
CMOS Implementation of Threshold Gates with

Hysteresis

Farhad A. Parsan1, and Scott C. Smith1

University of Arkansas, Fayetteville AR 72701, USA,
{fparsan,smithsco}@uark.edu

Abstract. NULL Convention Logic (NCL) is one of the mainstream
asynchronous logic design paradigms. NCL circuits use threshold gates
with hysteresis. In this chapter, the transistor-level CMOS design of NCL
gates is investigated, and various gate styles are introduced and com-
pared to each other. In addition, a novel approach to design static NCL
gates is introduced. The new approach is based on integrating each pair
of pull-up and pull-down transistor networks into one composite transis-
tor network. The new static gates are then compared to the original ones
in terms of delay, area, and energy consumption. It will be shown that
the new gate style is significantly faster with negligible area and energy
overhead.

Keywords: NULL convention logic, NCL, C-element, threshold gate

1 Introduction

Delay-insensitive asynchronous circuits have been the target of a renewed re-
search effort because of the advantages they offer over traditional synchronous
circuits. Minimal timing analysis, inherent robustness against power-supply, tem-
perature, and process variations, reduced energy consumption, less noise and
EMI emission, and easy design reuse are some of the benefits of these circuits
[1]. NULL Convention Logic (NCL) is one of the mainstream asynchronous logic
design paradigms that has been shown to be a promising method for design-
ing delay-insensitive asynchronous circuits [2–4]. NCL circuits are correct-by-
construction [3], requiring very little timing analysis, if any. In today’s nanometer
processes where meeting timing closure is becoming increasingly more difficult
due to increasing clock rates and process variation, this quality is very attractive.
NCL has been used for a number of industrial designs [4, 5], and is becoming
more popular as design automation tools and techniques are being developed to
automate the design process [6].

NCL circuits utilize threshold gates with hysteresis to maintain delay insensi-
tivity. The general form of an NCL gate is very similar to a C-element [7]. Several
CMOS implementation schemes have been introduced for NCL gates, including:
dynamic, static, semi-static, and differential [8–10]. Each implementation offers
some advantages and has some drawbacks in terms of delay, area, and power
consumption. It is important for an NCL circuit designer to choose the CMOS



Black BoxInput Output

Fig. 1. Symbolically complete logic concept

implementation that best fits an application. In this chapter, we introduce differ-
ent CMOS implementations of NCL gates and discuss their tradeoffs. In addition,
a new approach to design static NCL gates is proposed and compared with the
traditional approach in terms of delay, area, and energy consumption. It will be
shown that the new static gates offer faster operation, with a small increase in
area, and consume almost the same amount of energy. It will be also shown that
when the NCL static gates are sized for improved switching speed, the slight
area disadvantage is eliminated, resulting in better speed and area.

This chapter is organized as follows: an overview of NCL logic is presented in
Section 2; Section 3 discusses different CMOS implementations of NCL gates and
compares them against each other; the new static gate design is then introduced
in Section 4 and compared to the traditional static gate design; sizing both
versions of static gates is discussed in Section 5; and these static gate styles (sized
and unsized) are used to implement NCL multipliers in Section 6 to compare
transistor-level simulations; and finally, Section 7 presents conclusions.

2 NCL Overview

NCL is a delay-insensitive asynchronous logic design paradigm in which control
is inherent within each datum. It follows the so-called “weak conditions” of
Seitz’s delay-insensitive signaling scheme [11]. Similar to other delay-insensitive
logic design paradigms, NCL assumes that wire forks are isochronic [12]. NCL is a
“symbolically complete” logic meaning that the output validity is unambiguously
determined regardless of time reference [3]. Fig. 1 shows an unknown circuit
inside a black box. Assuming that the unknown circuit is a traditional Boolean
combinational circuit, once the inputs are asserted, it is impossible to determine
when the outputs become valid unless the circuit’s delay is known. However, if
the unknown circuit is using a symbolically complete logic, such as NCL, one can
determine the output validity without needing to know the circuit’s delay. This
is because NCL uses delay-insensitive codes for data communication, alternating
between set and reset phases. In the set phase, data changes from spacer (called
NULL) to a proper codeword (called DATA); and in the reset phase it changes
back to NULL. NCL combines DATA and NULL into a single path presented
by dual-rail, quad-rail, or in general, any Mutually Exclusive Assertion Group
(MEAG) signals [13].

In practice, dual-rail signal encoding is more popular, since it is most similar
to traditional Boolean logic. Table 1 shows the dual-rail signal encoding. A dual-
rail signal, D, consists of two wires, D0 and D1. D is logic 0 (DATA0) when D0



Table 1. Dual-rail encoding

DATA0 DATA1 NULL Illegal

D0 1 0 0 1

D1 0 1 0 1

= 1 and D1 = 0; it is logic 1 (DATA1) when D0 = 0 and D1 = 1; and it is NULL
when D0 = 0 and D1 = 0. D0 and D1 are mutually exclusive, such that they are
never asserted at the same time; doing so would produce an illegal codeword.

