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Abstract—Unmanned Aerial Vehicle (UAV) networks have
emerged as a promising technique to rapidly provide wireless
services to a group of mobile users simultaneously in the three-
dimensional (3D) geographical space, where a flying UAV facility
can be deployed closely based on users’ 3D location reports.
The paper aims to address a challenging issue that each user is
selfish and prefers the UAV to be located as close to himself as
possible, by misreporting his location and changing the optimal
UAV location. We study the social planner’s problem to determine
the final deployment location of a UAV facility in a 3D space, by
ensuring all selfish users’ truthfulness in reporting their locations.
To minimize the social service cost in this UAV placement game,
we design a strategyproof mechanism with approximation ratio
2, when comparing to the social optimum. On the other hand,
as the UAV to be deployed may interfere with another group of
incumbent users in the same space, we also study the obnoxious
UAV placement game to maximally keep their social utility, where
each incumbent user may misreport his location to keep the UAV
away from him. We propose a strategyproof mechanism with
approximation ratio 5. Besides the worst-case analysis, we further
analyze the empirical performances of the proposed mechanisms
and show that they converge to the social optimum as the number
of users becomes large. Finally, we extend to the dual-preference
UAV placement game by considering the coexistence of the two
groups of users, where users can misreport both their locations
and preference types. We successfully propose a strategyproof
mechanism with approximation ratio 8.

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) as flying
cell cites is a promising technique to dynamically solve
the coverage problem of existing wireless networks [8].
Traditional base stations are deployed at fixed locations on the
ground for a long term by catering to the average traffic load
in the two-dimensional area, while flying UAVs’ deployment
does not have such constraint in space or time. Owing to
their agility and mobility, UAVs can be quickly deployed
as alternatives to meet time-varying traffic load. Wireless
carriers such as AT&T started to use UAVs to opportunistically
boost wireless coverage for crowds in big concerts and sports,
where people continuously post their selfies and videos online
[10]. Moreover, UAVs can be rapidly deployed in events
of disasters to enable air-to-ground communications if the
territorial base stations fail to work. For example, Verizon
successfully launched an exercise in mid 2017 to deploy UAVs
to Cape May, New Jersey, and provide local users with LTE
connectivity [11]. Upon UAV deployment, many of these UAV

placement schemes need to know users’ locations beforehand
for closely servicing them.

To fully reap the benefits of UAV-enabled wireless services,
one must decide the final UAV location to keep serving a
group of target users in a 3D geographical space. As the UAV
number is small as compared to the target user size, final
UAV placement needs to balance all target users’ different
locations. Such problems have been recently investigated in
the literature by assuming that the UAV knows the real
locations or at least the distribution of mobile users (e.g.,
[1], [15], [17]). For example, [1] aimed to maximize the
UAV’s wireless coverage on the ground, by considering the
air-to-ground signal propagation. [15] improved the energy-
efficiency of UAV communication with ground users by
designing the UAV’s trajectory. [17] studied how to minimize
the deployment delay of UAVs till providing the full wireless
coverage in the worse scenario. Differently, we aim to study
the optimal UAV placement without knowing any user’s
location information beforehand, by requesting users’ direct
information revelation.

In practice, it can be difficult to quickly collect users’
true location data, and traditional user positioning techniques
require multiple base stations’ continuous help or users’ GPS
reporting [3], [5]. When requiring UAV helps, ground network
infrastructure are often congested and may even fail to work
in events of disasters, which makes it difficult for accurately
tracking users’ locations [6]. It is desirable for the social planer
to directly ask users to report their own locations upon UAV
deployment. In this case, however, the key challenge for the
optimal UAV placement is that, users are selfish (preferring the
closest UAV location to themselves) and may not report their
true locations to help the UAV placement for best serving all
users. Consider an illustrative uplink example that we deploy a
UAV to a point in a line interval for serving user 1 at location
x1 = 0 and user 2 at location x2 = 2 simultaneously. Each
user prefers the final UAV location to be as close to his own
location as possible to obtain higher signal-to-noise ratio or
save the transmission power. If the two users report truthfully,
the UAV chooses to locate at the mean of the users’ locations
(i.e., x = 1). However, if user 2 misreports his location from
x2 = 2 to x′2 = 4 , then mean UAV location changes to
x = 2 which is the closest to user 2. In this paper, we aim
to study the strategyproof (truthful) mechamisn design, where
users should be motivated to report their locations truthfully.



Besides the UAV placement game, we also study the
obnoxious UAV placement game. As the new UAV facility
may interfere with another group of incumbent (adverse) users
in the same space, we want to best control the interference and
maximally keep these users’ social utility when locating the
UAV. In this game, we also require all such users to report their
locations for determining the UAV location, where a user may
misreport his location to mislead the final UAV location to
be further away from his true location to reduce interference
from the UAV signal.

Finally, as both UAV facility users (who prefer to be close
to the UAV) and adverse users (who prefer to be far away from
the UAV) may coexist at the same time, we want to reach the
good balance between service quality and interference control
when locating the UAV, and require strategyproof mechanism
design to ensure all involved users’ truthfulness in reporting
locations and even preference types.

