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Abstract. Synchronous Elasticization converts an ordinary clocked cir-
cuit into Latency-Insensitive (LI) design. The Synchronous Elastic Flow
(SELF) is an LI protocol that can be implemented with eager or lazy
evaluation in the data steering network. Compared to lazy implementa-
tions, eager SELF designs have no combinational cycles and can have a
performance advantage, but consume more area and power. The design
space of lazy SELF protocols is evaluated and verified. Several new de-
signs are mapped to hybrid eager/lazy implementations that retain the
performance advantage of the eager design but have power advantages
of lazy implementations.
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1 Introduction

Latency insensitivity (LI) allows designs to tolerate arbitrary latency variations
in their computation units as well as communication channels [1]. This is partic-
ularly important for interfaces where the actual latency can not be accurately
estimated or is required to be flexible. An Example of the former are systems
with very long wire interconnects. Interconnect latency is affected by many fac-
tors that may not be accurately estimated before the final layout [2]. On the
other hand, some applications require flexible interfaces that tolerate variable
latencies. Examples can include interfaces to variable latency ALU’s, memories
or network on chip. It has been reported that applying flexible latency design
to the critical block of one of Intel’s SoCs (H.264 CABAC) can achieve 35%
performance advantage [8].

Synchronous elasticization is a technique of converting an ordinary clocked
circuit into an LI design [5, 3, 10, 7]. Unlike asynchronous circuits, synchronous
elastic circuits can be designed with conventional CAD flows using STA [3, 14].
The Synchronous Elastic Flow (SELF) is a communication protocol in syn-
chronous elastic designs [5]. Eager implementation of the SELF protocol enjoys
no combinational cycles and also may have performance advantages in some
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designs when compared to lazy implementations. However, eager protocols are
more expensive in terms of area and power consumption. The LI control net-
work area and power consumption may become prohibitive in some cases [3].
Measurements of a MiniMIPS processor fabricated in a 0.5 µm node show that
elasticization with an eager SELF implementation results in area, dynamic and
leakage power penalties of 29%, 13% and 58.3%, respectively [11]. Hence, min-
imizing these overheads is a primary concern. For an attempt to achieve that
goal, an algorithm that minimizes the total number of control steering units (i.e.,
joins and forks) in the LI control network has been developed [12].

Lazy SELF implementations may be an attractive solution. Unfortunately
the standard implementation suffers from combinational cycles that make it
an unreliable design [5, 11]. This work defines a larger design space that can
be employed to implement lazy channel protocols and to verify correctness of
these protocols both independently and when combined with the standard eager
protocol.

1.1 Contribution

A formal investigation of a complete set of lazy SELF protocol specifications
is reported. This includes introducing new lazy join and fork structures, which
are verified along with the existing designs. A novel hybrid implementation flow
is then introduced that combines the advantages of both eager and lazy imple-
mentations. The hybrid SELF essentially avoids some of the redundancy of the
eager implementation without any performance loss. Moreover, it is combina-
tional cycle free. The hybrid SELF network is demonstrated with the design of
a MiniMIPS processor. The hybrid implementation achieves the same runtime
as an all eager implementation with a reduction of 31.8% and up to 32.5% and
32.1% in the control network area and dynamic and leakage power consumption,
respectively.

Fig. 1. An EB implementation. Fig. 2. SELF channel protocol.
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2 SELF Overview

A LI network consists of two components: Elastic Buffers (EBs) and a control
network that distributes the handshake signals to the EBs. The components of
the control network (e.g., joins and forks) do not buffer the data. They, nonethe-
less, along with the EB controllers, schedule the data token transfers. The lazy
and eager properties of a SELF system are implemented in the control network.

An elastic system replaces the flip-flops used as pipeline latches in a clocked
system with EBs. EBs serve the purpose of pipelining a design as well as syn-
chronization points that implement an LI protocol, also allowing the clocked
pipeline to be stalled.

Figure 1 shows a block diagram implementation of an EB. An EB consists of
a data-plane (double latches) and a controller. It can be in the Empty (bubble),
Half or Full states depending on the number of data tokens its two latches
are holding. Sample implementation of the EB controller can be found in [5].
EB controllers communicate through control channels. Each channel contains
two control signals. ‘Valid’ (V ) travels in the same direction as the data and
indicates the validity of the data coming from the transmitter. ‘Stall’(S) travels
in the opposite direction and indicates that the receiver can not store the current
data.

