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Abstract—Mobile data offloading through complementary net-
work technologies such as WiFi and femtocell can significantly
alleviate network congestion and enhance users’ QoS. In this
paper we consider a market where mobile network operators
(MNOs) lease third-party deployed WiFi or femtocell access
points (APs) to dynamically offload the traffic of their mobile
users. We assume that each MNO can employ multiple APs and
each AP can concurrently serve traffic from multiple MNOs.
We design an iterative double auction mechanism that ensures
the efficient operation of the market, where MNOs maximize
their offloading benefits and APs minimize their offloading costs.
Such a mechanism incorporates the special characteristics of
the wireless network, such as the coupling of MNOs’ offloading
decisions and APs’ capacity constraints. The proposed market
scheme does not require full information about the MNOs and
APs, incurs minimum communication overhead, and creates non-
negative revenue for the market broker.

I. INTRODUCTION

Today we are witnessing an unprecedented worldwide

growth of mobile data traffic that is expected to reach 10.8
exabytes per month in 2016, an 18-fold increase compared

to 2011 [1]. These developments pose new challenges to

mobile network operators (MNO) who have to significantly

enhance their infrastructure accordingly. However, traditional

network expansion methods such as acquiring new spectrum

licences and upgrading technologies (e.g., from WCDMA to

LTE/LTE-A) are often costly [2] and time-consuming, and

more importantly are expected to be outpaced in less than 4
years by the continuing traffic increase [1]. Clearly, operators

must find novel methods to address this problem, and mobile
data offloading appears as one of the most attractive solutions.

Mobile data offloading refers to the technique of routing

the data traffic of mobile users of a macrocellular network

using alternative means such as WiFi or femtocell networks.

Nowadays, there is consensus that data offloading is a cost-

effective [3] and energy-prudent method that benefits both

the operators and the mobile users (MUs). Therefore, it is

not surprising that many MNOs have already deployed their

own WiFi access points (APs) to complement their traditional

macrocellular network [4], or initiated collaborations with
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Fig. 1. Each BS is managed by a different MNO and serves a set of MUs.
MUij represents the jth MU associated with BS i. An MU may be covered
by multiple APs and each AP may serve more than one MUs.

existing WiFi networks [5]. This approach is facilitated by

technological advances such as the HotSpot 2.0 protocol

which addresses related security issues [6]. This also leads

to interesting new network service models such as seamless

hybrid macrocellular - WiFi connection services [7].

Nevertheless, in order to fully reap the benefits of offload-

ing, the MNOs need to ensure that their clients will be able to

offload data as frequently as possible. However, a ubiquitous

access point deployment by the MNOs is very expensive and

even impractical in some cases (e.g., due to site acquisition

issues). An ideal method to overcome this obstacle and ensure

the high availability of APs is the employment (leasing) of

third party WiFi and femto APs, which are already installed in

homes or other venues (e.g., companies, stores). This strategy

will allow operators to handle mobile data traffic with reduced

capital and operational expenditures (CAPEX and OPEX), and

increase their network capacity on-demand.

However, AP owners are expected to ask for (monetary)

compensation, since admitting macrocellular traffic will con-

sume APs’ limited wireless resources and broadband connec-

tion capacities for their own (internal) traffic demand. Hence,

we need to understand: how much traffic each AP should
admit for each MNO and how much to charge? or, from

the perspective of the MNOs: how much traffic each MNO
should offload to each AP and how much to pay? In this

paper, we design a mechanism that addresses these issues by

taking into account the particular challenges of the wireless



data offloading.
Specifically, we envision an offloading market where a set of

MNOs (the buyers) compete to lease a set of APs (the sellers)

for the offloading service. We assume that the marketplace is

managed by a centralized broker who can be a state-managed

clearing house or a private company, similar as those in the

secondary spectrum market [8]. WiFi and femtocell AP owners

offer their services (i.e., offloading traffic for the MNOs) with

certain reimbursements. As shown in Figure 1, we look at the

general case where each AP can serve more than one MNOs,

and each MNO may lease multiple APs at different locations

to offload the traffic of its users (APs are overlapping). The

MNOs declare how much they are willing to pay each AP. The

broker collects the MNOs’ requests and the APs’ offers, and

determines how much traffic of each MNO will be offloaded

to each AP and at what price.
The challenge here is to design a market mechanism tailored

to the wireless offloading problem which, at the same time,

satisfies the desirable economic properties. We consider the

realistic scenario of a market with incomplete information,

i.e., where the broker is not aware of the actual needs of the

MNOs and the APs. Therefore, he must employ an incentive

compatible mechanism that induces the buyers (MNOs) and

the sellers (APs) to reveal truthfully their needs. With this

information, the broker tries to maximize the efficiency of the

market by properly matching the buyers and the sellers. At

the same time, the broker is not willing to lose money. Hence,

the mechanism should be (weakly) budget balanced, i.e., the

total payments from the buyers should not exceed the total

payments to the sellers.
A suitable scheme for this setting is a double auction

mechanism. Unfortunately, double auctions are notoriously

hard to design and implement [9]. They can be inefficient and

applicable only to certain simplified settings, e.g., for bidders

with single-unit demands (McAfee auction [10]), or they can

be budget imbalanced with a high computational complexity

(VCG auction [11]). In our case, the double auction design

problem is further perplexed due to the following realistic

issues that we explicitly take into account:

• (I1) The offloading benefit (utility) of each MNO is
AP-specific. For example, an AP that is located at the

boundary of an MNO’s cell is the most important for that

MNO, since it can offload the traffic that otherwise would

be very costly for the MNO to serve directly due to poor

channel condition between the MU and the base station.

However, an AP that is located close to the MNO’s base

station will be less useful.

• (I2) The offloading decisions of the MNOs are coupled.

The accrued benefit from offloading a given amount of

traffic to a certain AP depends on how loaded the MNO

already is, which in turn depends on its decisions of

offloading traffic to other APs.

• (I3) The APs are heterogeneous. That is, different APs

may have different costs for serving cellular traffic from

the same MNO. Besides, the same AP may also incur

different costs for serving traffic from different MNOs

due to different quality of service (QoS) requirements.

• (I4) The offloading decisions of the APs are coupled. An

AP’s cost for offloading certain amount of data for one

MNO also depends on the total traffic that the AP has

committed to offload for other MNOs.

In order to overcome the difficulties in double auction

design without compromising the system modeling, we choose

an alternative method based on the framework of Network
Utility Maximization (NUM) [12]. Our starting point is the

work of Kelly et al. [13] which introduced a Walrasian auction

for link capacity allocation in networks. In that scheme,

multiple buyers (the nodes) bid for bandwidth, and a single

seller (the network) determines the unit price for each link

so as to balance demand and supply. Here, we generalize this

one-side approach (i.e., with one seller, the network) [13] to

the case with many sellers (the APs) and many buyers (the

MNOs). Moreover, the prices in our scheme not only reflect

the APs’ capacity constraints but also their offloading costs1.

Specifically, our proposed mechanism is an iterative algo-

rithm that enables the broker to gradually reach the socially

efficient solution, without any prior knowledge for the market.

The MNOs and APs submit request and offer bids respectively,

in each round, responding to the prices announced by the

broker. A basic assumption of [13] is that bidders (i.e., the

MNOs and APs in our scheme) are price-takers. This means

that they do not anticipate (or cannot estimate) the impact of

their bids on the prices. Price-taking behavior is often observed

in markets with many buyers and sellers [14], or when each

bidder is not aware of the decisions of other bidders and/or

system parameters.

The main contributions of this paper are as follows:

1) We study a general market model where multiple op-

erators (MNOs) compete to lease multiple (possibly

overlapping) access points (APs) for data offloading.

Each MNO can concurrently lease several APs and each

AP can offload traffic for several MNOs at the same

time.

2) We apply an iterative double auction scheme which is

efficient (maximizes the social welfare), weakly budget

balanced (the broker does not lose money), individually

rational (MNOs and APs are willing to participate),

and incentive compatible (MNOs and APs reveal their

truthful needs/demands) under the assumption of price-

taking behavior.

3) The proposed scheme has low computational complex-

ity, induces small communication overheads, and clears

the market for general MNO utility (benefit) functions

and AP cost functions (only concavity is required). The

broker does not need to know these functions in advance

(incomplete market information).

4) The introduced framework considers important realistic

issues of the mobile data offloading problem, (I1) −
1For the distributed version of [13], it can be argued that there are multiple

bandwidth sellers, i.e. the links. However, the links only balance the traffic,
i.e. they do not have cost functions and do not submit bids.



(I4), which, as we explain in details in Section II, have

been overlooked until now by the related works.

The rest of this paper is organized as follows. In Section

II we review the literature and emphasize how it differs to

our work. In Section III we provide the system model and

formally introduce the problem. In Section IV we present the

mechanism and prove its properties, and in Section V we

provide numerical results. We conclude in Section VI.

II. RELATED WORK

The benefits of macrocellular data offloading to WiFi net-

works have recently been studied and quantified [15], [16].

Approximately 80% of mobile data traffic is generated and

consumed indoors [17], and hence can be offloaded to APs.

