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Abstract. We describe the motivation and design of a novel embedded
systems architecture for large networks of small devices, tha canonical
example being wireless sensor networks. The architecture differs from
previous work in being based explicitly on a hardware/software co-design
approach centred around the deployment of novel programming language
constructs directly onto hardware in order to improve optimisation and
expressibility. The programming interface enables the dynamic down-
load and execution of domain-specific code to facilitate the development
of context aware pervasive computing systems whose behaviour must
adapt to their changing environment. To this end, the architecture im-
plements a virtual machine operating environment based on Scheme and
µClinux that encapsulates a CPU core, digital logic, generic I/O, network
interfaces and domain-specific programming language composition.

1 Introduction

A sensor network can be viewed as a large-scale distributed system composed
of diverse non-uniform hardware devices having both real-time performance and
low-power design constraints. Applications running on such platforms must gen-
erally adapt their behaviour in response to user tasks, sensed information, dy-
namic changes in connection topology and temporary/permanent problems with
the nodes and communications links present in the network. The adaption can
range from simple adjustments of parameters through to partial or complete re-
programming of individual nodes (or indeed the entire network). Thus a sensor
network can be viewed as a particularly demanding canonical example of a con-
text aware pervasive system where context represents the dynamically-changing
distributed environment from the point of view of nodes in the sensor network
that are collectively executing one or more distributed applications.

Conventional techniques for the development of pervasive systems have fo-
cused either on event-based systems where behaviour is specified using processing
tied to events, or on model-based systems using rules applied to a shared con-
text model. [4] argues that both approaches suffer from fragmented application
logic, and interactions between rules or events and processing must be analysed
in conjunction with environment state information to determine if they result



in correct and stable behaviour. Stability in the face of adaptation is thus the
major design challenge.

Emerging approaches to the development of pervasive systems utilise virtual
machines and/or domain specific programming. Maté[2] is one such approach
that has developed a virtual machine (VM) for nodes built directly on top of
TinyOS[3]. We contend, however, that there may be considerable advantage in
applying more advanced programming language approaches directly to sensor
networks. Specifically we believe that allowing sensors to be programmed using
their own domain-specific language constructs, taking advantage of innovations
such as aspect-oriented programming and proof-carrying code, may make a ma-
jor contribution towards the development of a stable, extensible, comprehensible
context-aware systems consisting of thousands of elements.

The vision described in this paper is thus motivated both by developments
in sensor hardware and platforms and by recent research in the semantics and
construction of programming languages for context aware pervasive computing
systems. We seek to combine the notion of context and dynamic domain specific
languages into a single infrastructure, by providing:

– a single logical target architecture that can be applied to all nodes in a sensor
network;

– an experimental hardware infrastructure based on µClinux[6]; and
– a reconfigurable programming platform using a Lisp- or Scheme[7]-like VM.

Our goal is to investigate language constructs for sensor networks while sat-
isfying real-time performance and low-power design constraints. The dynamic
domain-specific aspect we advocate differs from previous work in being based
explicitly on a hardware/software co-design approach supporting the deploy-
ment of novel programming language constructs directly onto the hardware in
order to improve optimisation and expressibility. This is significantly more ex-
tensible and portable than (for example) an implementation of Maté extended
to dynamically load binary code.

Section 2 presents some basic requirements for hardware in pervasive com-
puting systems in general and wireless sensor networks in particular, and then
discusses dynamic domain specific languages from a pervasive systems perspec-
tive. Based on this, section 3 offers a research agenda for co-designed context-
aware solutions, whose sensor network context is made concrete in section 4.
Finally, section 5 concludes with some pointers to the future.

2 Requirements for truly pervasive computing

The development of a pervasive computing application has two logical focal
points to its development: the local focus of a node and the collective focus of the
network in achieving the objectives of the network application when environment
and objectives are dynamically varying. Both focal points have hardware and
software components that need to function synergistically, and so are perhaps
best treated together.



2.1 Hardware requirements

Pervasive hardware suffers from a number of design constraints simply by virtue
of being targeted at inconspicuous placement in the environment. Sensor net-
works highlight these constraints particularly clearly – although it is important
to realise that they also apply more generally to systems that (for example)
include handheld and other elements. A non-exhaustive list of requirements for
such networks would include:

Self-organisation and adaptation A process must discover the availability
and quality of network routes that change dynamically with environmental
factors, mobility of nodes and temporary and permanent failures of nodes
and communication channels. Desirable adaptation features include customi-
sation of the communications protocol, medium access control and routing
information. Adaptation is essential as the local and collective roles of the
network and how data is processed and communicated are likely to be mod-
ified in response to changes in the environment, network applications in
execution and tasks requested of applications.