The SELF channel protocol is shown in Fig. 2 [5]. The three states of the
channel protocol in Fig. 2 are (a.) Transfer (T ): V&!S. The transmitter provides
valid data and the receiver can accept it. (b.) Idle (I): !V . The transmitter does
not provide valid data. This paper identifies two Idle conditions: I0 (!V&!S)
where the receiver can accept data and I1 (!V&S) where the receiver can not
accept data. (c.) Retry (R): V&S. The transmitter provides valid data, but
the receiver can not accept it. In the Transfer state, the valid data must be
maintained on the channel until it is stored by the receiver.

When the connection between EBs is not point-to-point, a control network
is required to steer the Valid and Stall signals between the different EBs. The
control network is composed of control channels connected through control steer-
ing units, namely, join and fork components. A join element combines two or
more incoming control channels into one output control channel. A fork element
copies one incoming control channel into two or more output control channels.
Fork and join components are represented by � and ⊗, respectively. The SELF
protocol used over the control channels can be implemented using an eager or
lazy protocol. Hereafter we use the term control network to aggregately refer to
the joins, forks, and EB controllers in a system.

We introduce the notion of a control buffer in order to gain understanding
of the design and verification of control network components, such as joins and
forks. A linear control buffer simply breaks the control signals in a channel into
left and right channels. Such a buffer will have two inputs: the Valid on the left
channel and Stall on the right channel, and two outputs: the Stall on the left
channel and Valid on the right.
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Fig. 3. Vr1 of LF01.

3 SELF Channel Protocol Verification

All network components are verified to be conformant to the SELF channel
protocol. The correctness requirements for the channel protocol are adapted
from the general elastic component conditions consisting of persistence, freedom
from deadlock, and liveness [14]. A fourth constraint is added here that disallows
glitching on the control wires.

1. Persistence. No R→ I transition may occur.
2. Deadlock freedom. For each component in the verification, at least two states

can be reached from any other reachable state [16].
3. Liveness. The liveness condition is one of data preservation. Lazy control

buffers must have the same number of tokens transferred on all their channels.
This functional requirement is a special case of the liveness condition in [14].
This is implemented by creating token counters on all the lazy control buffer
channels and verifying that they are always equivalent.

4. Glitch Free. No S↑ signal transition may occur in state I. The specification
of the idle protocol state I in Fig. 2 does not constrain the behavior of the
Stall signal. This allows glitching on the control wires to occur. If the Stall
signal is not allowed to rise in the idle state then glitching will not occur.
This requirement is not explicit in the SELF specifications. However, it can
be observed that this transition is not possible in published Elastic Buffer
(EB) or Elastic Half Buffer (EHB) designs [5, 9]. If control wire glitching is
possible, then the composition of some forks and joins may not be compliant
with the channel protocol. For example, the Karnaugh map of LF01, one of
the two lazy forks proven to be SELF compliant, is shown in Fig. 3. Transition
A occurs when Sr2 rises in the idle state. While this glitching transition is
valid according to the channel specification, it results in Vr1 falling, which
produces an illegal R→ I transition on channel r1. Since this transition can
never happen unless channel r2 can make an S↑ transition glitch, we add this
condition to our verification suite.

4 Lazy SELF Control Network Design

A truth table can be created to specify the permissible behaviors for the con-
trol buffer left Stall and right Valid signals that conform to the SELF channel
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protocol of Sect. 2. Such a truth table shows the flexibility in design choices
that can be made. The same procedure is performed for the lazy fork and join
components.

5 Fork Components

5.1 Eager Fork

The eager fork (EFork) will immediately forward valid data tokens presented
at the root to all branches that are not stalled. If any of the branches of the
fork are stalled, the root of the EFork will stall until all its branches receive
the data. This gives the earliest possible data transfer to the branches that are
ready to receive data. Hence, the EFork can result in performance advantage
over lazy forks in some systems. Due to the necessary pipelining that occurs in
the control signals, the EFork incorporates one flip-flop per branch. The control
flip-flop must be updated every clock cycle to sample changes. Moreover, eager
forks have higher logic complexity comparing to lazy. This makes the EFork
expensive in terms of both area and power consumption. Figure 4a shows an n
output extension of the EFork [11, 5].

(a) A 1-to-n EFork. (b) A 1-to-n lazy fork.

Fig. 4. Sample forks.