In our paper, we study a family of strategyproof mechanisms
for the three kinds of UAV placement games in the 3D space.
Our key novelty and main contributions are summarized as
follows.
• Novel UAV placement games under information

asymmetry: To our best knowledge, our paper is the
first to propose and analyze UAV placement games
for optimal wireless service provision without knowing
target users’ locations. We completely study a UAV
placement game for facility users, an obnoxious UAV
placement game for adverse users, and a dual-preference
UAV placement game for both groups of users, where
users are selfish and may misreport their locations
to mislead the UAV placement. We aim to propose
strategyproof mechanisms for these three games to
ensure truthful location reporting and optimize the social
cost/utility.

• Mechanism design for the UAV placement game: In
Section III, we propose two strategyproof mechanisms
such that any user’s misreporting of his locations can
only increase his service cost. Especially, we design
the weighted median strategyproof mechanism with
approximation ratio 2, when comparing to the social
optimal cost under ideally full information. Besides
the worst-case analysis of the proposed strategyproof
mechanisms, we also analyze the empirical performances
of the mechanisms and show that they converge to the
social optimum as the number of users becomes large.

• Mechanism design for the obnoxious UAV placement
game: In Section IV, we consider the opposite problem of
locating an obnoxious UAV facility in the 3D space. Each
user attempts to stay far away from the UAV to reduce
its signal interference, by misreporting his location.
Our target is to design strategyproof mechanisms of
UAV placement to maximally keep the social utility.
Accordingly, we design a strategyproof mechanism with
approximation ratio 5. Our empirical analysis further
shows that proposed mechanism converges to the social
optimum as the number of users becomes large.

• Mechanism design for the dual-preference UAV
placement game: In Section V, we extend to the general

Fig. 1: System model about the UAV placement on the 3D
space. There are generally two types of users: type 1 (facility
users) and type 2 (adverse users). In the UAV placement game,
all users are of type 1; in the obnoxious UAV placement
game, all users are of type 2; and in the dual-preference UAV
placement game, both types of users coexist.

case of the dual-preference UAV placement game by
including both facility users and adverse users. Besides
locations, we further allow users to misreport their
preference types. We successfully design a mechanism
with approximation ratio 8.

A. Related work
There are some studies on the generic facility location

game and strategyproof mechanisms to prevent users from
misreporting locations. Such mechanisms are just based on
users’ location reports and are easy to implement (without
using complicated schemes such as pricing). For example,
[12] studied median strategyproof mechanisms with provable
approximation ratios on a one-dimensional line, which gives
us some inspiration of building our Strategyproof mechanism
in the UAV placement game. [13] provided characterizations
of strategyproof mechanisms on special line, tree, and
cycle networks. In the obnoxious facility location game,
the mechanism design for the objective of maximizing total
utility was first studied by [2]. It presented a 3-approximation
group strategyproof deterministic mechanism. [7] provided the
randomized strategyproof mechanism with the approximation
ratio of 4 in general metric spaces. [18] investigated the
properties of the facility location game with dual-preference.

Such works mostly focus on facility placement in one-
dimension, while the real UAV placement is in 3D. Further,
our paper practically models that users have different wireless
service sensitivities (weights) and preference types for the
UAV and they can also cheat on such data (besides their
locations). Such unique wireless features translate to a new
problem objective and require new methods in designing the
strategyproof mechanisms and proving approximation ratios.

II. SYSTEM MODEL

Let N = {1, 2, · · · , n} be the set of users that are
located in the 3D space I3. Without loss of generality,
we suppose I3 is a finite cuboid [0, 2A] × [0, 2B] ×
[0, 2C] containing all n users as shown in Fig. 1. The



real location of user i ∈ N is (xi, yi, zi) ∈ I3. We
denote x = (x1, x2, · · · , xn), y = (y1, y2, · · · , yn) and z =
(z1, z2, · · · , zn) as users’ location profiles in the 3D space.
Depending on the users’ locations, the final UAV’s location
is denoted as point (x, y, z). The distance between user i and
the UAV after deployment thus is d((xi, yi, zi), (x, y, z)) =√

(xi − x)2 + (yi − y)2 + (zi − z)2.
We first introduce the UAV placement game, where each

user (of type 1 in Fig. 1) prefers the UAV location to be
close to his own location for saving his service cost. The
service cost of a particular user i to associate with the UAV is
modelled as the weighted square distance to the UAV location
(x, y, z). This is motivated by a typical uplink UAV-enabled
communication scenario, where a user i consumes power ci
as his service cost to transmit signal to the UAV access point.
Following the widely used light of sight link model for UAV
communications [9], [16], his signal attenuates over distance
according to path loss exponent 2. To let the received signal
strength at the UAV exceed a decodable requirement wi, i.e.,
cid((xi, yi, zi), (x, y, z))

−2 ≥ wi, user i bears the minimum
service cost ci = wid((xi, yi, zi), (x, y, z))

2 as in [14]. Here,
weight wi > 0 models user i’s sensitivity in his specific traffic
application (e.g., voice or video), and he prefers the UAV to be
closely located for his cost saving. If a user has a larger weight,
the UAV should be located closer to him. We denote wi as user
i’s weight and w = (w1, w2, · · · , wn) as weight profile. Note
that Each user i’s weight wi can be estimated by the UAV and
is public information. Yet the UAV does not know the users’
location profiles x, y and z. We denote Ω = {x, y, z|w} as
the full user profile. The UAV’s objective is to minimize the
sum of weighted costs by choosing (x, y, z) based on users
location reports.