Security mechanisms Unauthorised modification of network applications (es-
pecially for sensor networks) must be prevented. In many applications there
may also be stronger privacy guarantees on the ability of outsiders to observe
the data sensed or the population of the network.

Discovery Many networks are self-discovering and self-configuring, in the sense
that there is no a priori communications or naming topology associated with
the elements. The population of nodes can change dynamically over time3,
and applications must be able to tolerate (and preferably benefit from) this
dynamism.

Power-aware Frequently there is no power distribution network physically con-
nected to nodes and power is delivered using batteries and/or is scavenged
from energy sources such as light, vibration, movement, stress or fluctuating
magnetic fields. A key requirement is the ability to start and stop hardware
services and to enter standby modes in order to reduce power consump-
tion. This is of particular importance for any radio interfaces for network
communication.

Synchronisation It is important to be able to synchronize time with groups
of nodes, both for applications having fine-grained temporal context and
to minimise power by ensuring that all nodes involved in communication
during a particular finite time period have powered up and started their
radio interfaces.

Each of these requirements consists of a hardware and a software compo-
nent, with the latter itself consisting of knowledge representation and processing
components. Power-aware systems, for example, have the following components:

3 This is even true in augmented materials where elements are embedded at fabrication
time. Element and communication failure make such materials dynamic, and it is
often too complicated to pre-determine node locations and connections even given
that they are embedded in a solid substrate.



Hardware The ability to logically start, stop, suspend and resume components,
often in response to events.

Knowledge A model of the current context of operation and the set of active
tasks in order to support decision-making and processing.

Processing Logic to decide which components may be stopped or suspended
in a given situation.

The two software components might typically be fused together, but there are
advantages to considering knowledge representation separately from processing.
Equally there are co-design challenges in ensuring that the hardware provides the
necessary features for software control, and that the software uses these features
as well as possible.

2.2 Dynamic domain-specific languages

The evolution of a particular domain-specific programming language can be
viewed as the search for the most appropriate mechanisms that express solutions
to problems encountered by application developers in the domain. No one lan-
guage can optimally represent all ways in which to solve a problem: consequently
many different languages and techniques have evolved to address different ap-
plication domains.

The significance of domain-specific languages is that they allow programmers
to express directly the concerns of importantance to that domain. By making
the concerns explicit, domain-specific languages can provide more structured
information to compilers and other tools to inform optimisation.

One approach at unifying disparate languages is aspect-oriented program-
ming[8] where a single language (or occasionally multiple languages[9]) is used
to develop separately the individual concerns of a problem. The number and type
of aspects are typically fixed at design time: they are then developed and tested
separately prior to “weaving” the aspects together late in the development cy-
cle. While aspect-oriented programming has had some successes, it cannot easily
integrate new aspects dynamically into the language or program.

A complementary approach is to allow languages themselves to be con-
structed from smaller elements, allowing the construction of domain-specific
systems via the composition of language component specifications[10]. A speci-
fication might include abstract syntax, concrete syntax, type rules, rewrite rules
and perhaps supporting libraries. Libraries need implementations, but the other
elements can be specified declaratively. A program can refer explicitly to the
language components in which it was developed as part of its source code. A lan-
guage is then defined by its components and associated evaluators4 necessary for
each of the components. An evaluator for a particular domain specific language
is dynamically constructed by compiling the evaluators for its components[5]. A
client that downloads a program implicitly discovers the programming language

4 An evaluator can be an interpreter or a compiler but we will largely use the term
compiler in the text.



at load time and need only create an evaluator for that particular language as
and when execution of the program is required.

Both techniques rely on combining a collection of largely independent frag-
ments in order to create a final program or language. To be useful, there must
be both an identifiable set of fragments and a collection of implementations to
provide a space within which different combinations may be tried.

3 Characteristic contributions from co-design to the
research agenda for context-aware platforms

Pervasive and context-aware computing rely on the ability to “inject” sensing and
computational intelligence into the wider environment, and so encourages the use
of microsensing, ad hoc wireless networking and advanced reasoning techniques.
There is an obvious tension between the requirements: it is relatively easy to
construct microsensors and deploy them in a wireless network, but their small
size and low power mitigates against including many of the advanced software
techniques that are otherwise highly appropriate for managing the network and
its results.

