonstrate the effect of human blockage on mmWave
links, we have conducted a set of measurements with a
stationary transmitter and a mobile receiver that moves away
from the transmitter with the speed of 1 m/s. During the time
intervals 200−300 and 500−600 ms, a human body blocks the
line-of-sight (LOS) path between the transmitter and receiver.

Fig. 1: Measurement setup and experiment scenario to inves-
tigate the effect of human blockage on mmWave channels.
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Fig. 2: Received mmWave signal strength under line of sight
(LOS), human blocker (HB), and reflection (REF) [7].

Figure 1 shows our basic experimental setup, and Fig. 2
depicts the strength of received signal at the mobile receiver
over time [7]. From the results, we see that the received
signal strength falls to almost zero under blockage, which can
be modeled as an OFF or unavailable period. Therefore, the
mmWave link exhibits an ON/OFF connectivity pattern under
blockage scenarios such that during the OFF periods, delivery
rate and delay performance can highly degrade.

In order to mitigate the effects of intermittent connectivity,
especially for delay-sensitive applications, several methods
have been proposed. For instance, the authors in [4] and
[8] exploit reflection paths and multi-hop paths to combat
blockage. These methods are reactive in the sense that the
search for an alternative path is triggered after blockage
occurs. However, since the link speed of the mmWave interface
(multi-Gbps) is comparable to the speed at which a typical
processor in a smart device operates, these methods may not
be able to track and respond to channel variations in real-
time. Therefore, it necessitates the use of a reasonably large



buffer at the mmWave interface along with proactive solutions
to complement this design. In addition to the aforementioned
methods, there exist several works on integrating the mmWave
and sub-6 GHz technologies. For instance, information of the
sub-6 GHz channel is extracted to reduce mmWave beam-
forming overhead [9, 10], while [11] uses an online learning
method. The authors in [7, 12, ?] consider resource allocation
and cooperative communication between the sub-6 GHz and
mmWave to maximize either the throughput of the system or
the quality-of-service per user application.

Although an integrated mmWave/sub-6 GHz architecture
has been previously proposed, the delay minimization problem
in this integrated architecture has not been explored yet. In this
paper, we exploit the sub-6 GHz interface as a fallback data
transfer mechanism such that packets may be routed to the sub-
6 GHz interface upon arriving at the system. Moreover, packets
are allowed to be impatient in the sense that they renege
from the mmWave interface to the sub-6 GHz interface, when
the waiting time of the head-of-line packet in the mmWave
interface becomes large. Within this content, we investigate
the problem of delay-optimal scheduling across the sub-6 GHz
and mmWave interfaces and obtain a proactive scheduling
policy that is expressed in terms of the queue length of each
component that constitutes the system.

The most relevant research to our delay minimization prob-
lem is the slow-server problem, in which the goal is to obtain
a delay optimal scheduling policy in a queuing system with
heterogeneous (i.e., fast and slow) servers. The goal of this
problem is to investigate the trade-off between waiting in
queue and entering slow servers when fast servers are busy.
The slow-server problem was first proposed in [13], where
the authors presented a M/M/2 queuing system with two
heterogeneous servers and conjectured that the optimal policy
for minimizing the average delay and expected total discounted
delay in system is of the threshold-type. The conjecture was
then proved in [14] with policy iteration. Later, papers [15]
and [16] showed the same result with coupling arguments
and value iteration, respectively. Following these works, [17]
extended the result to the system with multi-servers (i.e., more
than two), and [18, 19] studied the delay minimization problem
with different arrival and service processes. In this context, the
mmWave interface acts as the fast server with the presence of
unavailable service under blockage.

Our delay minimization problem differs from the previous
works in two key aspects: 1) Tandem queues exist in one
branch of two parallel queues (see Fig. 4). This implies that
our architecture is a mix of tandem and parallel queues, which
is different from the parallel structure in slow-server problem;
2) Introduction of reneging action complicates relationships
among actions, i.e. we have to further consider the trade-off
between waiting in the mmWave interface and reneging to the
sub-6 GHz as well (details are discussed in section II). In
summary, our main contributions are as follows:
• We investigate the policy that minimizes the expected

total discounted delay and through value iteration of
Markov Decision Process (MDP), we obtain three rules

that partially characterize the optimal policy. Based on the
findings, we propose a threshold-type policy with regard
to the sub-6 GHz interface. Then, we collapse our system
state space from four dimension to three dimension, and
further demonstrate the optimality of the proposed policy.
We further show that the proposed policy is also optimal
for the average delay problem.