In the UAV placement game, a mechanism outputs a UAV
location (x, y, z) based on a given profile Ω and thus is
a function f : I3n → I3, i.e., (x, y, z) = f(x, y, z). As
explained, the cost of user i is his weighted square distance
to the UAV. The cost of user i is given by,

ci(f(x, y, z), (xi, yi, zi))

=wi((xi − x)2 + (yi − y)2 + (zi − z)2). (1)
Let x−i = (x1, · · · , xi−1, xi+1, · · · , xn), y−i = (y1, · · · ,
yi−1, yi+1, · · · , yn) and z−i = (z1, · · · , zi−1, zi+1, · · · , zn)
denote the location profiles for all users except user i. The
social cost of a mechanism f is defined as the sum of all
users’ costs, i.e.,

SC(f(x, y, z), (x, y, z)) =

n∑
i=1

ci(f(x, y, z), (xi, yi, zi)). (2)

In the following, we formally define the strategyproofness for
mechanism design in the UAV placement game.

Definition 1. A mechanism is strategyproof in the UAV
placement game if no user can benefit from misreporting
his location. Formally, given profile Ω = (< xi, x−i >,<
yi, y−i>,<zi, z−i>|w) ∈ I3n, and any misreported location
(x′i, y

′
i, z
′
i) ∈ I3 for any user i ∈ N , it holds that
ci(f((xi, yi, zi), (x−i, y−i, z−i)), (xi, yi, zi))
≤ci(f((x′i, y

′
i, z
′
i), (x−i, y−i, z−i)), (xi, yi, zi)).

For the UAV placement game, we are interested in designing
strategyproof mechanisms that perform well with respect to
minimizing the social cost. Given a location profile Ω, let
OPT1(x, y, z) be the optimal social cost. A strategyproof
mechanism f has an approximation ratio γ ≥ 1, if for
any location profile (x, y, z) ∈ I3n, γOPT1(x, y, z) ≥
SC(f, (x, y, z)).

Similarly, in the obnoxious UAV placement game, the UAV
faces a different group of n adverse users (of type 2 in Fig. 1
) and introduces downlink interference to them. They prefer
to be far away from the UAV and their (positive) weights
wi’s here tell their different interference sensitivities in their
traffic applications. We define adverse user i’s utility ui as
wid((xi, yi, zi), (x, y, z))

2 under interference, which is the
same as (1). ui nonlinearly increases with the distance from
the UAV. Opposite to the UAV placement game, the objective
in this game is to maximize the sum of weighted utility, by
designing strategyproof mechanisms f(x, y, z) for the UAV
placement. The social utility of a mechanism f is defined as:

SU(f(x, y, z), (x, y, z)) =
n∑

i=1

ui(f(x, y, z), (xi, yi, zi)). (3)

Next, we formally define the strategyproofness for the
obnoxious UAV placement game.

Definition 2. A mechanism is strategyproof in the obnoxious
UAV placement game if no adverse user can benefit from
misreporting his location. Formally, given profile Ω = (<
xi, x−i>,<yi, y−i, <yi, z−i> |w) ∈ I3n, and any misreported
location (x′i, y

′
i, z
′
i) ∈ I3 for user i, it holds that

ui(f((xi, yi, zi), (x−i, y−i, z−i)), (xi, yi, zi))
≥ui(f((x′i, y

′
i, z
′
i), (x−i, y−i, z−i)), (xi, yi, zi)).

For the obnoxious UAV placement game, we are interested
in designing strategyproof mechanisms that perform well with
respect to maximizing the social utility. Given a location
profile Ω, let OPT2(x, y, z) be the optimal social utility. A
strategyproof mechanism f has an approximation ratio γ ≥ 1,
if for any location profile (x, y, z) ∈ I3n, OPT2(x, y, z) ≤
γSU(f, (x, y, z)).

We will introduce the model of the dual-preference UAV
placement game in Section V, by combining the models of
the two games defined above.

III. UAV PLACEMENT GAME

In this section, we design strategyproof mechanisms for the
UAV placement game. According to (1) and (2), we have the
following social cost objective

SC(f, (x, y, z)) =

n∑
i=1

wi((xi − x)2 + (yi − y)2 + (zi − z)2),

which is a convex function with respect to (x, y, z). By
checking the first-order conditions, we obtain weighted mean
(x, y, z) = (x̄, ȳ, z̄) as the optimal location, where

x̄ =

∑n
i=1 wixi∑n
i=1 wi

, ȳ =

∑n
i=1 wiyi∑n
i=1 wi

and z̄ =

∑n
i=1 wizi∑n
i=1 wi

. (4)

However, this weighted mean mechanism is not strategyproof
as we explained in the illustrative example in Section I.