A pervasive computing network thus presents a programming platform op-
erating under a unique set of constraints (section 2). It seems unlikely that
programming languages evolved for different environments – desktops, servers,
and even relatively high-power stand-alone handheld devices – will capture these
constraints effectively. This is important both for systems designers (who may
not get the best out of their systems) and developers (who will struggle with an
inappropriate conceptual model and mode of expression).

However, the most important consideration comes from the ability to de-
ploy sophisticated software anywhere in the environment. Pervasive computing
in handicapped by being asymmetrical : most of the processing power resides
in large dedicated computers. A good example is when assets are tagged with
RF-ID tags: the infrastructure (typically a building) can “see” the asset tag, but
the asset cannot respond to or make its own determinations about its environ-
ment. Constructing applications from networks of low-power nodes goes some
way to restoring symmetry to the situation, in that they allow computing and
sensing within (rather than simply of ) the asset base. This is also important for
scalability.

We contend that the way to address these issues is to allow the language
used in developing pervasive applications to be designed alongside the
sensing infrastructure. This does not preclude familiar constructs or re-use
of ideas from other domains – actually quite the contrary – but suggests that
some novel forms will contribute strongly to the effective use of such
networks.

This tight coupling suggests that co-designed network elements may make
some distinctive contributions to the research agenda in context-aware, self-
deploying and self-managing pervasive computing. Without ignoring the other



issues of connectivity, protocols, security, discovery and so forth, here we con-
centrate on these novel contributions.

Desktop and server systems, despite differences in operating system and pro-
gramming language, present an overwhelmingly homogeneous platform for de-
velopers – a considerable effort has been expended to make this so. Embedded
networks are far more heterogeneous, and there is a danger that software will
become too targeted at individual elements’ capabilities to be able to deal with
failure or relocation. We need to understand what are the correct abstrac-
tions for targeting with heterogeneous networks efficiently without
over-commitment to particular details.

Pervasive – and especially sensor – networks can involve large numbers of
elements (of the order of thousands). This is far larger than anything dealt with
by all but a few distributed systems projects. We have little understanding of
how to efficiently distribute fine-grained functionality in such systems.
Such knowledge as does exist (largely from the high-performance computing
communities) deals with static situations: how we retain performance (in
the widest sense) from fine-grained systems that need to constantly
re-configure? It is important to remember that “performance” needs to be
understood broadly, as many pervasive computing systems may (for example)
stress low power consumption at the expense of processing capacity.

Domain-specific languages suffer to some extent from an over-abundance of
flexibility: developers require some stability, and one might argue that even a
sub-optimal stable core is preferable to a system that is technically better but
moving too fast to become expert at. Not all network and sensor features need
language features: the question therefore arises as to what is the correct
methodology for determining the correct contributions of hardware
and software within the co-design?

It is also easy to forget that computers almost never run a single application,
and this is unlikely to change for pervasive computing systems. The network
will run several “applications” simultaneously, for different users and with dif-
fering (and possibly conflicting) abstractions of the outside world. How should
pervasive computing applications co-exist? – both at the multiple seman-
tic level as discussed in [4] and at the more prosaic level of allowing different
applications, and possibly using completely different programming abstractions
and languages. This is an attractive motivator for re-configuring the software
capabilities of the network while retaining continuous service.

4 The sensor networks perspective

To make the above agenda more concrete, for the remainder of this paper we
will focus on deploying our ideas in the context of wireless sensor networks.
Our detailed architectural choices are conditioned by balancing the desire for
an open, simple, extensible, rapid development platform against the desire for
a solution that can be tested in realistic environments when appropriate. This



has led us to choose a hardware architecture based on Field-Programmable Gate
Array (FPGA) technology, coupled with a highly dynamic software platform.

4.1 Hardware

The target architecture is based loosely on figure 1 and consists of power sources,
FLASH, SRAM and possibly DRAM memory, CPU core, general purpose I/O,
RF communication unit and digital logic with µClinux as the embedded op-
erating system. We intend to prototype the architecture using Xilinx FPGA
technology to implement the CPU core, digital logic and general purpose I/O.
The CPU core is currently planned to use the OR1K open core because a sta-
ble µClinux port exists and the core has been successfully synthesised both in
silicon (by Flextronics) and in FPGA devices. Although it may not be the most
appropriate core for low-power sensor nodes, in theory the core can be used in
all node classes in sensor network architectures. Techniques such as clock gating
can be used to dynamically switch the processor and other functional units to
low-power standby modes5.