• We provide a methodology for solving the delay mini-
mization problem in settings consisting of tandem and
parallel queues with heterogeneous servers.

• Through simulations, we show that it is important to use
the sub-6 GHz interface especially when the mmWave is
unavailable with high probability and confirm that such a
threshold-type policy improves the average delay perfor-
mance while achieving similar throughput performance
as the throughput-optimal and well-studied MaxWeight
policy [20].

We use the following notations throughout the paper. Non-
bold lowercase and uppercase letters are used for scalers and
sets, respectively. Bold lowercase letters are used for vectors,
E[.] denotes the expectation operator, and the sub-6 GHz
and mmWave variables are denoted by (·)sub-6 and (·)mm,
respectively.

II. PROBLEM SETUP

In this section, we present the system model and formulate
the delay minimization problem.

A. System Model

We consider an integrated communication architecture with
dual sub-6 GHz and mmWave interfaces as shown in Fig.
3. The infinite head buffer is utilized to store all packets
waiting to be processed and served by either mmWave or
sub-6 GHz. The processing server is responsible for essential
data processing before scheduling. Plus, the system includes
two servers (mmWave and sub-6 GHz servers) with extremely
different service rates, i.e. the service rate of mmWave can be
100 times larger than the service rate of sub-6 GHz.

mmWave 
Interface

sub-6 GHz 
Interface 

processing
 server head buffer

Fig. 3: Integrated sub-6 GHz and mmWave architecture.

(i) Queue Models: In our system model, we add a buffer to
the mmWave interface, which stores packets routed from the
head buffer. The rationality of our design (i.e., a separate queue
for the mmWave interface) is described next. The service rate
of the mmWave server is comparable to the processing server
(i.e., processor speed). Moreover, mmWave is very sensitive to
blockage which is hard to predict. If we assume that there is no
buffer for the mmWave server, then every packet has to wait in



the head queue until the mmWave server is empty. In the case,
the packet will experience service time of both the processing
and the mmWave servers (almost double the service time of
the mmWave) except waiting time in the head buffer. Then, the
performance of mmWave is degraded by approximately half.
On the contrary, if the mmWave server has its own buffer for
processed packets, part of waiting time in the head buffer can
be utilized to process packets in advance, which reduces the
experienced service time mentioned above. However, the sub-6
GHz link is much slower than the processing server. Therefore,
processing delay can be ignored compared to service time
of the sub-6 GHz. In other words, it is not necessary for
the sub-6 GHz server to have its own buffer considering the
cost of buffer. Thus, it is appropriate to assume that the sub-
6 GHz interface acts as a server with a buffer size of one,
while the mmWave interface consists of an infinite buffer
and a server. Since delay of the processing server becomes
negligible compared with the sub-6 GHz interface, we consider
the equivalent model depicted in Fig. 4, where we call the
processing server and mmWave interface as mmWave line.

mmWave 
Interface 

sub-6 GHz Interface 

processing
 server 

head buffer

mmWave  line

Fig. 4: Equivalent system model.

(ii) Two-state mmWave link; Available or Unavailable:
Recall that the mmWave link is highly variable with intermit-
tent ON/OFF periods. It is reasonable to model the mmWave
service rate with two states, say available and unavailable.
For the unavailable state, the mmWave channel is almost
disconnected and thus we assume that the service rate of the
mmWave is 0. For the available state, we assume that the
service time is exponentially distributed with parameter µmm.
Further, we denote the probability of available and unavailable
states with pa and pna, respectively.

We further assume that arrivals to the system form a Poisson
process with parameter λ, and that service times of the pro-
cessing server and the sub-6 GHz interface are exponentially
distributed with parameter µp and µsub-6, respectively. Given
that the mmWave service rate is of the same order as the clock
speed of the processor (i.e., several GHz), we assume that µp
is much faster than µsub-6 but in the same order as µmm.

Within this content, we further clarify the difference of our
problem from previous work, which has been briefly discussed
in section I. In Fig. 4, the mmWave line is a tandem queue
system, which is parallel to the sub-6 GHz interface. In the
case, to finally obtain the optimality of the proposed threshold-
type policy, we need to show and utilize the relationship
between the resulting delays starting at states with the packet
in processing server and the packet moved to the mmWave
queue, where the two states cannot be collapsed. This implies

that our problem is more complex than the classic slow-server
problem.