Fig. 2 shows a simple Boolean AND gate versus a dual-rail NCL circuit that
performs the same AND operation. For the Boolean AND gate, inputs X, and
Y, and output Z use only one wire, but the dual-rail NCL AND circuit uses
two wires for each input and output. For the Boolean AND gate, initially X =
1 and Y = 0, so output Z is 0. For the NCL AND circuit, initially X is DATA1
(X1 = 1, X0 = 0) and Y is DATA0 (Y0 = 1, Y1 = 0); therefore, output Z is
DATA0 (Z0 = 1, Z1 = 0). For the Boolean AND gate, once input Y is asserted,
output Z becomes invalid until the signal propagates through the AND gate
and asserts the output (in this example after 1 ns). For the NCL AND circuit,
however, before input Y changes to its next DATA value, all inputs must first
transition to the NULL state (i.e., all input rails must go to 0) and we must wait
until the output then transitions to NULL. At this point, the circuit is ready to
accept a new DATA set, so X and Y can both change from NULL to DATA1.
Consequently, output Z then changes from NULL to DATA1 after some time (1
ns in this example). An NCL circuit always cycles through NULL and DATA
phases so the validity of the output can always be unambiguously determined
by merely looking at the output. A NULL at the output means that the output
is not valid and a DATA at the output means that the output is valid. For a
Boolean circuit, on the other hand, the output validity can only be determined
if we know when the inputs change and the worst-case propagation delay of the
circuit.

NCL circuits are comprised of 27 threshold gates with hysteresis [2]. Each
gate is denoted as THmnWw1w2. . . wr in which m is the threshold of the gate,
n is the number of inputs, and wr is the weight of input r if its weight is greater
than 1. Fig. 3(a) shows the symbol of an NCL gate. For an NCL gate with no
weighted inputs, the output is asserted when at least m out of n inputs are
asserted. As an example, the TH23 gate asserts its output when at least two out
of three inputs are asserted; therefore, assuming the inputs are A, B, and C, the
set function of a TH23 gate can be expressed as F = AB + AC + BC. Fig. 3(b)
shows a TH23w2 gate, where input A has a weight of two. Therefore, asserting
A alone asserts the gate output. The set function of the TH23w2 gate can then
be expressed as F = A + BC.

The standard NCL gate library is shown in Table 2. Since NCL gates have
hysteresis, once the output is asserted, it remains asserted until all the inputs



X

Y
Z

X

Y

Z

Valid

Output

Invalid

Output

Valid

Output

1 ns

0
1

0
1
0
1

NCL AND 

Circuit

X0

X1

Y0

Y1

Z0

Z1

Valid
Output

NULL
Output

Valid
Output

0
1

0
1
0
1

X0

X1

Y0

0
1

0
1
0
1

Y1

Z0

Z1

1 ns1 ns

(a) (b)

Fig. 2. (a) Boolean AND gate versus (b) NCL AND circuit

m
Input 0
Input 1

Input n

Output 2
A

B

C

Output

(a) (b)

TH23w2

Fig. 3. (a) NCL threshold gate symbol (b) a weighted NCL threshold gate

are deasserted. Hysteresis behavior is required to ensure the delay-insensitivity
of NCL circuits [2]. A non-weighted NCL gate with m = n (i.e., THnn) is a
special case of NCL gates that is equivalent to an n-input C-element [14]. C-
elements are well-known gates used in many other asynchronous logic design
styles. A non-weighted NCL gate with m = 1 (i.e., TH1n) is another special
case of NCL gates that is equivalent to an n-input Boolean OR gate. Among
the 27 NCL gates, there are 3 gates (TH24comp, Thand0, THxor0) that are not
actually threshold gates, but can be made by combining other threshold gates.
These gates are included in the standard NCL gate library so that any function
of 4 or fewer variables directly maps to one of these 27 NCL gates. Due to
hysteresis, NCL gates act as memory elements; therefore, like any other memory
element they have to be initialized. Initialization can be performed implicitly by
asserting/deasserting all the gate inputs, or it can be done explicitly by adding a
reset input to the gate. Depending on whether the reset signal asserts or deasserts
the gate output, resettable gates are denoted with an ‘n’ (output deasserted) or
a ‘d’ (output asserted) at the end of their name. Additionally, the output of
an NCL gate can be provided in its inverted form; this is denoted by a small



Table 2. Standard NCL gate library

NCL Gate Set Function

TH12 A + B
TH22 AB
TH13 A + B + C
TH23 AB + AC + BC
TH33 ABC
TH23w2 A + BC
TH33w2 AB + AC
TH14 A + B + C + D
TH24 AB + AC + AD + BC + BD + CD
TH34 ABC + ABD + ACD + BCD
TH44 ABCD
TH24w2 A + BC + BD + CD
TH34w2 AB + AC + AD + BCD
TH44w2 ABC + ABD + ACD
TH34w3 A + BCD
TH44w3 AB + AC + AD
TH24w22 A + B + CD
TH34w22 AB + AC + AD + BC + BD
TH44w22 AB + ACD + BCD
TH54w22 ABC + ABD
TH34w32 A + BC + BD
TH54w32 AB + ACD
TH44w322 AB + AC + AD + BC
TH54w322 AB + AC + BCD
THxor0 AB + CD
THand0 AB + BC + AD
TH24comp AC + BC + AD + BD

circle at the output of the gate symbol and a ‘b’ at the end of the gate name.
Fig. 4 shows how the NCL AND circuit in Fig. 2 can be built using two NCL
gates, based on the canonical SOP equations for both the rail1 and rail0 outputs,
shown in equations 1 and 2, respectively, and mapping these to the set function
of the gates shown in Table 2.

Z
1 = X

1
Y

1 (1)

Z
0 = X

0
Y

0 +X
0
Y

1 +X
1
Y

0 (2)

Therefore, output Z becomes DATA1 when both X and Y are DATA1 and it
becomes DATA0 when either input is DATA0 and the other input is DATA (i.e.,
DATA0 or DATA1). Reference [2] elaborates on how to design more complex
combinational logic circuits using NCL.