A. Design and Analysis of strategyproof mechanisms
In the following, we present two strategyproof mechanisms

inspired by the median mechanism on a line.

Mechanism 1. Given a profile Ω, return median location
(x, y, z) = med(x, y, z) = (xmed, ymed, zmed) as the UAV
location, where xmed is the median of x, 1 ymed is the median
of y and zmed is the median of z.

We change the optimal mean location to median location
in this mechanism. Before we show it is strategyproof and
evaluate its worst-case performance, we show Lemma 1 first.

Lemma 1. Given a set of numbers {a1, . . . , an}, we have∑n
i=1 (ai −m)

2 ≤ 2
∑n

i=1 (ai − µ)
2
, where m is median of

{a1, . . . , an} and µ is mean of {a1, . . . , an}.

Proof. It is true that |m−µ| ≤ σ from Minimization Property
of the Median [4], where σ is the standard deviation of set
{a1, . . . , an}. We have

|m− µ| ≤ σ

⇔n(m− µ)2 ≤
n∑

i=1

(ai − µ)2

⇔
n∑

i=1

(ai − µ)2 +

n∑
i=1

(µ−m)2 ≤ 2

n∑
i=1

(ai − µ)2

⇔
n∑

i=1

(ai − µ+ µ−m)
2 ≤ 2

n∑
i=1

(ai − µ)
2
,

since 2(µ−m)
∑n

i=1(ai − µ) = 0.

Theorem 1. Define wmax = max {w1, . . . , wn} and wmin =
min {w1, . . . , wn}. Mechanism 1 is a strategyproof mechanism
with approximation ratio 2wmax

wmin
as compard to the social

optimum.

Proof. First we prove Mechanism 1 is a strategyproof
mechanism. Assume x1 ≤ x2, . . . ,≤ xn without loss of
generality, and x-location of UAV xmed is xj (ie, x = xmed =
xj). If user i (i ≤ j) chooses to misreport his x location, we
have two situations: (i) The misreported x-value is smaller
than the original x-value xj and the x-value of the new
UAV location (ie, x) will not change; (ii) The misreported
x-value is greater than the original x-value xj and the x-value
of the new UAV location (ie, x) will not smaller than xj .
However, (xi − x)2 will not decrease which means his cost
wi((xi−x)2+(yi−y)2+(zi−z)2) will not decrease. Therefore
user i cannot decrease his cost by misreporting his xi and
similarly he cannot decrease his cost by misreporting his yi
and zi in the other independent directions. Similar arguments
hold symmetrically for i > j.

Next, we will prove γ. Observing similarities in x, y, z
domains, we can divide the optimal cost and the social
cost of Mechanism 1 into three additive parts. That is,
OPT1 = OPT1,x + OPT1,y + OPT1,z , where OPT1,x =∑n

i=1 wi(xi − x̄)
2, OPT1,y =

∑n
i=1 wi(yi − ȳ)

2 and

1If n is even, we choose the n
2

th-smallest value of x profile as xmed. This
location strategy is the same for location profiles y and z.

OPT1,z =
∑n

i=1 wi(zi − z̄)2; SC = SCx + SCy +

SCz , where SCx =
∑n

i=1 wi(xi − xmed)
2, SCy =∑n

i=1 wi(yi − ymed)
2 and SCz =

∑n
i=1 wi(zi − zmed)

2.
Due to symmetry, we only need to prove that in the x-

domain of the 3D space, γOPT1,x ≥ SCx, i.e.,

γ

n∑
i=1

wi(xi − x̄)
2 ≥

n∑
i=1

wi(xi − xmed)
2
. (5)

The summation on the left-hand-side of (5) satisfies
n∑

i=1

wi(xi − x̄)
2 ≥ wmin

n∑
i=1

(xi − x̄)
2

≥ wmin

n∑
i=1

(xi −
∑n

i=1 xi
n

)
2

.

Lemma 1 provides that

2

n∑
i=1

(xi −
∑n

i=1 xi
n

)
2

≥
n∑

i=1

(xi − xmed)
2
.

Additionally, the right-hand-side of (5) satisfies

wmax

n∑
i=1

(xi − xmed)
2 ≥

n∑
i=1

wi(xi − xmed)
2
.

By combining above inequalities we have

2
wmax

wmin

n∑
i=1

wi(xi − x̄)
2 ≥

n∑
i=1

wi(xi − xmed)
2
.

Similarly, in the y-domain and z-domain, we can derive the
same γ value. Therefore, γ = 2wmax

wmin
.

Mechanism 1 counts each user equally and does not
consider users’ weights. If users have diverse weights such
that wmax

wmin
is large, the approximation ratio γ is large. It should

be noted that Mechanism 1 also has its merit: since the social
planner doesn’t need to gather the information of weights from
users, it is strategyproof even if we allow users to misreport
their weights. Next we propose a better mechanism to achieve
a much smaller approximation ratio.