CPU Processor Core
OR1K (candidate)

Digital Logic Interfacing &
Custom CPU Instructions

Network Interface RF

Power Scavenging / Battery / Power Distribution
Network Connections

General Purpose I/O

Sensors Actuators Memory FLASH/SRAM/DRAM

Scheme Based Virtual Machine & uclinux kernel

Fig. 1. Proposed target architecture.

5 If the sensor node requires ultra low power operation in an energy scavenging envi-
ronment then it is necessary to use aggressive techniques such as asynchronous logic
to implement the architecture as a custom mixed-signal ASIC device.



The digital logic of the FPGA device can be used to interface to general
purpose I/O, this will be necessary to connect sensors, actuators, memory and
network interfaces (both RF and conventional) to the CPU. Obviously a physical
digital interface to the RF will need to be presented to the general purpose I/O.
Custom medium access controls can be implemented entirely in digital logic or
with some software assistance. FLASH memory can be used to store FPGA con-
figurations and boot images of uClinux and the Scheme based virtual machine
operating system infrastructure. The digital logic can also be used to implement
custom hardware accelerated user-instructions for the CPU core. Processing that
does not map well to the CPU instruction set, or whose computationally require-
ments make it difficult to meet real-time performance constraints are candidates
for implementation in hardware logic. Nodes requiring digital signal processing
of audio/video data may require such functionality. The ability to add domain
specific processing units in flexible digital hardware means that the target ar-
chitecture should be capable of offering the performance necessary to implement
high bandwidth sensors and gateway nodes. Additionally the use of our proposed
architecture makes it possible to implement a systematic method for adding new
sensing/actuating hardware that is accessible to our Scheme based software pro-
gramming platform.

4.2 Software

We have chosen to base our programming platform on the Scheme language[7],
for a number of reasons:

1. Scheme has clean semantics and concise syntax that can easily be supported
on an embedded system;

2. it provides a rapid prototyping environment for sensor networks that can be
easily simulated on desktop computers; and

3. it provides a scripting-based interface to programming sensor networks (as
advocated as a useful feature in [11]) that will reduce the level of hard-
ware knowledge required by users, without compromising the possibility of
compilation and analysis.

We rejected the Java-based solution of [10] as too heavyweight for a large
(and growing) number of sensor network applications, for which supporting a
Java VM is either inappropriate or impractical. We rejected a C-based solution
for reasons of complexity for application programmers.

4.3 Combination: µClinux and Scheme

A number of attempts[2, 13, 14] have been made to use high-level scripting lan-
guages and interpreters in order to simplify application development and to
maintain code portability without sacrificing precise control over hardware. The
problem then becomes how to maintain a high degree of efficiency alongside vir-
tual access to hardware resources. We have chosen Scheme as the basis for our



scripting language (Common Lisp would also have been a valid choice, although
more complex). The key question is: how do the Scheme virtual machine (VM)
and µClinux interact? This determines to what degree we virtualise access to
hardware and the overhead in using this abstraction.

The design options are for Scheme to be positioned:

1. Directly on top of the bare hardware. This would make it possible to con-
struct the entire operating system in Scheme, and µClinux would not be
required. Whilst this would be an interesting research direction it is likely
to severly limit the space of designs and concepts that might be required as
in Movitz[1] where Common Lisp was considered.

2. As a conventional program in a process like the shell. This would be similar
in nature to running Scheme in a terminal window on a desktop computer.
This approach is by far the easiest to implement but it is the least flexible in
terms of operating system customisation. A suitable example of this is the
Scheme shell scsh [15] which provides a scheme based scripting language and
a posix interface with both high and low-level networking support.

3. Similar to the approach of Movitz, where Common Lisp is used to provide
a framework for experimenting with kernel-level development programmed
in Lisp. Movitz does not directly support threads and processes, nor does
it have an implementation of SLEEP or contain assumptions about how to
measure time.

In our work we envisage that the ideal place to position the Scheme VM lies
somewhere between 2 and 3 but closer to 3.