In [18] the authors studied optimal offloading strategies for

delay tolerant applications that take into account the delay

constraints of users. Clearly, the offloading benefits depend on

the availability of APs that are open and have extra capacity

to offload cellular traffic. Interestingly though, the problem

of incentivizing WiFi open access has received very little

attention until today.

Another option for offloading are femtocell access points

(FAPs) [19]. This presumes that FAPs operate in the so-

called open access mode and admit traffic from non-registered

macrocellular users. However, FAP owners are expected to be

reluctant to serve other users without proper compensation

[20]. This compensation can be either a price discount [21],

or a direct payment from the operator. A few related works in

this area study monopolistic markets (i.e., with one operator)

[22], or do not consider the challenges, (I1)− (I4), that arise

for the MNOs [23], [25].

In our previous work [24] we studied the interaction of

multiple MNOs and APs in offloading markets assuming that

there is complete information for all the market participants.

The problem is substantially different when one relaxes this

assumption. Markets with many buyers and sellers under

incomplete information are usually cleared through double

auctions. One option is to use the VCG mechanism which

exhibits a very high computational complexity and can yield

a budget imbalanced outcome [11]. Another prominent scheme

is the McAfee mechanism [10] which has recently been pro-

posed for spectrum allocation in secondary spectrum markets

[26] and for traffic relaying [27]. However, this mechanism

was originally designed for single-unit demands/offers of

homogeneous items, and there are very few extensions for

multiple or heterogenous items [26], [27]. In all cases, the

outcome is inefficient, which is an inherent characteristic of

McAfee auction.

In this paper, we adopt a different approach and use a

market mechanism based on the NUM framework [12] and

in particular motivated by the scheme in [13] for bandwidth

allocation in networks. This is a Walrasian auction which

maximizes the market welfare under the assumption that

bidders are price-takers. The latter is a valid assumption for

large markets where the bid of each player has an infinitesimal

impact on the prices, or for the case the bidders have limited

knowledge about the market (e.g., number of players and

system resources) and hence cannot estimate their impact [14].

At the expense of this assumption, we propose an iterative

double auction mechanism which satisfies all the desirable

economic properties. Our work substantially departs from the

algorithm in [13]. Namely, the resource sellers (the APs) in

our work, unlike the respective sellers (the links) in [13], try

to maximize their own net benefit instead of simply balancing

the traffic. This renders the proposed scheme appropriate for

the many-to-many interactions considered here, and leads to a

different behavior compared with [13]. A similar approach was

followed in our previous work [28] for bandwidth allocation

in peer-to-peer networks where however the objectives and the

solution method were significantly different.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we introduce the system model, and formu-

late the data offloading problem as a market design problem

where the objective is to maximize the social welfare.

A. System Model

We consider a system with a set M � {1, 2, . . . ,M} of

base stations (BS) owned by M different MNOs2, and a set

I � {1, 2, . . . , I} of APs. Each AP can be a WiFi or a

femtocell access point operating in a separate frequency band,

and hence does not interfere with the macrocellular network3

Each BS serves a group of mobile users (MUs) which are

randomly distributed within the BS’s coverage area and have

a lot of traffic to send. Each MU is also covered by one or

more APs. We assume that time is slotted and we study the

market for one time period. The MUs’ location and traffic

types may change over time but are considered fixed within

each period (slot).

Consider the case where each BS m ∈ M would like to

offload xmi ≥ 0 bytes of data through AP i ∈ I. We define

BS m’s offload request vector to all I APs as xm � (xmi)i∈I ,

and total offloaded data of BS m is Xm =
∑

i∈I xmi. A BS’s

request depends on the locations and traffic of its MUs. We

use Jm(xm) to denote BS m’s utility when offloading traffic

xm to the APs, which equals to BS’s cost reduction comparing

with the case that it serves xm directly4. We assume that Jm(·)
is a positive, increasing, and strictly concave function of vector

xm, satisfying the principle of diminishing marginal returns

[29].

Our model captures the following important aspects of the

offloading problem. First, the BS’s offloading benefit is in

general AP-specific. It not only depends on the total offloading

traffic (Xm), but also depends on which AP offloads how much

(the vector xm). For example, an AP located at the boundary

of the BS’s cell is more important since it can offload traffic

2For the rest of the paper we will use ”BS” and ”MNO” interchangeably.
3WiFi operates in the unlicensed ISM band, which is naturally separate

from the licensed cellular band. The femtocell may use a different band from
the macrocell base stations under the ”separate carrier” scheme [30].