Recall that to avoid a large waiting time in the mmWave
queue due to intermittent channel, we require the packets to be
impatient in the sense that if the waiting time of the head-of-
line packet in the mmWave queue becomes large, the packet
“reneges” (is moved to) from the mmWave line to the sub-
6 GHz server. Note that the packet in the sub-6 GHz server
cannot be sent back to the mmWave line or the head buffer.
In the case, when shall we use the slow server (the sub-6 GHz
server)? Where shall we move packets from to sub-6 GHz,
the mmWave line or the head buffer? That is, despite trade-off
between waiting in the head queue and entering the slow server
which is investigated in the slow-server problem, our problem
cares about the trade-off between waiting in the mmWave line
and entering the slow server and trade-off between dispatching
packets from the head buffer and the mmWave line.

B. System Dynamics

(i) System States: Let q0, q1 ∈ N denote the queue length of
the head buffer and mmWave interface, respectively. Moreover,
let l1, l2 denote busy/idle condition of the processing server
and sub-6 GHz interface, respectively. Then, l1, l2 take values
in {0, 1}, where l1 = 1 implies a busy server. Therefore, the
system state is expressed by a four-dimensional vector q ,
(q0, l1, q1, l2) with the state space Q , N×{0, 1}×N×{0, 1}.

(ii) Events: There are four different events that happen in
the system, which are defined as follows:
(1) Arrival of a packet to the head buffer:

A0 (q) , (q0 + 1, l1, q1, l2) .

(2) Departure of a packet from the mmWave interface:

D1 (q) ,
(
q0, l1, (q1 − 1)

+
, l2

)
,

where (·)+
= max (·, 0) .

(3) Departure of a packet from the sub-6 GHz interface:

D2 (q) ,
(
q0, l1, q1, (l2 − 1)

+
)
.

(4) Processing completion: If the processing server delivers a
packet to the mmWave interface, the system state changes as

T (q) ,
(
q0, (l1 − 1)

+
, l1 + q1, l2

)
.

Note that we introduce “dummy” packets for the last three
events when q1 = 0, l2 = 0 and l1 = 0, respectively. This is
further elaborated in Section II-C.

(iii) Actions: K = {Ah, A1, A2, Ab, Ar} is an action set.
Kq ⊆ K denotes the set of admissible actions in state q. Each
action in set K is defined as follows:
(1) Holding: Action Ah keeps the system state unchanged, and
is defined on Q. Therefore, we have

Ah (q) , (q0, l1, q1, l2) .

(2) Scheduling-on-mmWave: A packet can be routed to the
mmWave line if the processing server is idle, i.e.,

A1 (q) , (q0 − 1, 1, q1, l2) ,



which is defined on the set {q | q0 ≥ 1, l1 = 0}.
(3) Scheduling-on-sub-6: A packet can be routed to the sub-6
GHz interface if the sub-6 GHz server is idle, i.e.,

A2 (q) , (q0 − 1, l1, q1, 1) ,

which is defined on the set {q | q0 ≥ 1, l2 = 0}.
(4) Scheduling-on-both: Action Ab dispatches two packets to
the sub-6 GHz and processing servers simultaneously, i.e.,

Ab (q) , (q0 − 2, 1, q1, 1) ,

which is defined on the set {q | q0 ≥ 2, l1 = l2 = 0}.
(5) Reneging: Action Ar moves a packet from the mmWave
line to the sub-6 GHz interface, and it is defined on the
set {q | q1 + l1 ≥ 1, l2 = 0}. Let Arp and Armm denote the
reneging actions from the processing server and mmWave
interface, respectively. Therefore, we have

Arp (q) , (q0, 0, q1, 1) , q ∈ {q | l1 = 1, l2 = 0};
Armm (q) , (q0, l1, q1 − 1, 1) , q ∈ {q | q1 ≥ 1, l2 = 0}.

Then, the reneging action Ar is expressed as

Ar (q) ,


Arp (q) if l1 = 1, q1 = 0
Armm (q) if l1 = 0, q1 ≥ 1

arg min
Aa∈{Arp ,Armm}

v (Aa (q)) otherwise

where v (·) denotes the delay cost. Note that if Arp and Armm

are admissible, we select an action that results in a smaller
cost. In Section III, we show that Ar = Arp for the discounted
delay problem when both Arp and Armm are admissible.

