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Abstract. In this paper, we present a feedback-based system for managing trust
and detecting malicious behavior in autonomically behaving networks. Like other
distributed trust management systems, nodes rate the interactions they have with
other nodes and this information is stored in a distributed fashion.

Two crucial insights motivate our work. We recognize as separate entities the trust
placed in a node, reputation, and the trust placed in the recommendations made
by a node, credibility. We also introduce the concept of quality of a trust rating.
Together, these two factors enhance the ability of each node to decide how much
confidence it can place in a rating provided to it by a third party.

We implement our scheme on a structured P2P network, Pastry, though our results
can be extended to generic autonomic communication systems. Experimental re-
sults considering different models for malicious behavior indicate the contexts in
which the RQC scheme performs better than existing schemes.

Keywords: Trust management, reputation, quality, credibility, autonomic systems,
peer-to-peer systems.

1 Introduction

Autonomic systems aim at incorporating methods to monitor their dynamic behav-
ior and to react in automated ways, leading to self-awareness, self-management, self-
healing and self-improvement. This work explores how ideas of automated reputation
schemes that have originated in other contexts (e.g. e-commerce) can be modified and
applied for the soft enforcement of rules of behavior in specific autonomic communi-
cation systems based on distributed control. In particular, this work proposes a novel
scheme to self-manage trust in autonomic systems using Peer-to-Peer (P2P) environ-
ments as an example setting.

Many autonomic systems implicitly place a certain trust in participants, assuming
that they will follow certain guidelines for “fair-use”. But due to the distributed nature
of such systems, breaking these guidelines can go undetected by the system as a whole
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and does not result in any significant penalties to misbehaving components. This can
result in poorer quality of service and, in the worst case, outright service denial.

For any system that is open and anonymous, imposing barriers for entry is not an ac-
ceptable solution. A reputation-based trust management system offers a better solution.
These systems rely on the dissemination, throughout the network, of trust information
gathered through transactions between nodes. In this way nodes can build knowledge
about nodes with whom they have never interacted before and use this information to
decide whether to interact with new nodes. But relying on information from third par-
ties also makes the system vulnerable to manipulation through false complaints or false
praise.

We present a reputation-based system that is robust against false ratings and at the
same time helps “good” nodes to avoid interacting with “malicious” nodes. Along with
node Reputation (R), we use Quality (Q) and Credibility (C) to provide a richer and
more robust trust management system called the RQC system. In this way, the paper
contributes to the understanding of how trust information should be aggregated and
how much credence should be attached to reported trust values by other nodes in the
network.

The rest of this paper is organized as follows. In the next section we review existing
work on trust management in P2P systems. In Sec. 3 we present our solution. In Sec. 4
we present our experimental results and we conclude in Sec. 5.

2 Related Work

Initial efforts at trust management in electronic communities were based on central-
ized trust databases. The eBay rating system used for choosing trading partners where
each participant in a transaction can vote (—1,0, 1) on their counterpart, the Amazon
customer review system and the Slashdot self-moderation of posts [1] are all systems
where the ratings are provided by nodes but are stored in a central database. Many
such reputation systems have been studied in the context of online communities and
marketplaces [2—4].

In true P2P environments, the storage of trust ratings also needs to be done in a
distributed fashion. Aberer and Despotovic introduced such a scheme [5] using a de-
centralized storage system P-Grid to store and retrieve trust information. Peers can file
complaints against each other if they feel the node has behaved maliciously. All com-
plaints made by and complaints about a given node, are stored at other nodes called
agents. The mechanism is made robust by keeping multiple copies of reports at dif-
ferent agents. When a node wishes to interact with another node, it sends messages
querying trustworthiness of the other node to random nodes in the network, which are
routed to appropriate agents. Two algorithms are described to compute the trustwor-
thiness. The first relies on a simple majority of the reporting agents’ decisions and the
second checks the trustworthiness of the reporting agents themselves and disallows any
reports coming from untrustworthy agents.

Cornelli et. al. [6,7] propose a mechanism built on the Gnutella network, where a
node uses a secure polling mechanism to ask its neighbors about interactions they may
have had with a specific node to gauge its trustworthiness. The scope of the messages



querying trust is limited by the Gnutella architecture design. Their work is directed at
file-sharing networks and the objective is to find the most trusted node that possesses
a given resource and they focus on vote aggregation on incorporating voter credibility
and on ensuring the integrity of trust reports as they pass over the insecure network.