Mechanism 2. Consider x-domain first, we reorder
{x1, x2, . . . , xn} as {xj1 , xj2 , . . . , xjn}, with xj1 ≤ xj2 ≤
· · · ≤ xjn . Define xwmed as a particular xjq , where integer q
satisfies

∑
i≤q wji ≥

∑
i>q wji and

∑
i<q wji <

∑
i≥q wji .

In y−domain and z−domain, y and z follow the same strategy.
Given a profile Ω, return weighted median wmed(x, y, z) =
(xwmed, ywmed, zwmed) as the UAV location.

Theorem 2. Mechanism 2 is a strategyproof mechanism with
approximation ratio 2.

Proof. First we can follow the similar analysis of
strategyproofness proof in Theorem 1 to prove that Mechanism
2 is strategyproof.

Now we prove the approximation ratio. By following the
same process in the proof of Theorem 1, we divide optimal
cost and social cost into three parts. Due to symmetry, we only
need to consider x-domain, and only need to prove

n∑
i=1

wi(xi − xwmed)
2 ≤ 2

n∑
i=1

wi(xi − x̄)
2
. (6)



Without loss of generality, we rescale each wi uniformly as an
integer in this proof. By partitioning user i into a number wi

of small users with unit weight 1, we obtain a new sequenced
set of profile x :

{xj1 , . . . , xj1︸ ︷︷ ︸
wj1

, xj2 , . . . , xj2︸ ︷︷ ︸
wj2

, . . . , xjn , . . . , xjn︸ ︷︷ ︸
wjn

}. (7)

Then we rewrite (6) as
n∑

i=1

(xji − xwmed)
2

+ · · ·+ (xji − xwmed)
2︸ ︷︷ ︸

wji

≤2

n∑
i=1

(xji − x̄)
2

+ · · ·+ (xji − x̄)
2︸ ︷︷ ︸

wji

. (8)

Note that xwmed is the median in set (7) and x̄ is the mean
in (7). According to Lemma 1, we can prove (8). Thus, (6)
holds in x-domain and we can similarly obtain the same
γ = 2 in y-domain and z−domain. Hence, 2OPT1(x, y, z) ≥
SC(wmed(x, y, z), (x, y, z)).

Comparing Mechanisms 1 and 2, we can see that
Mechanism 2 achieves better worst-case performance. We will
show in subsection III-B that these two mechanisms perform
analogously in average sense.

B. Empirical Analysis of Mechanisms 1 and 2
So far we have only analyzed the approximation ratios for

the two mechanisms in the worst case. In this subsection,
we present empirical analysis to further evaluate the average
performances of the mechanisms. In Mechanism 1, we choose
median location as the UAV location and we define the social
cost ratio by comparing to the optimum:

Ratio.1 =
SC(med(x, y, z), (x, y, z))

OPT1(x, y, z)
.

In Mechanism 2, we choose weighted median location as the
UAV location and we define the empirical social cost ratio:

Ratio.2 =
SC(wmed(x, y, z), (x, y, z))

OPT1(x, y, z)
.

Note that Ratio.1 and Ratio.2 are random variables,
depending on distributions of x, y and z, while approximation
ratio γ characterizes the maximum of each ratio in the worst-
case.

We do simulations for Mechanisms 1 and 2 when n is
finite. For simplicity, we assume I3 = [0, 1]3, where each
user’s location follows the continuous uniform distribution in
I3 and every wi follows the continuous uniform distribution
in [0, 1]. Fig. 2 shows the means of the two random ratios in
Mechanisms 1 and 2 decrease to 1 as the number of users
increases. Similar to the prior worst-case analysis, Fig. 2 also
shows that in the average-case, Mechanism 2 outperforms
Mechanism 1, as the mean of Ratio.2 is smaller than the
mean of Ratio.1 given any fixed number of users. Yet such
advantage is no longer obvious once n > 10. Interestingly,
from Fig. 2 we can observe that Ratio.1 with odd number n
(n = 2k − 1 with natural number k) of user size is smaller

Fig. 2: Means of Ratio.1 and Ratio.2 versus user number n

than Ratio.1 with neighboring even number n (n = 2k). This
is because if n is odd, med(x, y, z) can be relatively closer to
(x̄, ȳ, z̄), as compared to the case that n is even.

As the number n of users goes to infinity, Ratio.1 in
Mechanism 1 and Ratio.2 in Mechanism 2 converge in
probability towards 1, given all xi’s, all yi’s, all zi’s
and all wi’s are independent and identically distributed,
respectively, and all xi’s, all yi’s and all zi’s follow
continuous symmetric distributions (including normal, uniform
and logistic distributions), respectively.

IV. OBNOXIOUS UAV PLACEMENT GAME

In this section, we design a strategyproof mechanism for the
obnoxious UAV placement game, where all n users view the
UAV obnoxious due to the introduced interference and want
to be far away from the UAV. We want to maximally keep
their social utility.

A. Design and Analysis of strategyproof mechanism
We first analyze the optimal UAV location under full

information. We divide the 3D space into x-domain, y-
domain and z-domain. Similarly, we split social utility as
SU = SUx + SUy + SUz. We first consider x-domain. By
using x̄ in (4), we rewrite the social utility (3) in x-domain as

SUx(f, x) =

n∑
i=1

wi((xi − x̄) + (x̄− x))2

=

n∑
i=1

wi((xi − x̄)2 + (x̄− x)2) + 0.