2

TH22

A
B
C
D

THand0

X1Y1
X0Y0

Z1

Z0

Fig. 4. NCL AND circuit

DI 
Register

KiKo

DI 
Combinational 

Logic

DI 
Register

KiKo

Completion 
Detection

DI 
Combinational 

Logic

DI 
Register

KiKo

Completion 
Detection

DI 
Register

KiKo

Fig. 5. NCL design framework

The NCL design framework consists of delay-insensitive (DI) Combinational
Logic blocks sandwiched between DI Registers. This design framework, shown in
Fig. 5, is very similar to the traditional synchronous design framework, except
that Completion Detection blocks are used to synchronize data communication
instead of a global clock. Completion Detection checks the output of a regis-
ter to see if the previous DATA (NULL) has successfully propagated through
the Combinational Logic; if so, it then allows the next NULL (DATA) to start
propagating through the Combinational Logic. Ki and Ko are the handshak-
ing signals used for requesting and acknowledging DATA and NULL. A typical
DATA/NULL cycle is shown in Fig. 6. It starts with DATA propagating through
a combinational block; once DATA passes the following register, the completion
detection block acknowledges that DATA evaluation is finished and that NULL
can now propagate. Then NULL propagates through the combinational block
and clears the previous DATA; once NULL passes the register, the completion
detection block acknowledges that NULL propagation is complete and allows the
next DATA to start propagating through the combination block. The time pe-
riod between two consequent DATA phases is called the DATA-to-DATA Cycle
Time (TDD), and is a measure of an NCL pipeline’s throughput.

A single-bit dual-rail NCL register is shown in Fig. 7, where I0 and I1 are
the input rails and O0 and O1 are the output rails. A single-bit NCL register is
comprised of two TH22n gates and one inverting TH12 gate. When a combina-
tional block is ready for DATA, Ki is asserted, allowing DATA to pass through
the register; and once DATA is evaluated by the combinational block, Ki is



NULL 

Completion

Acknowledgement

DATA

Combinational

Evaluation

DATA

Completion

Acknowledgement

NULL

Combinational

Evaluation

DATA-to-DATA Cycle Time (TDD)

Fig. 6. DATA/NULL cycle

2n

2n

1

O
0

O
1

Ki

Reset

Ko

I
0

I
1

Fig. 7. A single-bit dual-rail NCL register

deasserted, allowing NULL to pass through. The Ki signals of a multi-bit reg-
ister are all connected together and connected to the output of the completion
detection block of the next register.

The completion detection block detects whether there is a complete DATA/
NULL set at the output of a register. When a register’s output is NULL (i.e.,
both output rails in Fig. 7 are deasserted), the inverting TH12 gate is asserted to
request the next DATA (rfd). When a register’s output is DATA (i.e., either of the
output rails in Fig. 7 is asserted), the inverting TH12 gate is deasserted to request
NULL (rfn). All Ko outputs of a multi-bit register are input to a completion
detection block that asserts its output when all Ko signals are rfd, and deasserts
its output when all Ko signals are rfn. An n-bit completion detection block,
shown in Fig. 8, is equivalent to an n-input C-element, comprised of THnn
gates. The minimum number of levels required for a completion detection block
is ⌈log

4
n ⌉, where n is the number of Ko signals [2].

3 CMOS NCL Gate Design

3.1 Dynamic Gates

The dynamic implementation of NCL gates can be used in real-time computing
applications where a minimum data rate is guaranteed so that the state informa-



C

Ko1
Ko2

C

Kon

Kon-1

C Ko

C

C

CC

Fig. 8. NCL completion detection block

tion can be maintained on an isolated node. The structure of an NCL dynamic
gate is shown in Fig. 9(a).

The set block realizes the set function of an NCL gate, such that when
the set function becomes true, the set block becomes active and discharges the
internal node Y, causing output Z to be asserted. Similarly, when all inputs
are deasserted, the reset block becomes active and charges the internal node
Y to VDD, causing output Z to be deasserted. In a CMOS implementation of
NCL dynamic gates, the set block is a pull-down network of NMOS transistors,
derived from the equations in Table 2 for each of the 27 NCL gates. On the other
hand, the reset block is always a series chain of PMOS transistors consisting of
one transistor per input; therefore, NCL gates that have the same number of
inputs have the same reset block. The reset function of an NCL gate with n

inputs can be expressed as:

reset = I
′

1
• I ′

2
• . . . • I ′n (3)

where In represents input n. For most NCL gates, the set and reset functions
are not complements of each other, so there are times when neither the set nor
reset block is active. In a dynamic implementation, when neither is active, the
internal node Y will be floating, so its value will be preserved on its parasitic
capacitance, Cparasitic, for a few milliseconds before its charge leaks away, en-
abling the NCL gate to maintain its state, but only for a finite amount of time.
Therefore, once the set function becomes true and the output is asserted, it re-
mains asserted until the reset function becomes true and deasserts the output
(hysteresis behavior). Fig. 9(b) shows the dynamic implementation of a TH23
gate, whose set function is:



A

B C C

B

C

B

A

Y Z

set

reset

Y Z

r
e
s
e
t

s
e
t

(b)(a)

Cparasitic

Fig. 9. (a) Structure of NCL dynamic gates (b) TH23 dynamic gate

F = AB +AC +BC (4)

The set function can then be factored to reduce the number of transistors:

F = A (B + C) +BC (5)

The NCL dynamic implementation is the smallest and fastest NCL gate
style, and consumes the least amount of energy; however, since its output cannot
be held indefinitely when neither set nor reset is active, it is not considered a
delay-insensitive solution. Moreover, since the state information is stored on a
small parasitic capacitance, it is very vulnerable to noise and charge sharing
effects, although the latter can be alleviated by transistor reordering in the pull-
down network [8], careful transistor sizing, and post-layout simulations. For these
reasons, dynamic NCL gates are rarely used in real applications.