4If an MNO manages more than one BSs, then the respective utility function
represents the joint offloading benefit.
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Fig. 2. Concave BS utility function, Jm(·), and convex AP function,
Vi(·). The numbered triangles have the same length - corresponding to equal
offloaded data increase - but different height (h): h2 > h1 and h4 < h3.

from MUs that are costly for the BS to serve directly (e.g.,

due to poor channel condition between the MU and the BS).
Second, for each BS m ∈M, its offloading decisions to the

different APs are coupled. Clearly, the benefit from offloading

traffic to an AP depends on the load of the BS, which in

turn depends on its offloading decisions to other APs. In other

words, even if two different strategies, xm and x̂m, suggest

equal amount of offloaded data to a certain AP i, xmi = x̂mi,

the respective utility improvements may differ:

Jm(xmi,x
−i
m )− Jm(0,x−i

m ) �= Jm(x̂mi, x̂
−i
m )− Jm(0, x̂−i

m )

where x−i
m � (xmj)j∈I\{i}, and x̂−i

m � (x̂mj)j∈I\{i}.
Each AP i ∈ I responds to offloading requests and admits

yim ≥ 0 bytes from each BS m in one time period. We define

the admitted traffic vector yi � (yim)m∈M. Clearly, a viable

market solution exists only if the BSs and APs finally agree

on the market outcome, i.e. if xmi = yim, ∀m ∈ M, ∀i ∈ I.

We use Vi(yi) to denote the cost incurred by AP i for serving

the BSs, which is a positive, increasing and strictly convex

function in vector yi. This property captures the fact that as

the admitted traffic by each AP increases, its operation cost

for admitting one more unit of traffic increases due to the

congestion effect and because less of its resources are available

for serving its own traffic [29], as illustrated in Figure 2.
The AP’s offloading cost depends on its own traffic demand

as well as the MUs’ traffic characteristics (e.g., the average

distance from the AP and the requested QoS). Similarly, an

AP’s incurred cost for admitting traffic for a certain BS,

depends on how loaded the AP already is, i.e. how much traffic

offloaded for other BSs. Finally, AP i ∈ I has a capacity of

Ci bps and hence the maximum amount of data that can be

admitted within a certain time period is Ci · T bytes:
M∑

m=1

yim ≤ Ci · T. (1)

Without loss of generality, we normalize the slot duration to

be T = 1. A key difference of our model from previous works

is that we use general utility and cost functions which allow

us to capture a wide range of wireless offloading systems. For

example, if the MUs of a BS are not covered by any AP, then

the respective offloading utility component is zero.

B. Problem Statement

Clearly, the objectives of the BSs and APs are conflicting

with each other. If they decide independently how much data

to offload or to admit, it is very difficult to reach an agreement

(i.e., xim = ymi, ∀m ∈M, ∀i ∈ I). Therefore, there is a need

for a market controller, a broker, with the task to find the

offload request matrix x � (xm)m∈M = (xmi)m∈M,i∈I and

the admitted traffic matrix y � (yi)i∈I = (ymi)m∈M,i∈I that

ensure the efficient operation of the market. This is achieved

when the total benefit for the MNOs is maximized and the

aggregate cost for the APs is minimized.

Specifically, the broker can find the optimal x and y by

solving the social welfare maximization (SWM) problem:

SWM : max
x,y

M∑
m=1

Jm(xm)−
I∑

i=1

Vi(yi), (2)

s.t.
M∑

m=1

yim ≤ Ci, ∀ i ∈ I, (3)

xmi = yim, ∀m ∈M, ∀ i ∈ I, (4)

xmi ≥ 0, yim ≥ 0, ∀m ∈M, ∀ i ∈ I. (5)

Notice that, technically, we could remove from SWM the

variables x by using (4). However, we keep this formulation

in order to facilitate the analysis and make clear the relation

of the SWM problem with the respective problems that each

BS and AP solves.5 The objective function of SWM is strictly

concave and the constraint set is compact and convex. Hence,

SWM admits a unique optimal solution that can be described

using the Karush-Kuhn-Tucker (KKT) conditions [31].

Specifically, we relax the constraints and define the La-

grangian:

L(λ,μ,x,y) =

M∑
m=1

Jm(xm)−
I∑

i=1

Vi(yi)

−
I∑

i=1

λi ·
( M∑

m=1

yim − Ci

)
+

M∑
m=1

I∑
i=1

μmi · (yim − xmi),

where λ � (λi ≥ 0)i∈I is the vector of Lagrange multipliers

corresponding to constraints (3), and μ � (μmi ∈ R)m∈M,i∈I
is the matrix of Lagrange multipliers for constraints (4). The

KKT conditions that yield the optimal solution, λ◦, μ◦, x◦,

y◦, for the SWM problem are given by the following set of

equations: ∀m ∈M, ∀ i ∈ I,

(A1) :
∂Jm(x◦

m)

∂xmi
= μ◦

mi, (A2) :
∂Vi(y

◦
i )

∂yim
= μ◦

mi − λ◦
i ,

(A3) : λ◦
i ·

( M∑
m=1

y◦im − Ci

)
= 0, (A4) : x◦

mi = y◦im,

(A5) : μ◦
mi · (y◦im − x◦

mi) = 0, (A6) : x◦
mi, y

◦
im, λ◦

i ≥ 0.