Similarly, we can obtain SUy , SUz and finally SU as

SU(f, (x, y, z))=((x− x̄)2 + (y − ȳ)2 + (z − z̄)2)

n∑
i=1

wi

+

n∑
i=1

wi((xi − x̄)
2

+ (yi − ȳ)
2

+ (zi − z̄)2).

We can see that SU(f, (x, y, z)) is linear with the square
of the distance between the UAV location (x, y, z) and the
weighted mean (x̄, ȳ, z̄). As (x, y, z) is bounded in the cuboid
I3 = [0, 2A]× [0, 2B]× [0, 2C], the optimal UAV location for



maximizing the social utility is one of eight vertices in cuboid
I3 which is furthest from point (x̄, ȳ, z̄). By considering x-
domain, y-domain and z-domain separately, we obtain the
optimal UAV location as

xopt =

{
0 if x̄ ≥ A,
2A if x̄ < A;

yopt =

{
0 if ȳ ≥ B,
2B if ȳ < B;

and zopt =

{
0 if z̄ ≥ C,
2C if z̄ < C;

(9)

This optimal solution is not strategyproof (consider this
illustrative example: there are user 1 at x1 = 0.2 and user
2 at x2 = 0.6 in domain I = [0, 1]. User 2 can misreport his
location to x′2 = 1 to keep the UAV away from him at x=0).
Next we design a strategyproof mechanism.

Mechanism 3. Set UAV location f = (x, y, z), where

x =

{
0 if

∑
xi∈[0,A) wi ≤

∑
xi∈[A,2A] wi;

2A otherwise,

y =

{
0 if

∑
yi∈[0,B) wi ≤

∑
yi∈[B,2B] wi;

2B otherwise,

and

z =

{
0 if

∑
zi∈[0,C) wi ≤

∑
zi∈[C,2C] wi;

2C otherwise.

In Mechanism 3, we compare the total user weights in [0, A)
and [A, 2A] of the x-domain, and place the obnoxious UAV to
the corner with the smaller total weight. Similarly, we place the
UAV in y-domain and z-domain for the weighted majority’s
benefit.

Theorem 3. Mechanism 3 is a strategyproof mechanism with
approximation ratio 5 in the obnoxious UAV placement game.

Proof. We only consider x−domain location first to prove
strategyproofness, as y-domain and z-domain can be
analyzed similarly. Assume, without loss of generality, that∑

xi∈[0,A) wi ≤
∑

xi∈[A,2A] wi. Thus UAV’s x−location of
Mechanism 3 is x = 0. We can see that any user in [0, A)
prefers x = 2A and any user in [A, 2A] prefers x = 0.
Any user in [A, 2A] is not willing to misreport his x-domain
location; while any user in [0, A) can not change the fact that∑

xi∈[0,A) wi ≤
∑

xi∈[A,2A] wi by misreporting his x-domain
location. Thus Mechanism 4 is strategyproof. Next we prove
approximation ratio γ.

We also define OPT2 = OPT2,x +OPT2,y +OPT2,z and
we analyze x-domain first. Without loss of generality, assume
that x̄ ≥ A and the other case that x̄ < A can be analyzed
similarly. In this case,

A ≤
∑n

i=1 wixi∑n
i=1 wi

≤ 2A.

The optimal x−location of the UAV is 0. Mechanism 3 has
the largest approximation ratio γ in x-domain when choosing
x = 2A under condition:∑

xi∈[0,A)

wi >
∑

xi∈[A,2A]

wi. (10)

(a) Distribution of users’ locations
xi’s in x-domain

(b) Probabilities of Mechanism 3
equal to optimal location

Fig. 3: Skewness of asymmetry distribution of users’ locations
versus convergence rate to optimal placement

The optimal social utility at xopt = 0 in x-domain is

OPT2,x(x) =
∑

xi∈[0,A)

wix
2
i +

∑
xi∈[A,2A]

wix
2
i . (11)

Under Mechanism 3, the social utility at x = 2A in x-domain
is

SUx(f, x) =
∑

xi∈[0,A)

wi(2A− xi)2 +
∑

xi∈[A,2A]

wi(2A− xi)2.

(12)
To determine the maximum approximation ratio γ, we want
to increase the optimal social utility in (11) and reduce the
social utility of Mechanism 3 in (12). We purposely design
xi = A for all xi ∈ [0, A) and xi = 2A for all xi ∈ [A, 2A].
By substituting these new xi’s into (11) and (12), we obtain
the largest optimal social utility in x-domain,

OPT2,x(x) =
∑

xi∈[0,A)

wiA
2 +

∑
xi∈[A,2A]

wi(2A)2, (13)

and the smallest social utility under Mechanism 3 in x-domain,

SUx(f, x) =
∑

xi∈[0,A)

wiA
2 + 0. (14)

Due to (10), by comparing (13) and (14), we have

OPT2,x(x) ≤
∑

xi∈[0,A)

wiA
2 +

∑
xi∈[0,A)

wi(2A)2 = 5SUx(f, x).

