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Abstract. Content Distribution has to date been addressed by a mix
of centralized and uncoordinated distributed processes, such as server
replication and traditional node caching mechanisms, respectively. It is
an inherently distributed process that is also increasingly relying on en-
tities that are not only increasingly distributed but also increasingly
autonomous. Consequently, centralized – and typically targeting the “so-
cially optimal” – decisions are rather unrealistic for a distributed envi-
ronment of autonomic entities. Instead, a distributed management of the
engaged autonomic entities, which take decisions dynamically, should be
key to efficient content distribution. The latter is advocated in this paper
in which two entities that are central to content distribution - specifically
the content and the node storage – are considered and it is discussed how
their autonomic behavior drives the operation of a content distribution
network. In the first case, it is the content that manages itself by dy-
namically generating duplicate copies and pushing them to (seizing) the
appropriate storage. In the second one, it is the node storage that is in
charge, deciding on the content to be locally stored. The decisions taken
by the distributed and autonomic entities may – in the extreme case – be
driven by self-awareness and self-interest only, without any network state
information and co-operativeness. Or, they may use (some) network in-
formation and take decisions in a more cooperative manner, despite their
autonomic and self-interest-driven nature. An example is presented on
the later case, showing the potential both social and individual benefits.

1 Introduction

Communication networks have up to very recently been designed, optimized,
and built, based on a careful planning and allocation of the primary network re-
source, the bandwidth. The emergence of the Internet and the World Wide Web
as the main information delivery vehicles of our society, have necessitated the
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deployment of large amounts of network storage (or memory). The addition of
storage capacity in network nodes, for the caching or replication of popular infor-
mation documents in close proximity to the end users, has appeared as a viable
and efficient alternative to adding more bandwidth, or deploying complicated
quality of service architectures. It is generally believed that the deployment of
network storage has helped in reducing end-user delays, network traffic, and in
improving the overall scalability in the Internet content distribution chain. Thus,
network storage has emerged as another important network resource that can
substantially enhance the network performance and/or reduce the requirement
for bandwidth.

Following the usual Internet development track, storage capacity has been
added progressively by a plethora of different authorities and applications that,
in most cases, operate independently. Services and applications like CDNs, P2P,
and others like end-system multicast, have formed logical overlay networks over
the physical internet infrastructure. As a result, the Internet has been seeded by
a large amount of storage capacity that now serves as a common substrate for
the support of a diverse set of content delivery schemes, both contemporary and
planned ones.

Despite the impressive reduction in the cost of storage brought by the latest
generation of storage devices, storage remains a valuable resource (both in own-
ing and also in managing), especially in view of the latest user trend to exchange
voluminous information documents, e.g., multi-megabyte music and video files
which, by latest reports, amount to well above of 75 % of all Internet traffic
[19]. Contributing to this trend is also the automatic dissemination of software
updates (operating system/application updates, virus fixes) that has become a
standard feature of most operating systems and applications [16]. The combina-
tion of uncoordinated deployment of storage, and the conventional wisdom that
storage is cheap, has resulted in a rather limited emphasis on exploiting the new
resource up to its full potential, and has set the stage for what appears to be
a new contention for resources - this time for storage capacity - fuelled by the
desire to disseminate voluminous content.

If the provisioning of memory continues to materialize as it has in the recent
past, then in the very near future (autonomous) memory pools (CDN nodes,
or local proxy servers) will be in place in most systems that constitute the
Internet [6]. Building adaptive overlay content distribution systems on top of the
underlying memory pools can provide for a significant alternative to the static
provisioning of memory as materialized with the current replication schemes that
employ very large granules of memory (e.g., entire mirror site).

Should (autonomic) memory pools exist and be marketed, content creators
(or intermediaries) can build distribution systems on them by leasing storage ca-
pacity dynamically. The main advantage of such a scenario is that memory will
be utilized more efficiently, and at a finer granularity, as potential users or appli-



cations will be able to use it on-demand and release1 it when no longer needed
making it available to other users that may request and pay for it (protocols
and e-currencies for such resource trade paradigms have been proposed recently
[21]). Re-organizing the memory is not possible with the current installment of
dedicated mirrors and proxies in fixed locations and with fixed capacities. It
is believed that the ability to reorganize the existing resources will be central
to future intelligent information systems (see IBM’s autonomic computing ini-
tiative [8]). The decisions concerning the management of the resources should
be based both on the content requirements and the storage availability. In the
sequel we take two different approaches at discussing the efficient utilization of
the storage resource, one from the perspective of content itself, and the other
from the perspective of the amorphous storage.