Kamuvar et. al. [8] use a different approach and assume that trust is transitive. There-
fore, a node weighs the trust ratings it receives from other nodes by the trust it places in
the reporting nodes themselves. Global trust values are then computed in a distributed
fashion by using a trust matrix at each node. Successive iterations involving exchange
of trust values with neighbors and re-computation of the matrix. Trust values asymp-
totically approach the eigenvalue of the trust matrix, conditional on the presence of
pre-trusted peers that are always trusted.

Buchegger et. al. [9] propose a modified Bayesian approach to trust. Like Dami-
ani et. al. they separate a node’s reputation (performance in the base system such as
file-sharing, routing, distributed computing etc.) and its credibility! (performance in
the reputation system). In their solution, only information on first-hand experiences is
published by nodes. This information is used by other nodes to construct their own
reputation and credibility data structures for other nodes. Reputation data is also aged
giving less weight to evidence received in the past.

3 The RQC (Reputation, Quality, and Credibility) Approach

In this section, we describe the RQC algorithm. In RQC, each node is assigned M
score managers and all transaction involving the node are reported to each of its score
managers®. The score managers aggregate trust information for the node to construct its
global trust value or reputation. They also respond to rating requests by nodes wishing
to transact with that node. A quality value is attached to all trust ratings by the sender
(i.e., a node reporting on a transaction or a score manager responding to a trust query).
The recipient of these ratings (the score manager and the querying node respectively)
weighs them using this attached quality value and the credibility of the sender. Sender
credibility is calculating by comparing its reported trust rating with the average value
computed at the recipient. A sender that reports values that diverge from the calculated
average sees its credibility go down whereas a sender whose reported values agree with
the average sees its credibility go up. In the following sections we explain this process
in greater detail.

3.1 Local Opinion and Opinion Quality

Each node 4 maintains an average opinion Oj’? of the behavior of all nodes j with
which it has had an interaction. O;'¢ can be interpreted as node i’s estimate of the
probability that node j will behave honestly during a transaction. After each interaction
with j, i updates O7;"? and sends the updated value to all the score managers responsible
for j.

! They call it trust.
2 Since the score managers are also nodes in the network, we use the term “node” to refer
exclusively to a node when it is not acting in its capacity as a score manager.



Along with 0;?;’9 , the node i also stores the number of interactions, N;;, it has had
with j and the variance sfj in the behavior of j. Thus, the average local opinion is
computed as follows:

k
0% = 295

=S (1)

where OF; is node i’s opinion of its k** interaction with j. Each O, takes a value in
[0, 1] and represents node ¢’s satisfaction with node j’s behavior during the transaction.

When node 7 sends its updated average opinion about j (Of;’) to the score man-
agers, it also sends an associated quality value, ();;. (;; represents the quality node ¢
attaches to the opinion information it is sending to the score managers and lies within
[0, 1]. Q;; enables a node to express the strength of its opinion. Its value could depend
on the context of the interaction as well as on past transaction history. In our current
implementation, quality values are computed solely on the basis of the number of inter-
actions and the variance in the opinion.

We assume that j’s trust behavior is a normally distributed random variable. Through
interactions with j, node ¢ makes observations of this random variable resulting in a
sample. The sample mean and standard deviation are then simply ijvg and s;;.

The quality value of the opinion (();;) is defined as the confidence level that the
actual mean trust rating for a node lies within the confidence interval:
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where r is a system parameter that denotes the size of the confidence interval as a
percentage of the sample mean. We experimented with various values of r, ranging
from 5 to 30 and found that a confidence interval of 10% of the sample mean (and thus
r = 10) resulted in the best performance. Using too high a value for r produced useless
quality values, as large variations in node behavior were allowed without any decrease
in the quality. Similarly, too low a value of 7 resulted in excessively low quality values.

Since the actual mean and standard deviation are unknown, we used the Student’s
t-distribution to compute the confidence levels. Note that the usual idiom is inverted
here in that we know the interval and wish to compute the probability that the actual
mean lies within the interval as opposed to normal practice where confidence level is
known and the required interval is computed.