5.2 Lazy Fork

The lazy fork does not propagate valid data from its root to its branches until
all branches are ready to store the data. A sample lazy fork is shown in Fig. 4b.
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Lazy Fork Synthesis. The truth table for a lazy fork is shown to be purely
combinational. Thus it is easily represented with the Karnaugh map (KM) shown
in Fig. 5. The KM has two don’t care terms m0 and m1 giving four possible
designs. Each implementation is denoted as LFm0m1 (e.g., LF00, LF01,.. etc).
Table 1 maps all the published lazy forks we were able to find to those of this
paper.

The hand translation of the fork as a control buffer may still result in illegal
channel behavior on one or more of the channels due to the interactions between
branches of the fork and join. Thus we employ a rigorous verification method-
ology to prove correctness of the designs. Indeed, verification shows that two of
the four possible designs do not fully obey the SELF channel protocol.

Fig. 5. Lazy fork specifications (Vr1).

Fig. 6. Lazy fork verification setup.

Fig. 7. A 2-output LF01 implementation.

Fork Verification. The setup of Fig. 6 is used to verify correctness of the
fork designs. The root channel (A) as well as the branches (A1 and A2) are
connected to three elastic buffers (EBs) as well as data token counters (TCs).
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Table 1. Mapping between published and this paper lazy forks and joins.

Fork [10] LF00 Join [10] LJ0000

Fork [5] LF00 Join [5] LJ0000

LFork [11] LF00 LJoin [11] LJ0000

LKFork [11] LF01 LKJoin [11] LJ1111

This work employs the EB implementation published in [5]. The counters track
the number of clock cycles that the channel is in the transfer state T . The
structure is modeled and passed to a symbolic model checker, NuSMV [4].

All constituent blocks are connected synchronously. Synchronous connection
guarantees that all modules advance in lock-step. Logic delays are then executed
in internal cycles of the verification engine. All combinational logic are modeled
to have zero delay. The clock generator is modeled to have a unit delay for each
phase. For example, following is the LF00 model:
MODULE LF00(Vl,Sr1,Sr2)
DEFINE Sl := Sr1 | Sr2 ; DEFINE Vr1 := Vl & (!Sr1) & (!Sr2) ; ...

The four properties from Sect. 3 are applied to each design. The properties
used for these checks are described below.

1. Persistence. For each channel (i.e., A, A1 and A2) we verify that no R → I
transition occurs:
DEFINE R A := VA & SA ; -- Retry on channel A
DEFINE I A := !VA ; -- Idle on channel A
PSLSPEC never {[*]; R A; I A};
Out of the 4 lazy fork implementations only LF00 and LF01 pass this check.

2. Deadlock freedom. At least two states are verified as reachable from all other
reachable states [16]. For example, inside the LF00 module the following CTL
properties verify two states are reachable:
SPEC AG EF (Vr1=1 & Vr2 =1 & Sl=0);
SPEC AG EF (Vr1=0 & Vr2 =0 & Sl=0);
Note that a state in LF00 is defined by the three variables: Vr1, Vr2 and Sl.
All four lazy fork implementations pass this check.

3. Liveness is calculated through data token preservation. Let the number of
data tokens transferred at the fork root channel and the two branch channels
be: dl, dr1 and dr2, respectively. (di is, equivalently, the number of clock cycles
where channel i was in the Transfer state (T ) (i.e., Vi&!Si).) The number of
data tokens transferred at its root channel must always be the same as those
at its branches. (i.e., the following requirement must always hold: dri−dl = 0
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for i ∈ {1, 2}.) We use the following code to model a token counter for channel
i. The model counts on the negative edge of the clock.
MODULE TokenCounter (Clk,Vi,Si)
VAR Count: 0..31;
ASSIGN
init (Count) := 0;
next (Count) := case
(Clk=1)&(next(Clk)=0)&(Vi=1)&(Si=0)&(Count < 31): Count + 1;
1: Count;
esac;
Since NuSMV supports finite types only. Without loss of generality, we chose
the upper limit of the Count variable to be a sufficiently large number (32 in
this case). For each branch we define and check the following property:
DEFINE TokenCountError A1 := case (dl != dr1):1; 1:0; esac;
PSLSPEC never {[*]; TokenCountError A1};
All the four lazy fork implementations pass this check.

4. No glitching. This verifies that the Stall signal does not rise in the idle state:
DEFINE I0 A := !VA & !SA ; -- Idle0 on A
DEFINE I1 A := !VA & SA ; -- Idle1 on A
PSLSPEC never {[*]; I0 A; I1 A};
All lazy fork implementations pass this check.