Our motivation for discussing these two approaches is to augment the current
paradigm of placing the content only at fixed distribution points (e.g., the point
of emergence (creation) and some mirror points), by allowing for the content to
track adaptively the topology of the demand, and initiating a migration towards
the areas of high demand without the intervention of a centralized authority.
Such an approach will hopefully allow for a group of cooperating nodes to adap-
tively track and best serve the demand, without requiring centralized control;
such a control is usually not present in Internet applications that are distributed
and handled by multiple authorities.

2 Content perspective

In this section we examine some requirements for autonomic content distribution,
stemming from the perspective of content; the amount and the locations of the
available storage are considered to be known here. This could materialize by
first communicating with a Storage Broker entity (centralized or distributed
one) from which storage is leased dynamically. The goal is to use the available
storage to best serve the dynamically changing demand. For this purpose we
conceptualize the tools of content movement and content duplication.

Content movement aims at pushing the appropriate content closer to the
appropriate location. Content duplication spawns dynamically multiple copies of
an information document in accordance with the request intensity; high demand
leads to the increase of the number of copies, while a low demand leads to the
decrease of the number of copies, trying to maintain an appropriate number of
copies at various locations, to best suit the demand from the clients. We can
make the following observations regarding the essence of employing each one of
these concepts in isolation.

Sole application of content duplication without a limit on the number of repli-
cas (extreme self-serving content behavior) for a given document allows multiple

1 Datagrams (on demand allocation of bandwidth to packets) has been the cornerstone
of the Internet. The on demand allocation of storage to content seems to be as
meaningful.



(or even all) clients to “own a local copy” of the desired document. A com-
mon problem with this strategy is that – due to the lack of coordination and
the unrestricted number of allowed replicas – it leads to an excessive repetitious
replication of the same (few) documents; the latter is clearly sub-optimal, consid-
ering that an off-line optimal replication policy forces multiple clients to “share”
a single document replica, thereby increasing the number of distinct documents
that may be hosted altogether.

Sole application of content movement with a small-fixed number of document
replicas available, leads to a game of “tug-of-war”, where the client (individual
or group) that issues the most requests for a document succeeds in drawing
it closer. Although it is justifiable to have the content closer to the location
of highest demand, content movement alone falls short of best handling the
demand, as it has to operate under a fixed number of document replicas, which
may be a serious restriction. Under a fixed number of replicas that happens to
be lower than the number of high-demand locations, the users will be served
under a sub-optimal solution, as the freedom of allowing each location to have
its own local copy (if that were the optimal solution under high enough request
rates) would not exist.

The above discussion suggests that both concepts be employed and an adap-
tive trade-off between content duplication and movement be exercised by an
efficient content distribution strategy. Thus practical and efficient rules for reg-
ulating between “tug-of-war” (forcing the clients to share) and “own local copy”
(allowing multiple clients to have local copies when the corresponding request
rates are high enough, which in turn limits the number of hosted distinct doc-
uments) should be identified. This fundamental trade-off between the number
of replicas of each hosted document and the number of distinct documents is at
the heart of an efficient utilization of the storage resource.

An interesting possibility is to consider autonomic content entities by as-
signing the responsibility for movement and duplication decisions to the content
itself, rather than the content creator and the origin server that first injects
the content to the network. To be able to make such decisions, content must
be accompanied by a set of attributes that will allow it to act in an autonomic
manner. As an example, imagine a movie file that is being injected in the net-
work from the location of its origin server. The creator of the movie supplies it
with attributes like storage credits (i.e., a budget for buying storage at replica-
tion points), maximum lifetime, “geographical” boundaries (set of ISPs in which
it may spread) and other general characteristics for empowering its ability to
manage itself. One such ability is the ability to split itself. This is stimulated by
an interesting categorization of the targeted content among integral documents
(i.e., documents that are indivisible, one document=one file) and non-integral
documents (one document divided into multiple parts). The first case to be used
with small/medium sized documents (e.g., html pages, images) while the sec-
ond to be used with voluminous documents (e.g., software updates). The case
of voluminous non-integral documents calls for special handling as compared
to the case of integral documents (whose relatively small size permits them to