C. Problem Formulation

Average Delay Problem: Our objective is to schedule
packets across the mmWave and sub-6 GHz interfaces such
that the average delay of system is minimized. To this end,
we know that, by Little’s Law, the average delay minimization
problem is equivalent to minimizing the average total number
of packets in the system, which is expressed as follows:

min
π∈Π

lim sup
T→∞

1

T
Eπ
[∫ T

t=1

(q[t] · e) dt

]
, (1)

where Eπ denotes the conditional expectation given policy π,
q[t] ∈ Q is the system state at time t, Π denotes the set of
all admissible policies, and e = (1, 1, 1, 1)

T. We model the
system evolution as an MDP, and for simplicity, we convert
the continuous-time MDP problem into an equivalent discrete-
time MDP problem with the method of uniformization [21].
In particular, we assume that all servers will serve “dummy”
packets whenever they are idle. Then, we separate continuous
time into time slots with sequences when either a packet arrival
or a packet (real or dummy) departure from the processing
server or interfaces happens. Let N = {1, 2, 3, · · · } denote the
set of time slots such that the channel state does not change
during each time slot. Then, the system state at the n-th time
slot is expressed as q[n]. Furthermore, without loss of general-
ity, we scale time and assume that λ+µp +paµmm +µsub-6 = 1.

We consider the set of control variables U , {(u0, u1, u2,
u3) | u0, u1, u2, u3 ∈ K}. Then, the decision rule at the n-
th decision epoch (the beginning of the n-th time slot) is a
mapping from the system states to the control variables, i.e.,
dn : Q→ U , for all n ∈ N and the policy π is a sequence of
the decision rules, i.e., π = (d1, d2, · · · ). Further, if q [n] = q′

and dn (q′) = (u0, u1, u2, u3) for certain n ∈ N , then if an
arrival occurs at the (n+ 1)-th epoch, we would take actions
according to u0. Similar explanation applies to u1, u2, u3.
Thus, the transition probabilities in the discrete-time MDP are
expressed as

P (q′ | q,u) =


λ if q′ = u0 (A0 (q))

µp if q′ = u1 (T (q))

paµmm if q′ = u2 (D1 (q))

µsub-6 if q′ = u3 (D2 (q))

Then, with the discrete-time MDP, the uniformized problem
is formulated as follows:

min
π∈Π

lim sup
N→∞

1

N
Eπ
[
N∑
n=1

q[n] · e

]
. (2)

Discounted Delay Problem: To solve the average delay
problem, we first consider the problem of minimizing the
expected total discounted delay of the system (discounted
delay problem) to avoid convergence issues in the presence
of bounded value function [21]. Next, we extend our results
to the average delay problem. The discounted delay problem
in the equivalent discrete-time MDP is expressed as

min
π∈Π

Eπ
[ ∞∑
n=1

βn−1q[n] · e

]
, (3)

where β is a discount factor such that 0 ≤ β < 1. To solve
the discounted delay problem, it is known that there exists
an optimal deterministic stationary policy [21]. Thus, we only
need to consider the class of deterministic stationary policies.
We apply the value iteration method to find the optimal policy.

Under the assumption that the system is stable, value (delay)
functions of the initial state q ∈ Q are bounded real-valued
functions. Let V denote the Banach space of bounded real-
valued functions on Q with supremum norm. Define operator
L : V → V as
(Lv) (q)

, q · e + β min
u∈Uq

{
λv
(
u0 (A0 (q))

)
+ µpv

(
u1 (T (q))

)
+µmmpav

(
u2 (D1 (q))

)
+ µsub-6v

(
u3 (D2 (q))

)}
, (4)

where v (·) ∈ V and Uq ⊆ U denotes the set of admissible
control variables in state q. Let Jβ (q) denote optimal expected
total discounted delay function of initial state q. Then, Jβ (q)
is a solution of Bellman function, i.e., Jβ (q) = LJβ (q).