However, the direct SWM solution from the broker is not

possible due to the limited information the broker has for the

5This formulation is similar to the consistency pricing in [12] where
different nodes must agree on a common - system wide - solution



market. Namely, we assume that the broker is unaware of

the utility and cost functions Jm(·), ∀m ∈ M, and Vi(·),
∀ i ∈ I. Therefore, he has to use a mechanism (double

auction in this paper) to elicit this hidden information. Such a

mechanism should ideally be (i) efficient: maximize the social

welfare, (ii) individually rational: bidders do not get worse

by participating, (iii) incentive compatible: bidders truthfully

reveal (directly or indirectly) their private information, (iv)

(weakly) budget balanced: total payments to the broker are

nonnegative. Nevertheless, a fundamental result in mechanism

design is that there does not exist a double auction that

possesses all theses properties [9].

Here, we take a different approach and assume that bidders

are price takers. This assumption, which corresponds to a

perfect competition market, is reasonable for bidders with

bounded computational capabilities and/or limited informa-

tion, or for large markets with many participants where each

one has infinitesimal impact on the market prices.

IV. THE IDA MECHANISM

In this section, we present an Iterative Double Auction

(IDA) mechanism for price taking bidders. We prove that it

solves the mobile data offloading problem, taking into account

(I1)− (I4), and satisfies the desirable economic properties.

A. IDA Resource Allocation and Pricing Rules

The basic idea of this mechanism is that the broker solves

a different optimization problem to determine x and y which,

if it is combined with the proper pricing (for the BSs)

and reimbursement (for the APs) rules, ensures the optimal

solution of SWP. This scheme corresponds to a double auction

where many buyers (BSs) and many sellers (APs) interact in

an iterative fashion until the market reaches an efficient, i.e.

market clearing point.

The mechanism consists of two stages during each iteration.

In the first stage, each BS m ∈M submits a bid pmi ≥ 0, for

each AP i ∈ I, and each AP i ∈ I submits a bid αim ≥ 0 for

every BS m ∈M. These bids signal the offloading needs and

serving costs for the BSs and the APs respectively, and are

used as inputs in the allocation rule. Later on we will explain

the precise relationship between these bids and the actual BSs’

payments and APs’ reimbursements. In the second stage, the

broker determines the allocation (how much traffic each AP

will admit from each BS) based on the bids from two sides

by solving the broker allocation problem (BAP):

BAP : max
x,y

M∑
m=1

I∑
i=1

(
pmi log xmi − αim

2
y2im

)
, (6)

s.t.
M∑

m=1

yim ≤ Ci, ∀ i ∈ I, (7)

xmi = yim, m ∈ ∀M, ∀ i ∈ I, (8)

xmi ≥ 0, yim ≥ 0, ∀m ∈M, ∀ i ∈ I. (9)

Notice that the objective function is motivated by the allocation

rule of [13], with the additional convex component capturing

the (convex) increasing cost functions of the APs. We also

define the bid vectors pm � (pmi)i∈I and αi � (αim)m∈M
for every BS m ∈M and AP i ∈ I respectively.

The BAP problem has the same constraint set as the SWM

problem, and a different yet strictly concave objective function.

Hence, it admits a unique optimal solution. We define the

corresponding Lagrange function as

L(λ,μ,x,y) =

M∑
m=1

I∑
i=1

(
pmi log xmi − αim

2
y2im

)

−
I∑

i=1

λi ·
( M∑

m=1

yim − Ci

)
+

M∑
m=1

I∑
i=1

μmi · (yim − xmi) ,

and denote the optimal solution of the BAP problem as x∗,

y∗, λ∗, and μ∗. The corresponding KKT conditions yield a

set of equations (B1)−(B6), where (B3)−(B6) are identical

to (A3)− (A6) of SWM but the first two sets differ:

(B1) : x∗
mi =

pmi

μ∗
mi

, (B2) : y∗im =
μ∗
mi − λ∗

i

αim
(10)

for ∀m ∈M, ∀ i ∈ I. It is important to note that (10) defines

the allocation rule of our proposed mechanism.

Comparing equations (A1) − (A6) and (B1) − (B6), we

observe that if the BSs and the APs submit the following bids:

pmi = x∗
mi ·

∂Jm(x∗
m)

∂xmi
, αim =

1

y∗im
· ∂Vi(y

∗
i )

∂yim
, (11)

then the previously described two-stage scheme yields a

solution identical to the one of problem SWM in a single

iteration, i.e., x◦ � x∗ and y◦ � y∗. Clearly, the task of

the market designer here is to derive the proper payment and
reimbursement rules that will induce the players, i.e., the BSs
and APs, to bid according to (11).