move and duplicate as a whole). For voluminous content, applying movement
and duplication to the entire document might be restricting due to large size;
this is because potential movement and duplication actions become infeasible
as few hosting nodes can accommodate such large object in their entirety. Seg-
menting such documents into multiple parts, that may be handled by different
nodes, partly alleviates the problem of volume, but creates new challenges for
orchestrating among the different constituent parts. In such cases, additional
rules must be defined so as to maintain some degree of coordination among the
multiple parts, as they move and duplicate about the network in response to the
demand. A foreseeable target for such a coordination is, for example, to guar-
antee that the multiple parts constituting an entire document remain within a
maximum distance of each other, so as to facilitate an uninterrupted (parallel
or sequential) streaming towards a receiver.

Off-line algorithms that have a priori knowledge of the demand and topology
are able to optimize the trade-off between the aforementioned concepts of con-

tent movement and content duplication by computing the relative value of each
additional replica of a document and balancing it against the relative value of
hosting a new (not yet replicated) document. Achieving this optimal trade-off
in a distributed, on-line manner is challenging and yet unexplored and could be
pursued by the proposed combination of the proposed concepts of content move-
ment and duplication, possibly including additional recently proposed ideas such
as parallel downloads and appropriate encoding schemes.

3 Storage Perspective

In this section we discuss the role of storage in an autonomic content distribution
framework. We assume that storage is employed by the nodes for replicating
content so that they may provide it to local users promptly, while limiting the
consumption of bandwidth; essentially, the installed storage is used for absorbing
the local demand for content, and not letting it flow to the network. Traditionally,
a node’s storage may be either managed by a central authority (e.g., owner of
a CDN) in a way that maximizes the network’s benefit, or by the individual
node in isolation (e.g., typical user caches), in a way that maximizes the specific
node’s benefit.

The huge proliferation of the installed interconnected node storage calls
for a reconsideration of the aforementioned traditional storage management
paradigms. On one hand, centralized decisions are less feasible due to the lack of
a single owner of the resources. On the other, the autonomous node storage facil-
ities should not be managed in isolation catering to their own needs in a selfish
and myopic manner but, instead, cooperation among the otherwise autonomic
node storage entities should be considered.

The way that nodes cooperate in utilizing their storage resource is ultimately
shaped by the scope of their utility, whether local (selfish behavior) or global
(social aware behavior). We discuss such issues using the abstraction of a dis-
tributed replication group [14]. Such an abstraction is commonly employed for



studying content distribution application such as web caching, web mirroring,
content distribution networks (CDNs), and peer-to-peer applications.

Under this abstraction, nodes utilize their storage capacity to replicate in-
formation objects that they make available to local and remote users. A request
that is issued by a local user and can be serviced locally (i.e., it involves a locally
replicated object) is served immediately thus incurring a minimal cost. Other-
wise, the requested object is searched in other nodes of the group and if not
found, it is retrieved from the origin server; the access cost, however, increases
with the distance. Depending on the particular application, the search for ob-
jects at remote nodes may be conducted through query protocols [22], succinct
summaries [5], DNS redirection [17] or distributed hash tables [20].

Several placements problems can be defined regarding a distributed replica-
tion group. The proxy (or cache, or mirror, or surrogate) placement problem
has been studied in several works, including [15, 18, 4]. The object placement
problem refers to the selection of objects for the nodes, under given node lo-
cations and capacities [14, 10, 9, 2]. Finally, works such as [12, 13] combine node
placement, node dimensioning and object placement in one problem.

All the aforementioned work in the field has centered around the optimiza-
tion of the so called social utility, which is made of the sum of the individual local

utilities of the nodes; here the term utility refers to delay and bandwidth gains
from employing replication. The quest for optimizing the social utility arises nat-
urally in applications where a centralized authority dictates replication decisions
to the nodes. It suits well applications such as web mirroring and CDNs, which
are operated under centralized control (the content creator or content distrib-
utor playing that role). Applications that are run by multiple authorities, such
as web caching networks and P2P networks may too adhere to the goal of an
optimized social utility, but this may come only as an act of voluntarism, as the
optimization of social utility is often harmful to several local utilities.