III. DELAY OPTIMAL POLICY

A. Discounted Delay Problem

Except that the mmWave channel is extremely intermittent,
the average service rate of the mmWave is much higher than



the sub-6 GHz (e.g., two orders of magnitude). Besides, the
service rate of the mmWave and processing server are in the
same order. Hence, it is reasonable to assume that the expected
time for a packet to go through empty mmWave line is less
than empty sub-6 GHz interface, i.e., 1

paµmm
+ 1
µp
< 1

µsub-6
. With

this assumption, we have the following theorem:

Theorem 1. Assuming that 1
paµmm

+ 1
µp
< 1

µsub-6
, then we have

(a) Jβ(A1(q)) ≤ Jβ(Ah(q)) if q0 ≥ 1, l1 = 0;
(b) Jβ(A2(q)) ≤ Jβ(Ar(q)) if q0 ≥ 1, l1 + q1 ≥ 1,

and l2 = 0;
(c) Jβ(T (q)) ≤ Jβ(q) if l1 = 1;
(d) Jβ(A1(q)) ≤ Jβ(A2(q)) if q = (q0, 0, 0, 0)

and q0 ≥ 1;
(e) Jβ(x) ≤ Jβ(y) if ‖x‖1 ≤ ‖y‖1, x,y ∈ Q.

Proof Idea. Note that zero function (i.e., v = 0) satisfies all
properties in Theorem 1. Besides, it is known that for any
function v ∈ V , limn→∞ L(n)v = Jβ . Thus, in order to show
that Jβ satisfies all properties in Theorem 1, we start with zero
function and show that Lv satisfies the properties if v satisfies
the properties in Theorem 1. For the detailed proof, please see
our technical report [22].

Note that in the following, if action Ax ∈ K has a higher
priority than action Ay ∈ K, it means that action Ax incurs no
more costs than action Ay does, where x, y ∈ {1, 2, r, b, h}.
Then, from Theorem 1, we obtain the following rules that
provides partial characteristics of the optimal policy:
Rule 1. Holding is not preferable as long as the processing

server is idle: Property (a) implies that action A1 has
priority over action Ah.

Rule 2. Keeping the mmWave line busy: Properties (a) and
(d) imply that a packet should be scheduled on the
mmWave line whenever the mmWave line is empty
and the head buffer (see Fig. 4) is not empty.

Rule 3. Head buffer is the first choice for the sub-6 GHz
interface: By property (b), action A2 has priority over
action Ar. In addition, Jβ(T (q)) = Jβ(Arp(q′)) and
Jβ(q) = Jβ(Armm(q′)), where q = (q0, 1, q1, 1) and
q′ = (q0, 1, q1 +1, 0). Then, property (c) implies that
Ar(q

′) = Arp(q
′) for Arp , Armm ∈ Kq′ .

Optimal Policy: Based on these rules, we show that optimal
policy for the discounted delay problem is of the threshold-
type, and is defined as follows:

Dm (q) =

A1 (q) if q = (q0, 0, q1, 1) , q0 ≥ 1,

or q = (q0, 0, q1, 0) , q0 ≥ 1, q0 + q1 ≤ m,
A2 (q) if q = (q0, 1, q1, 0) , q0 ≥ 1, q0 + q1 + 1 > m,

or q = (1, 0, q1, 0) , q1 ≥ m,
Ar (q) if q = (0, l1, q1, 0) , l1 + q1 > m,

Ab (q) if q = (q0, 0, q1, 0) , q0 + q1 > m, q0 ≥ 2,

Ah (q) otherwise,

where Dm is a threshold policy with threshold m such
that Dm follows all above rules. Then, for n ∈ N ,
the decision rule at time slot n is given by dn (q) =
(Dm (A0 (q)) , Dm (T (q)) , Dm (D1 (q)) , Dm (D2 (q))).

To prove the optimality of Dm for the discounted delay
problem, we name the action sets {A1, Ah} and {A2, Ar}
as “not-adding-to-sub-6” and exclusively “adding-to-sub-6”,
respectively. We already know the priority between A1 and Ah
and the priority between A2 and Ar. Thus, it only remains to
determine the priority between the sets not-adding-to-sub-6
and adding-to-sub-6. To show this, we dub the path consisting
of the head buffer, the processing server, and the mmWave
queue as “FastLane”. We claim that in the discounted delay
optimal policy, adding-to-sub-6 obtains priority over not-
adding-to-sub-6 when the queue length of FastLane exceeds
certain threshold m, i.e., a threshold-type policy as expressed
by Dm. Next, we show this via value iteration.