We now look at the bidders’ behavior in the first stage.

Let hm(xm) denote the BS m’s payment to the broker for

the service it receives from the APs (vector xm). Similarly,

let li(yi) denote the AP i’s reimbursement from the broker

for the data it offloads (vector yi). Clearly, the payments and

reimbursements depend on the respective bids through the

auction allocation rule. The bidders are rational, price-taking

entities and optimize their bids by maximizing their utility and

cost functions.

Specifically, given the allocation rule defined in (B1) and

(B2), BSs and APs solve their own optimization problems in

order to find their optimal bids. Each BS m ∈ M finds the

optimal bid vector p∗
m by solving the following problem:6

BSP : max
pm�0

(
Jm(xm)− hm(xm)

)
, (12)

which yields the following optimality conditions:

∂Jm(xm)

∂xmi
= μmi

∂hm(xm)

∂pmi
, ∀i ∈ I. (13)

Similarly, each AP i ∈ I finds the optimal bid vector α∗
i by

solving the following problem:

APP : max
αi�0

(− Vi(yi) + li(yi)
)
, (14)

6Here pm � 0 means pm is a non-negative vector, i.e., pmi ≥ 0, ∀i ∈ I.



which yields the following optimality conditions:

∂Vi(yi)

∂yim
=

α2
im

λi − μmi

∂li(yi)

∂αim
, ∀m ∈M. (15)

Comparing the best responses of BSs, (13), and of APs,

(15), with those required by the socially optimal solution,

i.e. (11), we can immediately obtain the pricing rules that

will lead to the solution of SWM (i.e., the socially optimal

solution):

hm(pm) =

I∑
i=1

pmi, li(αi) =

M∑
m=1

(λi − μmi)
2

aim
, (16)

where we have written the payment hm(pm) by each BS m
and the compensation li(αi) to each AP i, as functions of the

respective bids. These rules are intuitive: each BS pays exactly
its bid, i.e., the amount it declared that is willing to pay. On the

other hand, the reimbursement (16) can be written using (B1)
as li(αi) =

∑M
m=1 yim(λi − μmi): each AP is reimbursed

proportionally to the amount of data that it offloaded weighted

by a factor indicating the congestion on its link (λi) and the

difference between the requested and admitted traffic (μmi,

which, by (B1) and (B2), is equal to
√
pmi · αim whenever

there is no link congestion).

B. IDA Algorithm
With the proper allocation rule (10) and payment rule (16),

the BSs and APs can compute the optimal bids in one round

and achieve an efficient market equilibrium, if they know

the complete network information (including the BSs’ utility

functions and APs’ cost functions). However, as the BSs and

APs do not have this information, there is a need for an

iterative algorithm that gradually adjusts the market operation

point to reach the desirable one.

The proposed scheme consists of the following consecutive

steps in each iteration. The broker solves the BAP problem

to determine the prices, and the BSs and APs solve their

own problems to determine their bids. Notice that the BAP

problem is parameterized by the bids of the buyers and

sellers. Solving BAP yields the matrices x and y and the

Lagrange multipliers λ and μ, which further determine the

prices hm(·) and li(·). Similarly, APP and BSP problems

are parameterized by the Lagrange multipliers of the BAP

problem. We exploit the decomposable structure of BAP, and

solve it by employing a primal-dual Lagrange decomposition

method [31]. This enables parallel and fast execution of the

algorithm.

The scheme is described in details in Algorithm 1. First, the

broker initializes the primal variables (i.e., x and y) and dual

variables (i.e., λ and μ), and announces the latter to the BSs

and APs (lines 1 − 3). Any set of initial values that satisfy

the complementary slackness constraints (A3, A5) is suitable,

for example y
(0)
im = Ci/M and x

(0)
mi = y

(0)
im for any λ

(0)
i , μ

(0)
mi .

Accordingly, the BSs and APs calculate their optimal bids by

solving their respective optimization problems (lines 7 − 8).

The broker collects the new bids and checks the termination

condition (line 9). Termination happens when the updated bids

are equal to the bids that were submitted in the previous

round7. Accordingly, the broker finds the new values for x
and y using the allocation rule of problem BAP (10) (line

10), and calculates the payments. Next, the new values of the

primal variables are used for the update, through a gradient

descent method, of the dual variables λ and μ, (line 12). The

new dual variables are announced to the bidders which will

use them to update their bids in the next step, in case the

algorithm has not converged.