We follow the same process in y-domain and z-domain, and
obtain the same γ. Hence, we conclude OPT2(x,y)

SU(f,(x,y)) ≤ 5 and
γ = 5.

B. Empirical Analysis of Mechanism 3
In this subsection, we present empirical analysis to evaluate

the average performances of Mechanism 3. We provide
empirical simulations in Fig. 3 for Mechanisms 3 when n
is finite. For simplicity, we assume I3 = [0, 1]3, each user’s
location follows asymmetric Beta distribution in I3 and every
wi follows the continuous uniform distribution in [0, 1]. We
have two groups of simulations for comparisons. We can see
from Fig. 3(a), distribution Beta(2,5) has larger skewness than
Beta(2,3), and provides faster convergence rate for Mechanism



3 towards the social optimum, as observed from Fig. 3(b).
Intuitively, a larger higher skewness of users’ distribution tells
a higher probability of UAV location of Mechanism 3 equal
to the optimal UAV location.

As the number of users n goes to infinity, the probability
that UAV location (x, y, z) under Mechanism 3 equals the
socially optimal location goes to 1, given all xi’s, all yi’s, all
zi’s and all wi’s are independent and identically distributed,
respectively, and all xi’s, all yi’s and all zi’s follow continuous
asymmetric distributions (including Beta distribution and skew
normal distribution), respectively.

V. DUAL-PREFERENCE UAV PLACEMENT GAME

In this section, we design the strategyproof mechanism in
the dual-preference UAV placement game. For the ease of
exposition , we assume all users’ weights as 1, i.e., wi = 1,
for any i ∈ N , and our results can also be extended to the
weighted case, where users’ weights can follow any general
distributions.

As shown in Fig. 1, each user has his own preference type
and we define user i’s type as θi which is either 1 or 2. A user
i with θi = 1 (facility user) prefers to be close to the UAV and
a user i with θi = 2 (adverse user) prefers to be far away from
the UAV. We denote Θ = {θ1, . . . , θn} as the profile of all n
users’ preferences. Still, the UAV need to gather information
of users’ preference types and users’ locations to determine
(x, y, z). Given the location of the UAV (x, y, z), we define a
user i’s utility as

ui((x, y, z), (xi, yi, zi, θi))

=


(2A)2 − (xi − x)2 + (2B)2 − (yi − y)2 + (2C)2

−(zi − z)2, if θi = 1,

(xi − x)2 + (yi − y)2 + (zi − z)2, if θi = 2.

Note that we have used the service cost for a type 1 user
(facility user) in Section III, which is equivalent to the user’s
utility −(xi−x)2−(yi−y)2−(yi−y)2. To make our definition
of approximation ratio meaningful, we require nonnegative
utilities and purposely add (2A)2 + (2B)2 + (2C)2 to the
utility. This technique is widely used (e.g., [18]) and does not
change our main results.

Definition 3. A mechanism is strategyproof in the dual-
preference UAV placement game if no user can benefit from
misreporting his location and preference type. Formally, given
location profile Ω = (< xi, x−i >,< yi, y−i >,< zi, z−i >
) ∈ I3n, preference profile Θ, and any misreported location
(x′i, y

′
i, z
′
i) ∈ I3 and preference type θ′i for user i ∈ N , it

holds that

ui(f((xi, yi, zi, θi), (x−i, y−i, z−i,Θ−i)), (xi, yi, zi, θi))
≥ui(f((x′i, y

′
i, z
′
i, θ
′
i), (x−i, y−i, z−i,Θ−i)), (xi, yi, zi, θi)).

Given a location profile Ω, let OPT3(x, y, z,Θ) be the
optimal social utility in this game. A strategyproof mechanism
f has an approximation ratio γ ≥ 1, if for any location profile
(x, y, z,Θ) and Θ, OPT3(x, y, z,Θ) ≤ γSU(f, (x, y, z,Θ)).

We can see that the social utility function is quadratic
and it is not difficult to derive the optimal UAV location
by checking the first-order condition. However, the optimal

location is not a strategyproof mechanism and we need to
design a stragetyproof mechanism.

Mechanism 4. Consider x-domain first and define two user
sets

R = {i : θi = 1, xi ≥ A} ∪ {i : θi = 2, xi ≤ A}

and

L = {i : θi = 1, xi < A} ∪ {i : θi = 2, xi > A}.

The x-location of the UAV is x = 2A if |R| ≥ |L| and x = 0
otherwise. The y−location and z−location of the UAV follow
the same placement rule in their domains.

Actually, Mechanism 4 for the dual-preference UAV
placement game derives from Mechanism 3 for the obnoxious
UAV placement game. This new mechanism further considers
that users may cheat on their preference types (besides
locations).

Theorem 4. Mechanism 4 is a stragegyproof mechanism with
approximation ratio 8.