The t-value for the Student’s t-distribution is given by the following equation:
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And the quality value is computed as:
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where B is the Incomplete Beta Function defined as B(z; a, b) = foz w1 (1 - u)b71 du
Thus an opinion is of greater quality when the number of observations on which it
is based is larger and when the interactions have been consistent (resulting in a smaller



variance). When the number of observations is high but they do not agree with each
other, the quality value is lower.

When a node has had only one interaction with the other node, equations 3 and 4
cannot be used since sample variance is undefined for a sample size of one. Instead,
a default quality value of 1 is used in this case. If a lower value, such as 0.5, is used,
the opinions sent by malicious nodes during the initial interactions (when there is little
credibility information®) would overwhelm the opinions of the good nodes, as malicious
nodes would always report a quality value of 1 for their opinions.

After each interaction, both participating nodes report their updated opinions along
with the associated quality values to the score managers responsible for their counter-
part. The inclusion of quality in the message sent to the score manager allows the score
manager to gauge the how much confidence the node itself places in the rating it has
sent.

3.2 Computation of Reputation at the Score Manager

The underlying DHT structure designates M score managers for each node in the net-
work. Since the score managers are selected from nodes within the network itself, each
score manager is responsible for M nodes on average. This provides the reputation sys-
tem with redundancy so that the failure of a few score managers does not affect the trust
management system.

A score manager receives an averaged opinion whenever a node it is responsible for
is involved in a transaction. This opinion is sent by the other node involved in the trans-
action. The individual opinions from successive transactions are aggregated to form the
reputation of a node. The score managers therefore represent the global, system-wide
view of a given node’s behavior, updated every time a new opinion is received.

Along with the aggregate reputation, R,,; for a node j, a score manager, m, also
stores the number of opinions it has received about j, N,,; and the variance sfn j in the
reported opinions. This information is used to compute the quality value that a score
manager attaches to a reputation value. The computation of the quality of reputation
values at a score manager is similar to that of the individual nodes’ computation of
quality values for their averaged opinions described in equations 3 and 4. So, the quality
of a reputation value is simply the confidence level that the actual mean reputation of
the node is within 7% of the sample mean.

If the reputation value of a node at the score manager has been calculated using the
opinion of a single voter only, a quality value of 1 is returned. The reason for this is the
same as described in the previous section.

3.3 Retrieval of Trust Information

When a node wants to know the reputation of another node before interacting with it,
it locates the M score managers for the node by using the DHT substrate and asks
them for the reputation of the node in question. Each score manager responds with a
reputation value and an associated quality value. The node then computes the average

3 The role of credibility is explained in Section 3.4.



reputation for the node in question, R?fg using the quality values and the credibility
values of the score managers since a score manager itself may also be malicious and
send the wrong reputation values. In this way, multiple score managers allow the system
to cope with malicious behavior.

3.4 Credibility

Cj; or the credibility of node j in the eyes of node ¢ is the confidence node ¢ has in
node j’s opinions about other nodes and contributes to the weight node 4 gives to the
opinions expressed by node j and to the reputation values furnished by node j in its
capacity as a score manager. A single credibility value is used for a node for both of its
roles as a reporting node and a score manager.

Every node stores the credibility rating for each node (or score manager) that has
sent it an opinion value (or a reputation value). The credibility rating is updated ev-
ery time a node reports an opinion or reputation. In addition, when the score manager
updates the credibility of a node it uses the quality value furnished by the node to de-
cide the amount of modification in the trust value. This is because a node should not
be penalized for an incorrect opinion that was based on a small number of interactions
and/or a large variation in experience where this was explicitly stated by the reporting
node through a low quality rating. Credibility values are not shared with other nodes
and are used simply to weigh the responses received from other nodes and always lie
within the range [0, 1].

3.5 Putting it all Together

A score manager uses the quality value sent by a reporting node and the credibility of
the reporting node to compute the average reputation of a node. The reputation of a
node j is computed at the score manager m as follows:
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where R,,; is the aggregated reputation of node j, Chy; is the credibility of node 4
according to the score manager m, 0;.‘].”9 is the average opinion of j reported by ¢ and
Qi; is the associated quality value reported by 4. The score manager only keeps the latest
value of O?j”g reported by each node <. Thus the score manager gives more weight to
ratings that are considered to be of a high quality and that come from nodes who are
more credible in the eyes of the score manager.