Instead of directly utilizing original state space as the
variable of value function, we collapse the state space so
that state space is reduced from four dimensions to three
dimensions. The method of collapsing the state space is similar
to that in [16]. However, ours is more involved in that we
cannot collapse the state space to two dimensions since we
have to capture the event of processing completion. In the case,
the system state q is re-expressed in the form of (x, q1, l2)
where x denotes the number of packets in the head buffer
and processing server. Note that if x > 0, then the processing
server should be busy by Rule 1. For the sake of exposition
in the following proof, we define two terms in Definition 1.

Definition 1. Let Jnβ (x, q1, l2) be the optimal expected total
discounted delay over the next n time slots with initial state
(x, q1, l2). Then, define an intermediate value Tnβ (x, q1, l2) as

Tnβ (x, q1, l2) =
Jnβ (x, q1, l2) if q = 0 or l2 = 1

min{Jnβ (x, q1, 0) , Jnβ (x− 1, q1, 1)} if x ≥ 1, l2 = 0

min{Jnβ (0, q1, 0) , Jnβ (0, q1 − 1, 1)} otherwise

As a result, for n ≥ 0, Jn+1
β (x, q1, l2) is written as

Jn+1
β (x, q1, l2) = (x+ q1 + l2) + βλTnβ (x+ 1, q1, l2)

+ βµmmpaT
n
β

(
x, (q1 − 1)

+
, l2

)
+ βµsub-6T

n
β (x, q1, 0)

+ βµpT
n
β

(
(x− 1)

+
, x+ q1 − (x− 1)

+
, l2

)
. (5)

Moreover, J0
β (x, q1, l2) = x+ q1 + l2.

Next, we define a class of functions with threshold property,
supermodularity and monotonicity in Definition 2 and Lemma
1 proves that Jnβ has these properties.

Definition 2. Let F be a class of functions such that for each
function f : N× N× {0, 1} → R≥0 in F , we have

f (x+ 1, q1, 0) + f (x+ 1, q1, 1)

≤ f (x, q1, 1) + f (x+ 2, q1, 0) (6)
f (x+ 1, q1, 0) + f (x, q1 + 1, 1)

≤ f (x, q1, 1) + f (x+ 1, q1 + 1, 0) (7)



f (0, q1 + 1, 0) + f (0, q1 + 1, 1)

≤ f (0, q1, 1) + f (0, q1 + 2, 0) (8)
f (x, q1 + 1, l2) ≤ f (x+ 1, q1, l2) (9)

together with supermodularity:

f (x, q1, 1) + f (x+ 1, q1, 0)

≤ f (x, q1, 0) + f (x+ 1, q1, 1) (10)
f (x, q1, 1) + f (x, q1 + 1, 0)

≤ f (x, q1, 0) + f (x, q1 + 1, 1) (11)

and monotonicity:
f (x, q1, l2) ≤ f (x+ 1, q1, l2) (12)
f (x, q1, l2) ≤ f (x, q1 + 1, l2) (13)
f (x, q1, 0) ≤ f (x, q1, 1) (14)

Eq. (6) to (8) describe the threshold property that is clarified
in Lemma 2.
Lemma 1. The optimal expected total discounted delay over
the next n time slots Jnβ satisfies all properties in Definition
2, i.e., Jnβ ∈ F for each n ∈ N.

Proof Idea. Note that J0
β ∈ F . By Eq. (5), it remains to show

that Tnβ ∈ F and then Jn+1
β ∈ F given Jnβ ∈ F . For the

detailed proof, please see our technical report [22].
Next, we use Lemma 1 to prove that each round of value
iteration corresponds to a threshold-type policy as expressed
by Lemma 2.

Lemma 2. For each round of value iteration, the correspond-
ing policy is of the threshold-type.

Proof Idea. It is known that Jnβ (0, 1, 0) ≤ Jnβ (1, 0, 0) ≤
Jnβ (0, 0, 1), which means that it’s better to hold the packet
in FastLane when there is only one packet in the system.
Then, we may show that Jnβ (x+ 1, q1, 0) − Jnβ (x, q1, 1) or
Jnβ (0, q1 + 1, 0)−Jnβ (0, q1, 1) increases as x+q1 increases. In
the case, as x+ q1 increases, the difference becomes positive,
which means that adding-to-sub-6 obtains priority. This can
be shown with inequalities and extended inequalities from
Lemma 1. For the detailed proof, please see our technical
report [22].
Finally, we use Lemma 2 to provide our main result that the
optimal policy is of the threshold-type.