Take as an example a group of nodes that collectively replicate content. If one
of the nodes is generating the majority of requests, then a socially optimal (SO)
object placement ends up using the storage capacity of other nodes to replicate
objects that do not fit in the over-active node’s cache. The users of these other
nodes experience a service deterioration as a result of their storage being hijacked
by potentially irrelevant content; in fact, such nodes are better off acting on
their own, and employing a greedy local (GL) placement (i.e., replicating the
most popular objects as pertaining to the local demand). The same situation
arises if caching, rather that replication, is in place; remote hits originating from
other nodes may evict objects of local interest in an LRU operated cache that
participates in a web caching network. Fear of such exploitation may prevent
nodes from participating in such groups and instead lead them to operate in
isolation in a greedy local manner.

Being greedy local is often ineffective not only to the social utility, but to
one’s local utility too. For example, when nodes have similar demand patterns
and inter-node distances are small, then replicating multiple times the same
most popular objects, as done by a GL object placement, is highly ineffective.



Clearly, there is a substantial gain for all nodes in that case, if they cooperate
and replicate different objects; in fact, all local utilities may improve as com-
pared to the GL performance, if such cooperation takes place. Nodes, however,
are generally not aware of the remote demand patterns, thus cannot recognize
such opportunities for cooperation. On the other hand, as discussed earlier, they
cannot blindly trust a SO object placement as they do not know whether it will
be for good or bad as pertaining to their local utility.

To address such problems equilibrium (EQ) placement strategies, which can
guarantee that a node’s local utility will always be better under EQ than under
GL, may be used. A node has no reason not to participate in such placement
strategies, as it has only to benefit from such participation.

For example in [11] an EQ strategy has been presented, which is based on
the notion of Nash equilibrium, and extends the replication problem defined by
Leff et al. [14] (who have developed the SO replication strategy) to the case
of multiple local utilities. A two-step local search (TSLS) algorithm is derived
that computes the EQ strategy. The TSLS algorithm can be implemented in a
distributed manner, and for its execution each node needs to know only its local
demand pattern and the objects selected for replication by remote nodes, but
not the remote demand patterns (as required by centralized replication algo-
rithms that compute the SO strategy). In addition, a distributed protocol that
implements TSLS and requires minimal exchange of information has been de-
veloped. In the sequel we give a numerical example with the aim of highlighting
the aforementioned placement strategies and their relevance to the self-interest
of individual nodes.

3.1 A numerical example

In this section we give a numerical example to demonstrate the potential ben-
efits of the TSLS algorithm. This is an example of an algorithm that is run by
each autonomic node in order to take decisions in a cooperative (not isolated)
framework utilizing (some) limited network information and yielding decisions
that increase the global gain (benefit) without ever reducing the individual gain
(benefit) enjoyed when acting in a self-serving manner only, in isolation.

There are two nodes that generate requests from the same Zipf-like distri-
bution that assigns to the ith most popular object a request probability K/ia,

where K = (
∑N

i′=1
1

i′a )−1; N denotes the number of distinct objects, a the skew-
ness parameter of the distribution, and ρj the total request rate from the jth
node (here j = 1 or 2). The local access cost is, tl = 0, the remote one, tr = 1,
and the cost of accessing the origin server, ts = 2; this leads to a hop-count
notion of distance. It is assumed that there exist N = 100 distinct objects, and
that each node has a storage capacity for C = 40 objects.