In the case of reputation retrieval, a node aggregates the responses from the report-
ing score managers using the reported quality value and the stored credibility value of
the reporting score managers. The aggregation is performed in exactly the same way as
shown in equation 5 except that the reputation values I2,,; are aggregated instead of the
opinions O
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where R, ; is a reputation value received from a score manager y about node j.

When a node reports an opinion to a score manager for the first time, its credibility
is set to 0.5. Thereafter, every time it reports an opinion on any of the nodes the score
manager is responsible for, its credibility is adjusted according to the following formula:
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where C,’f“- is the credibility of node ¢ after k reports to score manager m, O?j vg is the
opinion reported by node ¢, Q;; is the associated quality value, R,,; is the aggregated
reputation and s,; is the standard deviation of all the reported opinions about node j.
Thus, credibility updates take the reported quality value into account. Since an opinion
with a smaller quality value does not count as much at the score manager, the change in
credibility is proportionately lower. At the highest reported quality value of 1, a reported
rating that falls within one standard deviation of the aggregated reputation, increments
the credibility of the reporting node by half the amount required for credibility to reach
1. A reported rating outside this region results in the credibility rating dropping to half
the previous value.

In this way, if a reporting node (or score manager) is malicious, its credibility rating
is gradually reduced when its opinion does not match that of other nodes (or score
managers). And a node with a lower credibility value therefore contributes less to the
aggregated reputation at the score manager.

3.6 Resource Requirements

Since each node has M score managers associated with it, a transaction between two
nodes results in 20 messages to the score managers. Similarly, a trust query from a
node to the score managers of its potential transaction partner results in M messages
to the score managers and M responses. As the number of score managers M does
not depend on the number of nodes in the network, the network traffic increases by a
constant factor due to the RQC scheme.

Assume that a node transacts with K nodes on average. Since each node acts as
a score manager for M nodes and stores the last reported opinion from each of the
K transaction partners for these M nodes, the storage requirements for being a score
manager are O(K M). Each node also stores its own average opinion for the K nodes
it has interacted with, resulting in O(K) storage. Hence the total storage requirements
for anode are O(KM + K) = O(KM).

The processing requirements at each node are relatively light. Each transaction (pre-
ceded by two trust queries) results in reputation and quality computations at 2 score
managers (M for each transacting node), followed by weighted averages of the repu-
tation being computed at each transacting node, followed by a single average opinion
update at each of the 2M score managers.



4 Experimental Results

We simulated the RQC scheme using Pastry [10], a structured overlay network that uses
distributed hash tables for routing. We assume that the nodes are always online and full
connectivity in the network. We also assume that no messages are dropped and that
messages cannot be spoofed or altered in any way. Moreover, nodes do not leave or join
the network in the during the simulation. Since Pastry is written in Java, we decided to
implement our reputation system in Java as well.

The trust information pertaining to a node i is stored at M score managers that are
assigned using a DHT. A hashing function is used to map a persistent node identifier
to a point in the key space. The M nodes that are closest to this point in the key space
are then used as score managers for that node. A node j can then query all the M score
managers in order to compute the reputation of 4 and decide whether to interact with .

In the experiments we describe, we simulated a network of 200 nodes unless speci-
fied otherwise. In each experiment, 50000 random transactions took place unless spec-
ified otherwise (i.e., each node has an average of 50 interactions). Both participants of
each interaction are chosen randomly. The default number of score managers storing
reputation ratings for each node was 6 unless specified otherwise. The reason we chose
a network of this size had to do with the running time for the simulation. We simulated
a network of 5000 nodes and 1, 000, 000 interaction, but since we were using the Pastry
substrate and the entire network was being simulated on just one machine with 1GB of
RAM, this took several hours for each run. As the experiment in Figure 5 shows, the
impact of the number of nodes was very small on the results of the simulation as long
as a sufficient number of interactions took place. Hence, our results should be valid for
larger networks as well.

We decided instead, to invest our CPU resources on running each experiment 10
times. In the figures that follow, we plot the average of the results obtained from the
10 experiments, along with a confidence interval of size ﬁ where s is the standard
deviation and n is the number of samples (10).