Theorem 2. For the discounted delay optimality problem,
there exists an optimal stationary policy that is of the
threshold-type with threshold m ≤ ∞.

Proof. By Lemma 2, for each round of value iteration, cor-
responding policy is of threshold-type. Thus, as n → ∞, the
corresponding policy is also of the threshold-type, and the
policy is expected total discounted delay optimal policy.

Optimal Threshold: Theorem 3 proves that the value of
the threshold in the optimal policy of each iteration, increases
by at most one unit at the next iteration.
Theorem 3. If threshold value of the policy corresponding
to n-th value iteration is in, then the policy corresponding to
n+1-th value iteration has threshold value in+1 ∈ [0, in+1].

Proof. We re-express the system state as (y, l2), where y ∈
N denotes the queue length of FastLane. Then, Lemma 2 is
expressed as follows:

Jnβ (y + 1, 0) < Jnβ (y, 1) , if y ≤ in − 1; (15)

Jnβ (y + 1, 0) ≥ Jnβ (y, 1) , if y ≥ in. (16)

Since Jn+1
β (y + 1, 0) − Jn+1

β (y, 1) increases with y, it re-
mains to show that Jn+1

β (y + 1, 0) − Jn+1
β (y, 1) ≥ 0, when

y ≥ in + 1. In fact,
Jn+1
β (y + 1, 0)− Jn+1

β (y, 1)

=βλ
(
Tnβ (y + 2, 0)− Tnβ (y + 1, 1)

)
+βµp

(
Tnβ (y + 1, 0)− Tnβ (y, 1)

)
+ βµmmpaZ

+βµsub-6
(
Tnβ (y + 1, 0)− Tnβ (y, 0)

)
,

where Z = Tnβ (y, 0)− Tnβ (y − 1, 1) or Z = Tnβ (y + 1, 0)−
Tnβ (y, 1). Note that if D1 (y + 1, 0) = (y, 0), then D1 (y, 1) =
(y − 1, 1). On the contrary, if we assume that D1 (y, 1) =
(y, 1), then the only packet in the mmWave queue is reneged
to the sub-6 GHz interface. This only happens when y = 0
by the optimal policy, which contradicts with that y ≥ in + 1.
Since y ≥ in + 1 > in, we have
Tnβ (y + 1, 0)− Tnβ (y, 1)

(16)
= Jnβ (y, 1)− Tnβ (y, 1) = 0.

Similarly, we obtain that Tnβ (y + 2, 0) − Tnβ (y + 1, 1) = 0
and Tnβ (y, 0) − Tnβ (y − 1, 1) = 0. As for µsub-6 term, by
monotonicity, we have Tnβ (y + 1, 0)− Tnβ (y, 0) ≥ 0.

Remark: If we start with policy D0 and the optimal threshold
is m∗, then we can obtain the optimal threshold value in m∗

steps via policy iteration.

B. Average Delay Problem

The following theorem extends our results to the average
delay problem.

Theorem 4. There exists an optimal stationary policy of the
threshold-type for the average delay problem.

Proof. According to [23], limβn→1 (1− βn) J
π∗βn
βn

(q) =

Jπ
∗

(q), ∀q ∈ Q, where J
π∗βn
βn

(q) denotes optimal expected
total discounted delay under optimal policy π∗βn associated
with discount factor βn and Jπ

∗
(q) denotes optimal average

delay under optimal policy π∗. Since our action set is finite, by
[23], there exists an optimal stationary policy for the average
delay problem such that π∗βn → π∗, which implies the optimal
policy is of the threshold-type.

In order to obtain the optimal threshold for the average delay
minimization problem, we note that Theorem 3 also applies
to this case as well, and the proof follows the same logic by
removing the discount factor β in the proof of Theorem 3.

IV. SIMULATION RESULTS

In this section, we numerically investigate the performance
of our proposed policy. To this end, we first investigate the
relationship between the arrival rate and the optimal threshold.
Next, we demonstrate the benefits of utilizing the sub-6 GHz



paired with our threshold-type policy especially in heavy
traffic scenarios. Finally, we compare the performance of our
policy against the MaxWeight policy.

A. Relationship between Arrival Rate and Optimal Threshold

We investigate how the arrival rate λ affects the optimal
threshold of our policy. In simulations, we set µmm = µp =
100, µsub-6 = 1 and pa = 0.6. Then, we investigate how
average delay changes as threshold varies given a value of
λ ∈ {30, 35, 40, 45, 50, 55}. Our simulation results show that
for λ = 30, 35, 40, curves of average delay vs different
threshold are similar. For lack of space, we only provide results
for λ = 30 here.
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Fig. 5: Average Delay vs Threshold for various arrival rate.