Hence, among the four possible lazy fork implementations, only LF00 and
LF01 conform to our channel specification. Similarly, the EFork of Sect. 5.1 is
also verified. Since the EFork allows its ready branches to transfer tokens while
stalled waiting for the other branches to be ready, the data token preservation
requirement is: 0 ≤ dri−dl ≤ 1 for i ∈ {1, 2}. Indeed, EFork passes these checks
and, hence, is also compliant with the SELF protocol.

Lazy Fork Characterization. To help characterize the different fork imple-
mentations as well as their combinations with lazy joins in a network, we intro-
duce the following definitions:

Definition 1. CFr, Fork Reflexive Characterization Set CFr is a set of charac-
terization elements (cFr), where: cFr ∈ {I,N, 0, 1}

where

1. cFr = I (or inverting) in a 2-output fork iff Vri is a function of Sri, and iff,
for some constant Vl and Srj , Vri =!Sri, where i, j ∈ {1, 2} and i 6= j.

2. cFr = N (or non-inverting) in a 2-output fork iff Vri is a function of Sri, and
iff, for some constant Vl and Srj , Vri = Sri, where i, j ∈ {1, 2} and i 6= j.

3. cFr = 0 (or constant zero) in a 2-output fork iff Vri is a function of Sri, and
iff, for some constant Vl and Srj , Vri = 0, where i, j ∈ {1, 2} and i 6= j.

4. cFr = 1 (or constant one) in a 2-output fork iff Vri is a function of Sri, and
iff, for some constant Vl and Srj , Vri = 1, where i, j ∈ {1, 2} and i 6= j.
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Table 2. CFr Computation of LF00

Vl Sr2 Sr1 → Vr1 cFr

0 0
0 → 0

0
1 → 0

0 1
0 → 0

0
1 → 0

1 0
0 → 1

I
1 → 0

1 1
0 → 0

0
1 → 0

Table 3. CFt Computation of LF00

Vl Sr1 Sr2 → Vr1 cFt

0 0
0 → 0

0
1 → 0

0 1
0 → 0

0
1 → 0

1 0
0 → 1

I
1 → 0

1 1
0 → 0

0
1 → 0

Definition 1 can be easily extended to n-output forks with n > 2.
Table 2 illustrates CFr computation of LF00. From the table, CFr of LF00

is {0, I}. Similarly CFr of LF01 is ∅. This is because in LF01 (see Fig. 7), Vri
is not a function of Sri. As we will show in Sect. 8.1, this property gives an
advantage to LF01 since it can reduce the number of combinational cycles in
the control network substantially.

Definition 2. CFt, Fork Transitive Characterization Set CFt is a set of char-
acterization elements (cFt), where: cFt ∈ {I,N, 0, 1}

where

1. cFt = I (or inverting) in a 2-output fork iff Vri is a function of Srj , and iff,
for some constant Vl and Sri, Vri =!Srj , where i, j ∈ {1, 2} and i 6= j.

2. cFt = N (or non-inverting) in a 2-output fork iff Vri is a function of Srj , and
iff, for some constant Vl and Sri, Vri = Srj , where i, j ∈ {1, 2} and i 6= j.

3. cFt = 0 (or constant zero) in a 2-output fork iff Vri is a function of Srj , and
iff, for some constant Vl and Sri, Vri = 0, where i, j ∈ {1, 2} and i 6= j.

4. cFt = 1 (or constant one) in a 2-output fork iff Vri is a function of Srj , and
iff, for some constant Vl and Sri, Vri = 1, where i, j ∈ {1, 2} and i 6= j.

Definition 2 can be easily extended to n-output forks with n > 2.
Table 3 illustrates CFt computation of LF00. From the table, CFt of LF00

is {0, I}. Similarly CFt of LF01 is also {0, I}.

6 Lazy Join

The lazy join has to wait for all its input branch channels to carry valid data
until data is transferred on the output channel. A sample lazy join is shown in
Fig. 8.

6.1 Lazy Join Synthesis

The synthesis of a lazy join as a control buffer is performed similar to the lazy
fork. The KM is shown in Fig. 10. There are 16 possible implementations.
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Fig. 8. An n-to-1 lazy join. Fig. 9. A 2-input LJ1011 implementation.