We simulate two different kinds of maliciousness. A node can be malicious in the
base system, i.e., behave maliciously when interacting with other nodes and/or it may
be malicious in the reputation system. In the former case, two good nodes (and two bad
nodes) give each other a rating of 1 after interacting whereas if a good and a malicious
node interact they both give each other a rating opinion of 0. In the latter case, the node
behaves maliciously in its capacity as a score manager and sends incorrect reputation
values to requesting nodes.

We also simulate probabilistic maliciousness where a node does not act maliciously
all the time and is malicious with a probability p,, which is a parameter to the sim-
ulation. Finally, we simulate several scenarios where the number of malicious nodes
ranges from 5% of the total population to 90% of the total population.

The performance of our scheme is evaluated as the number of correct decisions
made (i.e., interactions with good nodes that went ahead plus interactions with mali-
cious nodes that were avoided) as a proportion of the total number of decisions made.
So, an interaction with a malicious node counts against the RQC scheme as much as
when an interaction with a good node is prevented due to false ratings. Since, we are



interested in the steady state performance of the system, the initial interactions that take
place when no information about the reputation of a node can be found are not counted.

4.1 Types of Maliciousness

RQC Scheme with Different Kinds of Malicious Behavior
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Fig. 1. Performance of the RQC Scheme with Different types of Malicious Nodes

In Figure 1, we depict the performance of our scheme for different kinds of mali-
cious behavior. The three lines represent the cases when malicious nodes behave mali-
ciously as participants in the base system (i.e., when interacting with other nodes), as
participants of the reputation system (i.e., sending false reputations in their capacity as
score managers) and as participants in both the base and reputation system.

Malicious behavior in the reputation system is defined as the sending of false rep-
utation values by score managers. A malicious score manager sends a reputation value
that is the inverse of the actual (1 minus the actual) reputation value of the nodes it is
responsible for. We chose this model of maliciousness as it is the worst possible type of
maliciousness from the perspective of a reputation system. Other models of malicious-
ness, such as sending an arbitrary reputation value in response, do not cause as much
harm to the reputation system.

In the case when nodes act maliciously in the base system only, our scheme per-
forms very well till the percentage of malicious nodes reaches 50%. Note that the con-
fidence interval is very large at this point. This shows that our scheme is very sensitive



to the proportion of malicious nodes in the system. When the proportion of malicious
nodes exceeds half, the dominant ethic of the system becomes that of the malicious
nodes. All good nodes are branded as malicious and vice-versa resulting in a precipi-
tous drop in performance.

Another striking feature in Figure 1 is that the performance of our scheme goes
down and then rises again in both the cases where nodes act maliciously in the repu-
tation system. We assume that malicious nodes are not aware of each others existence
and therefore malicious score managers do not treat other malicious nodes any different
from other nodes.

When the nodes act maliciously both as participants in the base system and in the
reputation system a similar pattern is observed with the worst performance coming
when the fraction of malicious nodes is 50%. As the number of malicious nodes in-
creases, a larger proportion of interactions take place between two malicious nodes.
These nodes give each other an opinion rating of 1 but when this opinion is reported to
the score manager — which itself has a high likelihood of being malicious — it inverts
this rating and the reputation of the malicious nodes is correctly reduced to 0. There-
fore, a large number of interactions with malicious nodes are avoided, thus improving
the performance of our system.

4.2 Comparison with the Aberer-Despotovic Scheme

Comparison of the RQC Scheme with the Aberer-Despotovic Complex Scheme
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In this experiment we compared the performance of our scheme against the trust
management scheme proposed by Aberer and Despotovic in [5]. We implemented their
scheme in Pastry and ran experiments with the same number of nodes and interactions
as in our scheme (200 and 50000 respectively). However, unlike the simulations they
performed, we did not make trust assessments at the end of the interaction period but
instead made trust assessments before each interaction. We feel this model is closer
to reality as nodes would want to know the nature of a node before interacting with it
instead of waiting for a large number of interactions to finish. As we can see in Figure 2,
our scheme performs consistently better than the Aberer-Despotovic scheme in terms
of the proportion of correct decisions made.