Algorithm 1: Iterative Double Auction (IDA)

output: x∗, y∗, λ∗, μ∗

1 t← 0;

2 Initialize x
(0)
mi , y

(0)
im , μ

(0)
mi , λ

(0)
i , ∀m ∈M, i ∈ I;

3 Announce μ
(0)
mi and λ

(0)
i , ∀m ∈M, i ∈ I;

4 conv flag ← 0;

5 while conv flag = 0 do
6 t← t+ 1;

7 Each BS m computes the optimal bids p
(t)
m by (12);

8 Each AP i computes the optimal bids α
(t)
i by (14);

9 The broker collects all bids and checks termination:

if |p(t)mi − p
(t−1)
mi | < ε and |α(t)

im − α
(t−1)
im | < ε,

∀m ∈M, i ∈ I then
conv flag← 1;

end
10 The broker computes the new x(t), y(t) by (10);

11 The broker computes hm(x
(t)
m ) and li(y

(t)
i ), ∀m, i;

12 The broker uses gradient update for dual vars:

λ
(t+1)
i =

(
λ
(t)
i + st · (

∑M
m=1 y

(t)
im − Ci)

)+
, ∀i ∈ I,

μ
(t+1)
mi = μ

(t)
mi − st · (y(t)im − x

(t)
mi), ∀m ∈M, i ∈ I,

where st is a properly selected step size [31];

13 The broker announces μ(t+1) and λ(t+1);

end

C. Convergence Analysis of IDA Mechanism

Algorithm 1 converges to the optimal solution of problem

SWM under some mild conditions, since the SWP problem has

a strictly concave objective fucntion. We assume that the time

slot of the update is very small (or equivalently, the step size

is very small), hence we approximate the algorithm with its

continuous-time counter-part. Specifically, we consider that the

Lagrange multipliers are updated according to the following

differential equations (based on the gradient updates):

dλi

dt
=

( M∑
m=1

yim − Ci

)+

,
dμmi

dt
= xmi − yim,

where (·)+ is the projection onto the nonnegative orthant.

We prove the convergence of our two-sided algorithm

following the rationale of the proof in [32, Ch. 22], which

7In order to facilitate the numerical analysis, instead of strict equality we
check whether their difference is smaller than ε > 0 which is a very small
number.



was used to prove the one-side version of our algorithm in

[13]. Specifically, we define the following Lyapunov function:

Z(λ,μ) =

I∑
i=1

(λi − λ∗
i )

2

2
+

M∑
m=1

I∑
i=1

(μmi − μ∗
mi)

2

2
. (17)

and we prove that it is dZ(λ,μ)/dt ≤ 0.

By applying the chain rule, we obtain:

dZ(λ,μ)

dt
=

I∑
i=1

(λi − λ∗
i )
dλi

dt
+

M∑
m=1

I∑
i=1

(μmi − μ∗
mi)

dμmi

dt
,

which can be written as:

dZ(λ,μ)

dt
=

I∑
i=1

(λi − λ∗
i ) ·

( M∑
m=1

yim − Ci

)+

+

M∑
m=1

I∑
i=1

(μmi − μ∗
mi) · (xmi − yim),

or

dZ(λ,μ)

dt
≤

I∑
i=1

(λi − λ∗
i ) ·

( M∑
m=1

yim − Ci

)

+
M∑

m=1

I∑
i=1

(μmi − μ∗
mi) · (xmi − yim).

After some simple algebraic manipulations, we get:

dZ(λ,μ)

dt
≤

I∑
i=1

(λi − λ∗
i )
( M∑

m=1

yim −
M∑

m=1

y∗im
)

+

M∑
m=1

I∑
i=1

(μmi − μ∗
mi)(xmi − yim − x∗

mi + y∗im)

+

I∑
i=1

(λi − λ∗
i )
( M∑

m=1

y∗im − Ci

)

+

M∑
m=1

I∑
i=1

(μmi − μ∗
mi)(x

∗
mi − y∗im).

Using the complementary slackness and (A1), (A2), we have:

dZ(λ,μ)

dt
≤

M∑
m=1

I∑
i=1

[
(yim − y∗im)

(∂Vi(y
∗
i )

∂yim
− ∂Vi(yi)

∂yim

)

+ (xmi − x∗
mi)

(∂Jm(xm)

∂xmi
− ∂Jm(x∗

m)

∂xmi

)]
.

The above inequality is satisfied due to the following property

that holds for each concave function f(·) [31]:

f(y) ≤ f(x) +∇f(x)T (y − x). (18)

D. Properties of IDA Mechanism

From the analysis above, it is clear that the IDA algorithm

induces the BSs and the APs to bid truthfully, (12) and (14),

and according to the socially optimal bids, (11). In the sequel,

we prove that the algorithm is also weakly budget balanced

and individually rational.