3.2 Semi-Static Gates

The semi-static (or pseudo-static) implementation of NCL gates utilizes feedback
to maintain state information, and therefore, does not require a minimum input
data rate, since it can hold the output state indefinitely. The structure of an
NCL semi-static gate is shown in Fig. 10(a). In a semi-static implementation, the
state information is maintained via a staticizer, in the form of a weak feedback
inverter. The weak feedback inverter compensates for the leakage current that
discharges the internal node Y when both set and reset blocks are inactive. This
implementation is also more robust to noise and charge sharing effects because
the weak feedback inverter, if carefully sized, can restore the value on the internal



A

B C C

B

C

B

A

Y Z

set

reset

Y Z

r
e
s
e
t

s
e
t

(b)(a)

Fig. 10. (a) Structure of NCL semi-static gates (b) TH23 semi-static gate

node Y in a reasonably short time. The semi-static implementation of a TH23
gate is shown in Fig. 10(b).

Appropriate weak feedback inverter sizing is essential for correct operation of
a semi-static gate. If a feedback inverter is made very weak, it will not be able to
compensate for the leakage current on the internal node, and consequently, the
charge on internal node Y will leak away and the gate output Z may become
invalid or switch value altogether. On the other hand, a feedback inverter that
is not weak enough will require a large contention current from the pull-down
network (set block) or pull-up network (reset block) to switch the output value,
in which case the gate’s output may get stuck at a high or low value. The ap-
propriate feedback inverter sizing also determines the performance of the gate.
The weaker the feedback inverter, the more similar the semi-static implementa-
tion is to the dynamic implementation; therefore, it would be faster and would
consume less energy. But, similar to the dynamic implementation, making the
feedback inverter very weak makes the gate more vulnerable to noise and charge
sharing effects. A more analytical discussion of semi-static C-elements, which
are a special case of semi-static NCL gates, can be found in [7].

There are different ways of weakening the feedback inverter. In the standard
way, shown in Fig. 11(a), usually the length of the NMOS transistor in the feed-
back inverter is increased. This makes the feedback inverter weak enough to be
overpowered by the reset block PMOS transistor chain. The length of the PMOS
transistor in the feedback inverter can also be increased or left minimum-sized
since the set block pull-down network (PDN) is made of NMOS transistors and,
due to the higher mobility of NMOS transistors compared to PMOS transis-
tors, the PDN is usually able to overpower the weak inverter’s PMOS transistor.
Besides increasing the length of the feedback inverter’s NMOS transistor, some-



(a)

PDN PDN

(b)

PDN

(c)

ZZZ

Fig. 11. Different feedback inverter weakening methods (a) standard method (b) using
current limiters (c) using diode-connected current limiters

times it is better to increase the width of the reset block PMOS transistor chain.
The minimum set of transistors that usually need to be sized in a standard
semi-static gate is shown with dashed circles in Fig. 11(a). In order to save area,
sometimes it is better to add series transistors with the feedback inverter [15].
This weakening method is shown in Fig. 11(b). Here, the added series transis-
tors limit the current available to the feedback inverter, making it weaker. The
minimum set of transistors that usually need to be sized is shown with dashed
circles. Finally, one can save even more area by using diode-connected transis-
tors in series with the feedback inverter, as shown in Fig. 11(c) [16]. Using this
method, the feedback inverter becomes weak enough even with minimum-sized
transistors; therefore, no sizing is usually required. Again, weakening the feed-
back inverter makes the gate faster and less energy hungry, but the gate becomes
more vulnerable to noise and charge sharing effects, so a trade-off is involved. In
practice, optimal sizing of the feedback inverter is not trivial; a more analytic
sizing approach is described in [17].

Among the other implementations of the NCL gates (except dynamic im-
plementation), semi-static gates are usually considered to be small (i.e., having
minimal number of transistors) and low-energy; however, this image of semi-
static NCL gates significantly depends on the weak feedback inverter sizing.
The relative sizing requirements for semi-static gates makes this implementa-
tion less robust to PVT variations. Also, due to the inherent contention between
the set/reset blocks and the weak feedback inverter for switching the output,
this implementation is usually slower than the other implementations. This con-
tention can be minimized by appropriate weak feedback inverter sizing, but it
can never be removed. A comparison of various semi-static implementations with
the other implementations can be found in [16].



A

B C C

B

set reset

(b)

ZZ

A

B

C

r
e
s
e
t

s
e
t

(a)

ZZ

Fig. 12. (a) Structure of NCL differential gates (b) TH23 differential gate

3.3 Differential Gates

The differential implementation of NCL gates [9] [15] is most similar to a Differ-
ential Cascode Voltage-Switch Logic (DCVSL) implementation of Boolean gates
[18], with the exception of using cross-coupled inverters instead of cross-coupled
PMOS transistors. A differential NCL gate is shown in Fig. 12(a). The major
difference between the semi-static implementation of NCL gates and the dif-
ferential implementation is that the reset block is now connecting output Z to
ground through a pull-down network. Due to this change in the circuit structure,
the reset block should use NMOS transistors instead of PMOS transistors, and
therefore requires the input complements instead. Since each differential NCL
gate provides both output Z and its complement, Z, no extra logic is necessary
to invert inputs. Fig. 12(b) shows the differential implementation of a TH23
gate. In a differential NCL gate, asserting an output requires pulling the other
output low through a pull-down network (either set or reset block); therefore,
before outputs switch value, there is always a short time when both outputs
become low. Since in a circuit realized with differential NCL gates, the inputs
of each differential gate come from the outputs of other differential gates, this
ensures that before a pull-down block becomes active, the other pull-down block
becomes inactive first, therefore, no contention between pull-down blocks will
ever happen.