Fig. 10. Lazy join specification (Sl1). Fig. 11. Lazy join verification setup.
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6.2 Lazy Join Verification

Similar to the lazy fork verification in Sect. 5.2, we use the structure of Fig. 11 to
verify the different lazy join implementations. We check the following properties:
1. Persistence: All the 16 lazy joins pass this check. 2. Deadlock freedom: All the
16 joins pass. 3. Data token preservation: All the 16 joins pass. 4. Glitch Free:
Out of the 16 lazy joins, only 6 pass. Only the following lazy join designs pass
verification: LJ0000, LJ0010, LJ0011, LJ1010, LJ1011, LJ1111.

6.3 Lazy Join Characterization

To help characterize the different join implementations as well as their combi-
nations with lazy forks in a network, we introduce the following definitions:

Definition 3. CJr, Join Reflexive Characterization Set CJr is a set of charac-
terization elements (cJr), where: cJr ∈ {I,N, 0, 1}

where

1. cJr = I (or inverting) in a 2-input join iff Sli is a function of Vli, and iff, for
some constant Sr and Vlj , Sli =!Vli, where i, j ∈ {1, 2} and i 6= j.

2. cJr = N (or non-inverting) in a 2-input join iff Sli is a function of Vli, and
iff, for some constant Sr and Vlj , Sli = Vli, where i, j ∈ {1, 2} and i 6= j.

3. cJr = 0 (or constant zero) in a 2-input join iff Sli is a function of Vli, and iff,
for some constant Sr and Vlj , Sli = 0, where i, j ∈ {1, 2} and i 6= j.

4. cJr = 1 (or constant one) in a 2-input join iff Sli is a function of Vli, and iff,
for some constant Sr and Vlj , Sli = 1, where i, j ∈ {1, 2} and i 6= j.

Definition 3 can be easily extended to n-input joins with n > 2.
Similar to Table 2, we can also find that CJr of LJ0000, for example, is

{N, 0}. LJ1011 has a CJr of ∅. This is because in LJ1011 (see Fig. 9), Sli is not
a function of Vli. As we will show in Sect. 8.1, this property gives an advantage
to LJ1011 since it can reduce the number of combinational cycles in the control
network substantially.

Definition 4. CJt, Join Transitive Characterization Set CJt is a set of charac-
terization elements (cJt), where: cJt ∈ {I,N, 0, 1}

where

1. cJt = I (or inverting) in a 2-input join iff Sli is a function of Vlj , and iff, for
some constant Sr and Vli, Sli =!Vlj , where i, j ∈ {1, 2} and i 6= j.

2. cJt = N (or non-inverting) in a 2-input join iff Sli is a function of Vlj , and
iff, for some constant Sr and Vli, Sli = Vlj , where i, j ∈ {1, 2} and i 6= j.

3. cJt = 0 (or constant zero) in a 2-input join iff Sli is a function of Vlj , and iff,
for some constant Sr and Vli, Sli = 0, where i, j ∈ {1, 2} and i 6= j.

4. cJt = 1 (or constant one) in a 2-input join iff Sli is a function of Vlj , and iff,
for some constant Sr and Vli, Sli = 1, where i, j ∈ {1, 2} and i 6= j.

Definition 4 can be easily extended to n-input joins with n > 2.
Similar to Table 3, we can also find that CJt of LJ0000, for example, is

{I, 0, 1}.
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7 Lazy SELF Networks

Unlike eager forks, lazy forks have no state holding elements (e.g., flip-flops).
Hence, arbitrary connections of lazy joins and forks in a control network typically
result in combinational cycles. These cycles can cause deadlock or oscillation due
to logical or transient instability:

7.1 Deadlock - D

A combinational cycle can cause a deadlock if under some input sequence its
internal signals can get stuck at certain values. For example, consider a structure
in which a fork output channel is feeding a join (Fig. 12a). This structure is a
basic building block of typical elastic control networks. Figure 13 shows a circuit
implementation of Fig. 12a using LF00 and LJ1111.

(a) (b)

Fig. 12. Sample fork join combinations.

Fig. 13. LF00 and LJ1111 combination.

It can be easily shown that if VA is zero, VA1 and VAC must also be zero.
This will force SA1 to be one, SA to be one and VA1 to be zero. Apparently, the
loop shown in dotted lines forms a latch, since all its wires can simultaneously
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carry controlling values to all the gates in the loop. Hence, after a zero on VA,
the system will deadlock. VA2, VAC, SC and SA will be stuck at zero, zero, one
and one, respectively.