Figure 2 compares the performance of the two schemes when there is maliciousness
in both the base and the reputation system. While we do not show the corresponding
graphs for other types of maliciousness, we would like to note that the RQC scheme
also outperforms Aberer-Despotovic for other two models of maliciousness.

4.3 Probabilistic Cheating

RQC Scheme with Probabilistic Cheating
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Fig. 3. Performance of the RQC Scheme with Probabilistic Cheating

In Figure 3 we examine the case when the malicious nodes do not cheat all the time
but instead cheat with a certain probability. The three curves correspond to a total of
10%, 30% and 50% of the nodes being malicious. We see that the proportion of correct



decisions is slightly affected by the probability of a node cheating with the RQC scheme
generally performing better as nodes cheat more consistently.

4.4 Number of Score Managers

RQC Scheme with Increasing Number of Score Managers
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Fig. 4. Performance with Increasing Number of Score Managers

In this experiment we study the impact that the number of score managers have on
the decision making process. Figure 4 shows the performance of the RQC scheme when
30% of the nodes are malicious and they act maliciously in the base system only. The
number of score managers makes no difference to the performance.

4.5 Number of Nodes

Figure 5 shows how the RQC scheme scales as the number of nodes in the network
increases. We ran our simulation with the fraction of malicious nodes at 30%, acting
maliciously only in the base system. We ran the experiment with 100, 200, 400, 1000,
2000 and 5000 nodes. There are three curves in the figure corresponding to the total
number of interactions being 10, 000, 40, 000 and 160, 000.

We find that an increase in the number of nodes results in a drop in performance if
the number of transaction is kept fixed. As the number of nodes increases, the number of
interactions per node decreases resulting in less reputation information per node being



RQC Scheme vs. Number of Nodes and Interactions
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Fig. 5. Performance scaling with Number of Nodes in System

stored in the system. However, when the number of interaction is increased, the increase
in the number of nodes does not have much impact on the performance of the scheme.
Hence the scheme scales well with the size of the network if each node takes part in
sufficient interactions.

5 Conclusions and Future Work

In this paper, we have presented the RQC scheme for trust management in autonomic
systems. Our scheme computes Reputation(R), Quality(Q) of Credibility(C) to provide
a richer trust management system that lends itself to a wide variety of self-management
tasks.

We simulate the RQC scheme using Pastry, a P2P substrate written in Java. How-
ever, the RQC scheme can be easily adapted to other environments. The RQC scheme
is flexible enough to allow for trust ratings other than 0 or 1. Moreover, the scheme
emphasizes consensus as an important indicator of the confidence that can be placed in
a rating. This along with the number of interactions forms the basis of the quality of a
rating.

The credibility of a node is dependent on the amount by which its opinion of a
node (or the reputation it furnishes in case of a score manager) deviates from the mean
reputation of the node in question. In [9] the credibility of a node is lowered if its
opinion deviates from the mean reputation by more than a constant d. The RQC scheme



lowers credibility if the opinion deviates from the mean reputation by more than the
sample standard deviation. This does not penalize nodes by lowering their credibility
when they report on a node that behaves erratically. The credibility is also predicated on
the quality value of the opinion/reputation furnished by a node/score manager. A node
should not be penalized as much for an opinion in which it does not have very much
confidence.

Our simulation shows that the RQC method performs very well when the number
of malicious nodes in the system is under half. It significantly outperforms the Aberer-
Despotovic scheme. The scheme continues to work well when the malicious nodes
cheat in a probabilistic fashion instead of cheating all the time. Finally, the simulation
also shows that the scheme scales well with the number of nodes.

While we apply the RQC scheme to measure node honesty, the scheme also lends
itself to other soft-management tasks. For instance, the RQC scheme can be used to
measure the reliability or the QoS provided by nodes in the network.

There are still several steps that can be taken to improve the RQC scheme and we
are currently working on several enhancements. We are working to incorporate “churn”
in our experiments. “Churn” is the phenomenon of nodes joining and leaving a network
and is an important component of autonomic and P2P systems. We are also looking at
extending the RQC scheme for various network topologies. Finally, we are studying
alternative decision-making strategies such as incorporating individual node opinions
along with system-wide reputation values when deciding whether to interact with an-
other node.
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