Enabling the reset block to use higher-mobility NMOS transistors instead
of PMOS transistors improves the differential implementation in several ways.
These improvements are mainly because of the reset block being stronger than
before so it can switch the state of the cross-coupled inverters with less effort.
The immediate result being that the differential implementation is usually faster
than the semi-static implementation. Also, less aggressive sizing is now required,
so the differential implementation is usually smaller than the semi-static imple-
mentation. In fact, a differential NCL gate can usually use all minimum-sized
transistors and still function correctly. In addition, due to the symmetry of the
differential implementation, the cross-coupled inverters are usually sized equally



A

B C C

B A

C

B

A B C

A
B

C

B C

Y Z

set hold1

hold0reset

Y Z

h
o
ld
0

h
o
ld
1

r
e
s
e
t

s
e
t

(b)(a)

Fig. 13. (a) Structure of NCL static gates (b) TH23 static gate

and the whole structure is therefore less sensitive to sizing, and consequently,
more robust to PVT variations.

3.4 Static Gates

All the CMOS NCL gate implementations discussed so far rely on either a par-
asitic capacitance to maintain state information, such as in the dynamic imple-
mentation, or rely on a simple feedback mechanism via an inverter, such as in
the semi-static and differential implementations. As discussed, relying on the
parasitic capacitance makes NCL gates vulnerable to leakage, noise, and charge
sharing problems, and eliminates their delay-insensitivity, while a feedback in-
verter slows down the gates due to the intrinsic switching contention involved.
A static NCL gate implementation removes all these drawbacks, offering faster
and more reliable operation.

As depicted in Fig. 13(a), static NCL gates are comprised of 4 transistor
networks: set, reset, hold1, and hold0. Similar to other implementations, the
set block determines the gate’s functionality as one of the 27 NCL gates. Once
the set function becomes true, the output is asserted. The output then remains
asserted through the hold1 block until all inputs are deasserted. The hold1 block
is simply made by ORing all inputs together; therefore, it is the same for gates
having the same number of inputs. The hold1 function of a static NCL gate with
n inputs can be expressed as:

hold1 = I1 + I2 + . . .+ In (6)

where In represents input n. Since both set and hold1 blocks contribute to
asserting Z and maintaining its assertion, the set equation of a static NCL gate
can be described as:



Z = set+
(

Z
− • hold1

)

(7)

Where Z− is the previous output value of the gate and Z is the new output
value. As an example, as depicted in Fig. 13(b), the TH23 gate has the following
set and hold1 functions: set = A (B + C) +BC; hold1 = A+B + C.

In order to implement a static NCL gate in CMOS technology, the comple-
ment of Z is also required. The complement of Z, denoted as Z ′, is realized with
reset and hold0 blocks. The reset block, similar to the previous implementa-
tions, consists of all complemented inputs ANDed together. Once all inputs are
deasserted, the reset block becomes active and deasserts the output. The output
then stays deasserted through the hold0 block until new input values activate
the set block to assert the output again. The reset equation of a static NCL gate
can therefore be described as:

Z
′ = reset+

(

Z
−′

• hold0
)

(8)

It can be proven that the following relations exist between set, reset, hold1,
and hold0 functions:

set = hold0′ (9)

reset = hold1′ (10)

Equation 10 can be directly inferred from the definition of reset and hold1
functions and DeMorgan’s law; and equation 9 is the logical consequence of the
fact that in a static implementation, the pull-up and pull-down networks must
be complements of each other to avoid a short-circuit path or a floating node.
According to the above equations, the equations for a static TH23 gate are:
hold0 =A

′

(B
′

+ C
′

)+ B′C ′ and reset=A′B′C ′. The CMOS implementation of
the static TH23 gate is shown in Fig. 13(b).

In contrast to the semi-static implementation, the static implementation of
NCL gates is faster since output switching does not involve contention. It is also
very robust to leakage, noise, and charge sharing since for any input combination
the internal node Y is connected to either VDD through the pull-up network, or
GND through the pull-down network. Moreover, the switching threshold of static
gates being typically around VDD/2 adds to their noise immunity. Additionally,
transistor sizing in a static implementation only impacts its performance, not
its functionality; therefore, the static implementation is very robust to PVT
variations. Its main drawback is the area overhead from adding hold0 and hold1
blocks. For example, in the case of the TH23 gate, the static implementation
shown in Fig. 13(b) requires 20 transistors, while the semi-static and differential
implementations only require 12 transistors. A more analytical discussion of
static C-elements, that are a special case of static NCL gates, can be found in
[7].



A

B C

Z

C

B

Z

A

C

B

A Z B C

A

Z

Y Z

(a)

A

B C

Z

C

B

C

B

A

Z

Y Z

A

C

B
Z

A

B C

(b)

Fig. 14. (a) Original TH23 static gate (b) Proposed TH23 static gate

4 New Static Gates

In the previous section, area overhead was mentioned to be the main draw-
back of static NCL gates; however, sometimes it is possible to share transistors
between each pair of pull-up (reset and hold0) or pull-down (set and hold1)
networks to reduce area. For example, the direct static implementation of the
TH23 gate, shown in Fig. 13(b), consists of 20 transistors; but after sharing
transistors, the optimized implementation only requires 18 transistors, as shown
in Fig. 14(a). There are two types of transistors in a static NCL gate: switchers,
which contribute to switching the gate’s output, and keepers, which only con-
tribute to retaining the gate’s state when neither set nor reset blocks are active.
In Fig. 14(a) the keepers are shown in boldface.