In Table 1 we show the objects replicated under the GL, SO, and EQ repli-
cations strategies for fixed ρ1 = 1 and varying ρ2. The GL strategy selects for
each node the first 40 most popular objects, i.e., those with ids in {1:40}, in-
dependently of ρ2. The SO strategy, however, is much different. As the request
rate from Node 2 increases, SO uses some of the storage capacity of Node 1 for



placement strategy Node 1 objects Node 2 objects

GL, ρ2 = X {1:40} {1:40}

SO, ρ2 = 1 {1 : 16} ∪ {41 : 64} {1:40}
SO, ρ2 = 2 {1 : 12} ∪ {41 : 68} {1:40}
SO, ρ2 = 3 {1 : 9} ∪ {41 : 71} {1:40}
SO, ρ2 = 4 {1 : 7} ∪ {41 : 73} {1:40}
SO, ρ2 = 5 {1 : 6} ∪ {41 : 74} {1:40}
SO, ρ2 = 6 {1 : 5} ∪ {41 : 75} {1:40}
SO, ρ2 = 7 {1 : 4} ∪ {41 : 76} {1:40}
SO, ρ2 = 8 {1 : 4} ∪ {41 : 76} {1:40}
SO, ρ2 = 9 {1 : 3} ∪ {41 : 77} {1:40}
SO, ρ2 = 10 {1 : 3} ∪ {41 : 77} {1:40}

EQ, ρ2 = X {1 : 23} ∪ {41 : 57} {1:40}
Table 1. An example with v1, v2 having the same Zipf-like demand pattern with a = 0.8. The
number of available objects is N = 100 and the storage capacity of each node is C = 40. Also, tl = 0,
tr = 1, ts = 2, ρ1 = 1.

replicating objects that do not fit in Node 2’s cache, thereby depriving Node 1 of
valuable storage capacity for its own objects. For ρ2 = 10, Node 1 gets to store
only 3 of its most popular objects, while it uses the rest of its storage for picking
up the next 37 more popular objects for Node 2, starting with the one with id
41. Under the EQ strategy Node 1 (v1) stores 23 of its most popular objects.
Node 2 (v2) is the second one (i.e., the last one) to improve its placement, and
it naturally selects the initial 40 most popular objects.

We turn our attention now to the average individual and social access costs
under the various placement strategies. The local access cost for node vj is∑

oi∈Pj
rij · tl +

∑
oi /∈Pj

oi∈P−j

rij · tr +
∑

oi /∈(Pj∪P−j)
rij · ts, whereas the social cost is

the weighted sum of access costs of individual nodes, the weighing factor being
the normalized request rate ρj/

∑
vj′∈V ρj′ ; rij denotes the request rate at node

vj for object oi, Pj denotes the placement of node vj , i.e., the set of objects
that it replicates, whereas P−j denotes the collective set of objects that are
replicated at all nodes except vj . Figure 1 shows that as ρ2 increases, the access
cost for v2 under SO decreases as it intercepts storage from v1 for replicating
objects according to its preference; v1’s access cost under SO increases rapidly
as a result of not being able to replicate locally some of its most popular objects.
In fact, for ρ2 > 2, v1’s cost is worse (higher) that the corresponding one under
GL. From this point and onwards, v1 is mistreated by the SO strategy and thus
it has no incentive in participating in it, as it can obviously do better on its own
under a GL placement. Notice also that as a consequence of v2’s higher request
rate, the social cost under SO follows in profile v2’s cost under SO.

By following the EQ strategy, v1’s cost cannot become higher than under
GL, that is, v1 cannot be mistreated, independently of ρ2 and other parameters.
In fact, both nodes succeed in doing better under EQ than under GL. Node v2,
however, benefits the most, and thus incurs a lower cost than v1. This owes to
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Fig. 1. Average cost for the example of Table 1: “vj – XX” denotes the local cost for node vj under
the placement strategy XX; “social XX” denotes the social cost under the placement strategy XX.

the fact that v2 is the second (last) one to improve its placement and, thus, has
an advantage.

4 Related work

We are aware of only few very recent works on game-theoretic aspects of caching
and replication. Hadjiefthymiades et al. [7] (May, 2004), have studied the con-
tention between different users that compete for storage in a single cache, and
have modeled it as a continuous game. More relevant to our work is the work of
Chun et al. [3] (July, 2004), which studies distributed selfish replication. How-
ever, this work does not consider storage capacity limits on the nodes and, thus,
differs substantially from our approach. Recent works on incentives in P2P net-
works, e.g., Antoniadis et al. [1], study the problem of attracting users to a P2P
network and making them contribute more content. The aforementioned work,
however, formulates the problem at a completely different level as compared to
the current work, as it focuses on the number of files shared by each node, with-
out identifying the identities of these files, whereas we focus on identifying the
exact set of files shared.
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