For each result in Fig. 5 (corresponding to a certain λ),
the optimal threshold corresponds to the lowest average delay.
For example, in Fig. 5b (i.e., λ = 45), the optimal threshold
is 18. As shown in Fig. 5a, we can see that if the arrival rate
is not high, a small enough threshold provides low delay and
as the threshold increases, the delay does not change much.
This is because if packets arrive at system slowly, sum of
waiting and service times for each packet in mmWave line will
be probably less than service time of the sub-6 GHz server.
This implies that the mmWave server does not need the aid
of the sub-6 GHz server. On the contrary, adding packets to
the sub-6 GHz server increases delay. In addition, Fig. 5b to
Fig. 5d demonstrate that the optimal threshold decreases with
the arrival rate. This is expected since a faster arrival rate may
increase waiting time, which increases the chance of routing
through the sub-6 GHz interface.

B. Benefits from the Sub-6 GHz with Threshold-Type Policy

Considering the extremely different service rates of the
mmWave and the sub-6 GHz interfaces, would the system
delay benefit from the sub-6 GHz interface? In this section,
we demonstrate benefits of the sub-6 GHz interface to combat
the effects of blockage and intermittent connectivity, especially
under heavy traffic scenarios. To this end, we compare delay
performance in systems with and without the sub-6 GHz.
For the system with the sub-6 GHz (our integrated system),
the proposed threshold-type policy is utilized. For the system
without the sub-6 GHz server, no scheduling policy applies
since only mmWave interface exists in the system. To provide
a more clear exhibition of our simulation results, we define
relative delay improvement Ŵ as follows:

Ŵ =
W̄ (no sub-6)− W̄ (with sub-6)

W̄ (no sub-6)
,

where W̄ (with sub-6) and W̄ (no sub-6) denote the average
delay in the integrated system and that in the system without
the sub-6 GHz server, respectively.
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Fig. 6: Delay Performance vs Probability of Unavailable State.

In simulation, we investigate how Ŵ changes as probability
of unavailable state (i.e., pna) increases from 0 to the largest
value that ensures stability of the system under fixed arrival
rate. We repeat the simulation for different arrival rates. From
the results shown in Fig. 6a, we observe that for a certain
arrival rate, benefits of the sub-6 GHz interface become more
pronounced as the probability of unavailable state increases.
For instance, for the arrival rate of λ = 60, there is up to 70%
delay reduction using the integrated architecture paired with
the threshold-based policy. Furthermore, in order to exhibit the
excellent delay performance in heavy traffic scenarios, in Fig.
6, we introduce a system stability border which is a three di-
mensional plate that is expressed as λ = µsub-6 +(1−pna)µmm.
As shown in Fig. 6b, the sub-6 GHz interface becomes more
beneficial as either the arrival rate or probability of unavailable
state increases, i.e., heavy traffic scenarios.

C. Comparison with MaxWeight Policy
In this section, we investigate the performance of the

threshold-type policy compared with the MaxWeight policy.
Given that the optimal threshold is related to the arrival



rate, for each value of λ, we use the corresponding opti-
mal threshold. From Fig. 7, we note that the threshold-type
policy achieves a better delay performance compared with
the MaxWeight policy, while it provides a similar throughput
performance. We note that the advantage of our threshold-
type policy in delay performance over MaxWeight gets smaller
when the arrival rate increases.
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Fig. 7: Delay and throughput performance of our proposed
threshold-type policy compared with MaxWeight policy.

V. CONCLUSION

In this paper, we considered an integrated mmWave/sub-6
GHz architecture wherein the sub-6 GHz is used as a fallback
mechanism to combat blockage and intermittent nature of
the mmWave communication. In this case, packets can be
transmitted through the mmWave or sub-6 GHz interface
or both. We investigated the optimal scheduling policy such
that the expected total discounted delay and the average
delay are minimized and showed that the optimal policy is
of the threshold-type. Through numerical results, we further
demonstrated that utilization of sub-6 GHz paired with our
threshold-type policy can highly improve delay performance
under heavy traffic, and that the threshold-type policy actually
outperforms the MaxWeight policy in delay.
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