The development of the new static NCL gates is inspired by the observation
that in a traditional static NCL gate, the hold0 and hold1 transistor networks
are only used for retaining the gate’s state when neither set nor reset functions
are true. In other words, the hold0 and hold1 transistor networks only contribute
to holding the output state but not switching it. The idea behind the new static
NCL gates is to integrate the set and hold1 transistor networks as well as the
reset and hold0 transistor networks into a single composite transistor network
such that it involves more transistors in output switching. Fig. 14(b) shows the
application of this idea to the TH23 gate. The new gate structure differs from
the original one in two ways. First, the reset network has been duplicated and
rearranged, and then some extra PMOS transistors are added to realize the hold0
function by connecting appropriate nodes of the two PMOS transistor chains.
Second, the hold1 function is realized by duplicating and flipping a portion of
the set network and then connecting the middle nodes with an NMOS transistor.
The new gate consists of 19 transistors, which is one transistor more than the
original one; however, compared to the original gate, the number of keepers has



been reduced from 8 to 3 (shown in boldface), while the number of switchers
has increased from 8 to 14, resulting in faster switching compared to the original
gate.

The correctness of the new gate structure can be easily proved using Boolean
algebra. For the pull-up network, when Z = 1 both PMOS keepers are off so the
function of the pull-up network can be expressed as:

A
′
B

′
C

′ +B
′
C

′
A

′ = A
′
B

′
C

′ (11)

which is the same as the function of the reset block, and when Z = 0 both
PMOS keepers turn on so the function of the pull-up network can be expressed
as:

(A′ +B
′) (B′ + C

′) (C ′ +A
′) = A

′ (B′ + C
′) +B

′
C

′ (12)

which is the same as the function of the hold0 block. Similarly, for the pull-
down network, when Z = 0 the NMOS keeper is off so the function of the
pull-down network can be expressed as:

(B + C)A+A (B + C) +BC = A (B + C) +BC (13)

which is the same as the function of the set block, and when Z = 1 the NMOS
keeper turns on so the function of the pull-down network can be expressed as:

(B + C +A) (A+B + C) +BC = A+B + C (14)

which is the same as the function of the hold1 block.

The new gate structure also speeds-up output switching in one additional
way. Careful investigation shows that the number of transistors in a series chain
for holding the gate’s state when neither set nor reset functions are true has in-
creased. For example, the hold0 path that was originally going through Z→B→C
is now going through B→Z→B→C, which is one transistor longer than the orig-
inal path. Similarly, the hold1 path that was originally going through B→Z is
now going through B→Z→B. Hence, the new gate structure’s transistor chain
length for hold0 and hold1 paths has increased by one transistor. This is equiva-
lent to weaker hold0 and hold1 networks (i.e., the paths have higher resistance);
therefore, the set and reset networks can switch the gate’s output faster. This
might look confusing since, as mentioned before, the set and hold0 (and simi-
larly reset and hold1) networks are complements of each other such that they are
never asserted simultaneously; therefore, the set network never needs to over-
power the hold0 network (or reset network overpower hold1). However, since at
the time of switching there is a short moment when both pull-up and pull-down
networks turn on and create a short-circuit path from VDD to GND (similar
to static Boolean gates), a pull-up (pull-down) network with higher resistance,
and consequently less current flow, helps the pull-down (pull-up) network pull
the internal node to GND (VDD) with less effort, resulting in faster switching.



Table 3. Original complex static gates versus the new versions

TH24comp THand0 THxor0
O
ri
g
in
a
l

C

B

A

D

A

C

Z

Z

Z

C

D

B

DZ

D

C

Z

A

C

A

C

Z

B

Z

Z

Z

B

D

A

D

A

B

Z

B

C

C

A

B

A

B

A

B

Z

Z

C

D

C

D

A

C

Z

C D

B

D

N
e
w

B

A

A

C

Z

C

D

B

D

Z

D

C

A

B

Z
C

A

D

B

A

Z

DB

Z
B

A

D

C

A

Z

B

D

A

B

Z

C

B

C

Z

Z

A

B

B

A

Z
C

D

D

C

Z

C

A

B

D

Z

D

B

A

C

Z

Z

The last interesting feature of the new static gate structure is that it is more
symmetric than the original structure, resulting in closer output rise/fall times.

Converting traditional static gates to the new ones is not always easy and
straightforward, especially for more complex gates. Additionally, although in the
case of the TH23 gate there was only one transistor overhead for the new gate
style, sometimes area overhead is more than a few transistors, resulting in an area
versus delay tradeoff. Based on how complex the gate is, sometimes it is possible
to partially apply this technique (e.g., to only the pull-up or pull-down network,
or even just a portion of them). Table 3 shows the design of a few complex
NCL gates using both the original and the new method, with keeper transistors
shown in boldface. The first row of gates pertains to the original design, while
the second row shows the new designs. Comparing the new versions with the
original ones shows that the number of keepers has been reduced in all the new
versions. For the THand0 gate, the pull-up network could not be converted to
utilize fewer keepers, so it is not changed. Table 4 compares the original and the
new static C-elements. For the TH22 gate, the new version is equivalent to the
symmetric C-element design in [12]. As mentioned before, converting the original
static design to the new one is not always easy and does not follow strict rules.
However, the following guidelines are helpful:



Table 4. Original C-elements versus the new versions

TH22 TH33 TH44

O
ri
g
in
a
l

A

C

B

A A B C

B C

C

B

A

Z

Z

Z

A

B

A A B

B

B

A

Z

Z

Z

A

D

C

B A B C

B C

D

C

B

Z

Z

Z

A

D

A

D

N
e
w

C

B

A

C

B

A

Z

Z

C

B

A

Z

C

B

A

Z

Z

B

A

B

A

Z

A

BZ

A

B

Z

D

C

B

D

C

B

Z

A

A

Z

Z

C

D

A

B

Z

Z

C

D

A

B

Z

Z

Z

Z

1. Remove the hold1/hold0 networks from the original design

2. Duplicate the set/reset networks

3. Rearrange/flip the duplicated networks and connect their internal nodes to
the original network by adding keepers such that the hold1/hold0 function-
ality is ensured

4. If the new structure requires more keepers in the pull-up or pull-down net-
works then try to apply this technique partially or just use the original
design

Table 5 shows a comparison between the new gates and the original ones in
terms of delay, area, and energy consumption. The gates are implemented and
simulated using the IBM CMOS9SF 90nm CMOS process. All simulations are
performed under the following conditions: typical process corner, nominal power
supply voltage of 1.2 V, temperature of 27 ◦C, and capacitive load of 10 fF. Both
high-to-low (TPHL) and low-to-high (TPLH) propagation delays are included in
this table. The simulation results show that on average the new gates offer 9%



Table 5. Comparison between original and new static gate styles

TPLH [ps] TPHL [ps] Energy [fJ] Transistors

Gate N
e
w

O
ri
g
in
a
l

Im
p
ro

v
e

N
e
w

O
ri
g
in
a
l

Im
p
ro

v
e

N
e
w

O
ri
g
in
a
l

Im
p
ro

v
e

N
e
w

O
ri
g
in
a
l

O
v
e
rh

e
a
d

TH22 155 168 7.70% 83 123 32.20% 18.4 18.5 0.60% 12 12 0

TH33 174 197 11.40% 128 193 33.90% 20.2 19.4 -4.50% 18 16 2

TH44 198 226 12.00% 183 262 30.20% 23.1 20.2 -14.30% 26 20 6

TH44w2 200 214 6.40% 179 198 9.70% 22.3 20.6 -7.80% 25 22 3

TH23 172 180 4.50% 115 207 44.30% 20 20.3 1.40% 19 18 1

TH34w2 191 194 1.70% 150 222 32.10% 21.6 20.3 -6.30% 27 22 5

TH24comp 160 188 14.80% 134 217 38.20% 19.8 20.4 3.00% 20 18 2

THxor0 167 189 12.00% 142 255 44.20% 20.4 20.7 1.80% 23 20 3

TH22n 167 189 11.50% 86 138 37.80% 18.7 18.9 1.30% 16 16 0

THand0 180 195 7.50% 195 252 22.80% 20.6 21.2 2.80% 21 20 1

Average 177 194 9.00% 139 207 32.50% 20.5 20.1 -2.20% 20.7 18.4 2.3

improvement in TPLH and 32.5% improvement in TPHL, with a 2.2% increase
in energy consumption and an average of 2.3 additional transistors per gate.
For the results in Table 5, all transistors are minimum-sized and the results are
averaged over all possible input combinations.

5 Sizing New Static Gates

The new static gate design speeds up switching with a reasonable area overhead
(2.3 transistors per gate). However, the new static gates have the potential to be
smaller than the original static gates when both gate styles are properly sized
for faster switching. For example, assume that the TH23 gates in Fig. 14 need to
be sized. Since only the switchers are responsible for output switching, one can
double their width while allowing the keepers to stay minimum-sized. This is
shown in Fig. 15. The keepers are all minimum-sized (1X) in this figure, so their
size is not shown. The size of the switchers in the original static gate, however,
has doubled, even for the parallel switchers, in order to account for when only one
of them contributes to output switching. The switchers in the new static gate are
then sized such that they provide the same pull-up/pull-down resistance as the
original static gate on the switching paths. Finally, the output inverter for each
gate can be sized such that it offers a balanced output rise/fall time targeting
a certain output load. Assuming that the output inverters would have almost
similar (or comparable) sizes, the new static gate would be smaller than the
original one, shown by adding up the size of transistors for each gate. In the case
of the TH23 gate, the original gate size is 24X while the new gate size is 19X.



A

B C

Z

C

B

Z

A

C

B

A Z B C

A

Z

Y Z

(a)

A

B C

Z

C

B

C

B

A

Z

Y Z

A

C

B

Z

A

B C

(b)

2X

2X

2X

2X

2X

2X

1X 1X

1X

1X

1X

1X

1X

1X

1X

1X 1X

2X

2X

1X

2X2X

Fig. 15. A sizing example for (a) original (b) new static TH23 gates

Table 6. Comparison of NCL multipliers realized with different static gate styles

Gate Style
Original
Minimum

New
Minimum

Original
Sized

New
Sized

Delay per operation [ns] 1.45 1.05 1.29 0.98
Energy per operation [pJ] 1.29 1.28 2.62 2.34

Area [µm2] 59.4 62.6 122.2 111.3
Minimum VDD [V] 0.25 0.26 0.22 0.27

6 Simulation Results

In order to measure the performance of the new static gate style at the circuit
level and compare it to the original static gate style, a delay-insensitive NCL
4×4 pipelined multiplier [19] was simulated at the transistor level using each
gate style. The results, averaged over all 256 input combinations, are shown in
Table 6. All simulations are performed under the following conditions: typical
process corner, nominal power supply voltage of 1.2 V, and temperature of 27
◦C. In order to measure the minimum power supply voltage for each variation
of multiplier, VDD is dropped to the point where the NCL multiplier outputs
wrong data or completely stalls due to deadlock [2].