Proof. We only consider x−location, as y-location and z-
location can be analyzed similarly. Assume, without loss of
generality, that |R| < |L|. Thus UAV location of Mechanism
4 is x = 0. We can see that any user in R prefers x = 2A and
any user in L prefers x = 0. Any user in L is not willing to
misreport his x-domain location and preference type; any user
in R can not change the fact that |R| < |L| by misreporting
his x-domain location and preference type. Thus Mechanism
4 is strategyproof. Next we prove approximation ratio γ.

Let R1 = {i : θi = 1, xi ≥ A}, R2 = {i : θi =
2, xi ≤ A} and L1 = {i : θi = 1, xi < A}, L2 =
{i : θi = 2, xi > A}. Social utility in Mechanism 4 is∑

i∈L2∪R2
x2i +

∑
i∈L1∪R1

(4A2 − x2i ). We should prove for
any optimal location x and user location xi, the approximation
ratio γ∑

i∈L2∪R2
(xi − x)2 +

∑
i∈L1∪R1

(4A2 − (xi − x)2)∑
i∈L2∪R2

x2i +
∑

i∈L1∪R1
(4A2 − x2i )

(15)

is at most 8. We split the proof into two parts.
First we consider the case that x ∈ [0, A] for the optimal

UAV location. By checking the value ranges of xi and x, the
numerator of (15) is,∑

i∈L2∪R2

(xi − x)2 +
∑

i∈L1∪R1

(4A2 − (xi − x)2)

≤
∑
i∈L2

(2A)2 +
∑
i∈R2

A2 +
∑
i∈L1

(4A2 − 0) +
∑
i∈R1

(4A2 − 0)

=4|L2|A2 + |R2|A2 + 4|L1|A2 + 4|R1|A2

=(4|L2|A2 + 4|L1|A2) + (|R2|A2 + 4|R1|A2)

≤(4|L2|A2 + 4|L1|A2) + (4|R2|A2 + 4|R1|A2)

≤(4|L2|A2 + 4|L1|A2) + (4|L2|A2 + 4|L1|A2)

=8|L2|A2 + 8|L1|A2. (16)



By checking the value ranges of xi and x, we have the
denominator of (15),∑

i∈L2∪R2

x2i +
∑

i∈L1∪R1

(4A2 − x2i )

≥
∑
i∈L2

A2 +
∑
i∈R2

02 +
∑
i∈L1

(4A2 −A2) +
∑
i∈R1

(4A2 − 4A2)

=|L2|A2 + 3|L1|A2. (17)

Combining the results of (16) and (17), (15) gives that

γ ≤ 8|L2|A2 + 8|L1|A2

|L2|A2 + 3|L1|A2
≤ 8.

Then we consider the case that x ∈ (A, 2A]. By checking the
value ranges of xi and x, we have the numerator of (15),∑

i∈L2∪R2

(xi − x)2 +
∑

i∈L1∪R1

(4A2 − (xi − x)2)

≤
∑
i∈L2

A2 +
∑
i∈R2

(2A)2 +
∑
i∈L1

(4A2 − 0) +
∑
i∈R1

(4A2 − 0)

=|L2|A2 + 4|R2|A2 + 4|L1|A2 + 4|R1|A2

=(|L2|A2 + 4|L1|A2) + (4|R2|A2 + 4|R1|A2)

≤(|L2|A2 + 4|L1|A2) + (4|L2|A2 + 4|L1|A2)

=5|L2|A2 + 8|L1|A2. (18)

Combining the results of (18) and (17), (15) gives that

γ ≤ 5|L2|A2 + 8|L1|A2

|L2|A2 + 3|L1|A2
≤ 5.

Therefore, for any x ∈ [0, 2A], approximation ratio γ is 8
under the condition that |R| < |L|. Similarly, for the case that
|R| ≥ |L| in Mechanism 4, we can prove approximation ratio
is also 8.

As both groups of users with dual-preference are involved,
Mechanism 4 does not have convergence result with user
number n as in Fig. 2 or Fig. 3. As we have possibly both
types of users in the dual-preference UAV placement game,
it is more difficult to achieve an approximation ratio smaller
than 2 in the UAV placement game and 5 in the obnoxious
UAV placement game.

VI. CONCLUSIONS

We study the social planner’s problem to determine the
final deployment location of a UAV on a 3D space, by
ensuring selfish users’ truthfulness in reporting their locations.
To minimize the social cost in the UAV placement game,
we design the strategyproof mechanism with approximation
ratio 2, as compared to the social optimum under ideally full
information. We also study the obnoxious UAV placement
game to maximize the social utility of such interfered users
and propose a strategyproof mechanism with approximation
ratio 5. Besides the worst-case analysis, we show that the
empirical performances of the proposed mechanisms improve
with the number of users. We study the dual-preference UAV
placement game for the coexistence of the two groups of users,
and propose a strategyproof mechanism with approximation
ratio 8.

In the future we will consider the mechanism design
of mutiple facilties location games. Some of our proposed
mechanisms can be similarly applied. Take the two-UAVs
placement game in a line interval as an example, we can extend
our weighted median Mechanism 2 to respectively locate the
two UAVs at the first weighted quartile and third weighted
quartile of users’ location profile.
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