Lemma 1. The IDA mechanism is weakly budget balanced.

Proof: The budget balance Λ(·) is defined as:

Λ(p,α) =

M∑
m=1

hm(pm)−
I∑

i=1

li(αi),

or, if we use (16), we get

Λ(p,α) =
M∑

m=1

I∑
i=1

pmi −
M∑

m=1

I∑
i=1

(λi − μmi)
2

aim
.

Notice that (10) is satisfied at the equilibrium. Hence,

Λ(p,α) =
M∑

m=1

I∑
i=1

x∗
mi · λ∗

i ≥ 0.

Additionally, the IDA mechanism ensures the voluntarily

participation of the bidders since they are guaranteed to have

at least zero net utility for all the possible market outcomes.

Lemma 2. The IDA mechanism is individually rational (IR).

Proof: For each BS m ∈ M, the IR condition can be

translated to the following constraint:

Jm(x∗
m)−

I∑
i=1

pmi ≥ 0, or Jm(x∗
m)−

I∑
i=1

x∗
miμ

∗
mi ≥ 0,

which can be written, using (13), as

Jm(x∗
m) ≥

I∑
i=1

x∗
mi ·

∂Jm(x∗
m)

∂xmi
. (19)

Since Jm(·) is strictly concave and Jm(0) = 0, the inequality

(19) is always satisfied according to the condition (18).

Similarly, for each AP i ∈ I, the IR condition

−Vi(y
∗
i ) + li(αi) ≥ 0 (20)

is satisfied according to the property (18).

V. SIMULATIONS

In this section we provide numerical results to validate our

theoretical analysis. We consider a small market with M = 5
BSs and I = 5 APs. The study can be easily extended to a

larger market. The BSs’ utility functions Jm(·), ∀m ∈ M,

and APs’ cost functions Vi(·), ∀ i ∈ I, are:

Jm(xm) = 10 ·
5∑

i=1

log(θmixmi), Vi(yi) = 0.1 ·
5∑

m=1

eρimyim

where θmi ≥ 0 represents the offloading efficiency of AP i for

BS m (i.e., the offloading benefit is AP-specific) and parameter

ρim ≥ 0 captures the fact that each AP may incur different

cost by serving a different BS. The capacity of each AP is

C = 15 Mbps.

Parameters ρim and θmi, ∀m ∈ M, ∀ i ∈ I, were chosen

with uniform independent probabilities from interval [0.5, 1].
For example, we used θ11 = 0.81 and θ21 = 0.59, which

means that BS 1 benefits more from service of AP 1 than BS

2 does. Indeed, the mechanism for these system parameters

yields y11 = 3.33 and y12 = 2.87. Notice also that, although

θ51 = 0.54 < θ11, BS 5 offloads more data to AP 1, i.e.

y15 = 3.59. This is due to the smaller cost that BS 5 induces

to AP 1 since the respective cost parameter is ρ15 = 0.61 while
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ρ11 = 0.74. Finally, the payments of the BSs 1, 2 and 5 are

p11 = 7.3, p21 = 6.29, and p51 = 6.63, respectively. Notice

that BS 5 pays less than BS 1 although it offloads more data

than the latter.

In Fig. 3, we plot the social welfare achieved by the

algorithm in each iteration and we observe that it gradually

converges to the optimal one, i.e. to the solution of SWM

(dotted line). In Fig. 4, we present the convergence of x and

y. Specifically, we plot the gaps between x and y for 4 BS-AP

pairs, and observe that the gaps gradually converge to zero.

These two figures imply that our IDA algorithm elicits the

true hidden information (i.e., the utility and cost functions),

and converges to the socially optimal solution.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we considered a market where MNOs lease

third-party owned WiFi or femtocell APs to offload their

mobile data traffic. This is a promising solution for increasing

the user perceived network capacity in a dynamic and scal-

able fashion, with low CAPEX and OPEX costs. Today, the

technologies to implement such solutions are already in place

(e.g., secure offloading methods). Data offloading can alleviate

congestion of 2G/3G cellular networks, and also serve as a

low-cost auxiliary technology for the emerging 4G networks.

We proposed an iterative double auction mechanism, which

satisfies the desirable economic properties, and maximizes

the welfare of the market, under the assumption of price-

taking bidders. There are very interesting directions for future

work. First, one can study what is the impact of strategic,

price-anticipating behavior in the market outcome. Similarly,

it is challenging to study how colluding behaviors will affect

the algorithm. Also, it is important to consider practical

implementation issues such as how to hardwire this algorithm

to APs and BSs so as to communicate with the broker and

execute IDA algorithm in a real-time fashion.
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