For the minimum-sized gates, the multiplier using the new gate style is 27%
faster and requires 5% more area, with approximately the same energy per op-
eration and the same low-voltage operation capability. Table 6 also shows the
comparison between the multipliers utilizing sized static gates. The multiplier
realized with the new sized gates is now both faster (24%) and smaller (8%)
than the multiplier using the original sized gates. In addition, the energy per op-



eration is now 10% lower, but the minimum power supply voltage has increased
by 22%.

7 Conclusion

In this chapter, different CMOS implementations of NCL gates were introduced
and their trade-offs were discussed. It was shown that each implementation offers
some advantages for designing NCL circuits. Omitting the dynamic implemen-
tation, since it is not delay-insensitive, comparison of the other implementations
shows that static gates tend to be faster and more robust to noise and PVT vari-
ations, while semi-static gates are more energy efficient, and differential gates
are more area efficient.

Additionally, a new approach to designing static NCL gates was introduced.
The new gate style was compared to the original style in terms of delay, en-
ergy, and area, showing that the new gate style is significantly faster, while
requiring slightly more area and energy for minimum sized gates. After sizing
the gates, it was shown that the new gate style is faster, and requires less area
and energy. These conclusions are supported by transistor-level simulation of a
delay-insensitive NCL pipelined multiplier, to compare the different gate styles
on a larger scale.

References

1. Beerel, P.A., Ozdag, R.O., Ferretti, M.: A designer’s guide to asynchronous VLSI.
Cambridge University Press (2010)

2. Smith, S.C., Di, J.: Designing asynchronous circuits using NULL Convention Logic
(NCL). Synthesis Lectures on Digital Circuits and Systems, Vol. 4/1. Morgan &
Claypool Publishers (2009)

3. Fant, K.M.: Logically Determined Design: Clockless System Design with NULL
Convention Logic. Wiley-Interscience (2005)

4. Ligthart, M., Fant, K., Smith, R., Taubin, A., Kondratyev, A.: Asynchronous de-
sign using commercial HDL synthesis tools. Advanced Research in Asynchronous
Circ. and Syst., Proc. Sixth Int. Symp. on (Apr. 2000) 114–125

5. McCardle, J., Chester, D.: Measuring an asynchronous processor’s power and noise.
Proc. Synopsys Users Group Conf. (SNUG). Synopsys, Mountain View, Calif.
(2001) 66–70

6. Parsan, F.A., Al-Assadi, W.K., Smith, S.C.: Gate Mapping Automa-
tion for Asynchronous NULL Convention Logic Circuits. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., to be published, available:
http://dx.doi.org/10.1109/TVLSI.2012.2231889

7. Shams, M., Ebergen, J.C., Elmasry, M.I.: Modeling and comparing CMOS imple-
mentations of the C-element. Very Large Scale Integ. (VLSI) Syst., IEEE Trans.
on 6 (Dec. 1998) 563–567

8. Sobelman, G.E., Fant, K.: CMOS circuit design of threshold gates with hysteresis.
Circ. and Syst., Proc. of the IEEE Int. Symp. on, Vol. 2 (Jun. 1998) 61–64 vol.62

9. Yancey, S., Smith, S.C.: A differential design for C-elements and NCL gates. Circ.
and Syst. , 53rd IEEE Int. Midwest Symp. on (Aug. 2010) 632–635



10. Parsan, F.A., Smith, S.C.: CMOS implementation of static threshold gates
with hysteresis: A new approach. VLSI and System-on-Chip (VLSI-SoC), 2012
IEEE/IFIP 20th International Conference on (Oct. 2012) 41-45

11. Seitz, C.L.: System timing. Introduction to VLSI Systems. MA: Addison-Wesley
(1980) 218–262

12. Berkel, K.V.: Beware the isochronic fork. Integr. VLSI J. 13 (Jun. 1992) 103–128
13. Verhoeff, T.: Delay-insensitive codes – an overview. Distributed Computing 3

(1988) 1–8
14. Muller, D.E.: Asynchronous logics and application to information processing. Stan-

ford, CA: Stanford Univ. Press (1963)
15. Shams, M., Ebergen, J.C., Elmasry, M.I.: Optimizing CMOS implementations of

the C-element. Comp. Design, Proc. of IEEE Int. Conf. on (Oct. 1997) 700-705
16. Parsan, F.A., Smith, S.C.: CMOS implementation comparison of NCL gates. Cir-

cuits and Systems (MWSCAS), 2012 IEEE 55th International Midwest Symposium
on (Aug. 2012) 394-397

17. Li, D., Mazumder, P.: On circuit techniques to improve noise immunity of CMOS
dynamic logic. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on 12 (2004) 910-925

18. Heller, L., Griffin, W., Davis, J., Thoma, N.: Cascode voltage switch logic: A
differential CMOS logic family. Solid-State Cir. Conf. Digest of Tech. Papers. IEEE
Int., Vol. XXVII (Feb. 1984) 16-17

19. Smith, S.C., DeMara, R.F., Yuan, J.S., Hagedorn, M., Ferguson, D.: Delay-
insensitive gate-level pipelining. Integ., the VLSI Journal 30 (Oct. 2001) 103–131