There are essentially two choices for implementing a novel language on a
sensor network. The traditional approach is to cross-compile the language from
a standard desktop host, generating appropriate machine-language instructions.
The generated code can be as efficient as handwritten code, although in prac-
tice it is typically significantly less so. However, cross-compilers are difficult to
develop, debug and optimise.

The alternative is to provide a VM running on the sensor platform itself,
accepting the performance and space penalties in order to improve flexibility
and ease of development. This is practical only for very small VM run-time
systems.

We are exploring both options, but tending towards the latter. Our reasoning
is that – paradoxically – there are fewer power and space restrictions on a sensor
network than in traditional distributed systems because of the sheer number of
elements that can be deployed. The challenge is to provide a suitable distribution
and co-ordination framework within which to deploy applications over a large
number of elements. Using a VM on the elements allows us to focus on this
challenge rather than on efficient cross-compilation.

We plan initially to implement 2 in order to provide a working experimental
platform at the earliest possible opportunity whilst further researching an appro-
priate level for Scheme which will enable a sufficient degree of operating system
customisation as part of the dynamic domain specific language definition. Clearly



our implementation must make modifications to the Scheme virtual machine in
order to support the special requirements of sensor networks and dynamic do-
main specific languages.

4.4 Evaluation targets

Sensor networks may be used in a variety of real-world scenarios, ranging from
earth science and monitoring to security and military applications. Any sensor
network architecture must demonstrate an ability to target one or more of these
application domains efficiently. The following applications illustrate three broad
paradigms with which to evaluate our work, and show how our architecture can
improve the ways in which they are addressed.

Habitat/environmental monitoring Nodes are used to sense features of the habi-
tat that are of interest to scientists and environmental protection agencies over
a period of months or even years. The network senses, processes and funnels
data towards gateway nodes that are connected to the internet using standard
protocols. The data may be pushed or pulled dependent on whether the sensor
nodes or tasks (queries) from gateway nodes are the active entities initiating
communication. A tree-based routing network must be constructed and main-
tained. Low-power operation is of prime importance for this application class
but fine-grained synchronisation of nodes is usually of low importance. Whether
the nodes are fixed or mobile is largely dependent on the habitat, for example
sensor nodes circulating in a water system such as a lake will be mobile but
nodes deployed by air drop onto a land mass are likely to be fixed.

Shooter localization The aim of the application is to determine the origin of a
bullet or any other projectile in an urban environment. The nodes must sense
the shock waves due to the projectile with a high sample rate and fine-grained
time synchronisation in order to forward their data onto a gateway node and/or a
server where the localisation is normally computed centrally. Power consumption
will be significantly higher than in environmental monitoring.

Pursuer-evader/traffic management The aim of this application is to track the
movement of one or more evader robots. The network must route this infor-
mation to one or more pursuer robots using a routing protocol that exploits
knowledge of geographic position information. An obvious extension of this ap-
plication paradigm would be the more general problem of traffic management
where sensors are present in cars, traffic lights and CCTV and speed cameras.
The goals and tasks of this traffic application encompass congestion reduction,
enforcing road/driving regulations for safety and informing law enforcement and
accident and emergency services of appropriate events requiring their interven-
tion.

In each case there are clear hardware and software constraints that must
be met by any proposed solution. Our approach is to address these constraints



via co-design, ensuring that the appropriate language constructs are backed-up
by appropriate hardware capabilities. Engineering such solutions pose an inter-
esting challenge: how does one determine the success of a language construct,
especially in conjunction with a hardware platform? There is little clear existing
engineering methodology to apply to this problem.

5 Conclusion

We have motivated and presented the design of a new architecture for the nodes
of a sensor network. The architecture differs from previous work in being based
explicitly on a hardware/software co-design approach supporting the deployment
of novel programming language constructs directly onto the hardware in order
to improve optimisation and expressibility.

Although we have stressed the co-design aspects with reference to small de-
vices, the software techniques can be applied to more traditional platforms as
well. This means that a similar domain-specific language could be used across a
range of scales, with (for example) some language features being (de)selected on
some platforms.

We are currently completing feasibility studies on the components of our
proposed architecture, prior to initial development work. Our immediate research
challenges are to determine appropriate abstractions for the construction and
deployment of the embedded systems architecture from hardware and software
perspectives. We intend to evaluate our work against a range of applications,
both to check the qualities of individual solutions and to derive methodological
understanding that aids the creation of complex co-designed sensor networks.
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