In general, for the common structure of Fig. 12a, the following can be readily
proved. Let CJr1 (CFr1) and CJt1 (CFt1) be the join (fork) reflexive and tran-
sitive characteristic sets of the lazy join (fork) used, LJ1 (LF1), respectively.
Then, the connection of Fig. 12a will result in deadlock if the following condi-
tion holds: CJr1 = {1, I} and CFr1 = {0, I}. To illustrate, since CFr1 = {0, I},
therefore, for all the possible values of LF1 inputs, V A1 is either 0 or the inverse
of SA1. Similarly, since CJr1 = {1, I}, therefore, for all the possible values of
LJ1 inputs, SA1 is either 1 or the inverse of V A1. Hence, once V A1 is 0 or SA1
is 1, the loop formed by V A1 and SA1 will stuck at these values.

Similarly, a deadlock will occur in the connection of Fig. 12b if the following
condition holds: CJt1 = {1, I} and CFt1 = {0, I}.

7.2 Oscillation due to Logical Instability - LI

A loop is logically unstable if it has an odd number of inverting elements. Under
some input sequence, it can behave as a ring oscillator.

For example, consider the structure of Fig. 12a. Figure 14 shows a circuit
implementation of that structure using LF00 and LJ0000.

Fig. 14. LF00 and LJ0000 combination.

Assume the elastic buffer C in Fig. 14 holds a bubble (i.e., its output Valid
signal is zero), while A holds data. Assume also that SA2 is zero (B is not
stalled). This connection will form a loop (shown in dotted lines in Fig. 14). The
loop is logically unstable since it has an odd number of inverting elements. This
results in an oscillation inside the loop as well as on the SA wire.

In general, for the common structure of Fig. 12a, the following can be readily
proved. Let CJr1 (CFr1) and CJt1 (CFt1) be the join (fork) reflexive and tran-
sitive characteristic sets of the lazy join (fork) used, LJ1 (LF1), respectively.
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Table 4. Lazy fork-join combination characterization. All other combinations (14 Forks
× 10 Joins) are non-compliant with the SELF protocol.

Join 0000 0010 0011 1010 1011 1111

Fork
Cr

Ct

N, 0

I, 0, 1

N, 0, 1

I, 0, 1

N, 0, 1

I, 0, 1

N, 0, 1

I, 1

∅
I, 1

I, 1

I, 1

0000
I, 0

I, 0
LI LI LI LI D D

0001
∅
I, 0

TI TI TI D D D

Then, the connection of Fig. 12a will result in logical instability if any of the
following condition holds:

– I ∈ CJr1 and N ∈ CFr1.
– N ∈ CJr1 and I ∈ CFr1.

7.3 Oscillation due to Transient Instability - TI

Even if a combinational loop does have even number of inverting elements it
can still cause oscillation in the elastic control network. Since the loop has more
than one input, and in some input sequences, both logic one and zero values may
be injected in the loop simultaneously. This can result in both values oscillating
around the loop.

Table 4 shows the different lazy fork-join combinations characteristics. The
table refers to the network structures of Fig. 12.

Research is still in progress to investigate whether the oscillation due to tran-
sient instability can be avoided by forcing network-specific timing constraints on
the control network. However, a simpler solution, not only for transient insta-
bility, but also for deadlock and logical instability, is to use eager forks when
needed to cut such combinational cycles. This will be discussed in Sect. 8.

Finally, the following logic was used for the root’s Stall signal in all of the
lazy forks investigated: Sl = Sr1|Sr2. Similarly, the lazy join elements used Vr =
Vl1&Vl2. Other implementations for these signals that consider flexibility allowed
by lazy control buffers is not presented here. However, note that designs with
additional logic will increase the probability of combinational loops in component
composition.

8 Hybrid SELF Protocol

Two lazy forks and six lazy joins, as well as the traditional eager fork, have
been proven to be compliant with our strict SELF channel protocol. Therefore,
eager and lazy forks (and joins) can be correctly connected together as long as
no combinational cycles are formed [14]. Eager forks exhibit no cycles and can
achieve better runtime in some systems. However, they consume more power and
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area than lazy forks. Hence, we propose to use a hybrid SELF implementation,
that uses both eager and lazy forks, has no cycles, and achieves the same runtime
as an all eager implementation. Hybrid implementation should keep minimal
number of eager forks in the control network that are necessary for the following
reasons:

8.1 Cycle Cutting

Lazy fork-join combinations can result in combinational cycles that cause os-
cillation or deadlock. These cycles can be avoided by replacing lazy forks with
eager in places where cycles exist. Cycles can be easily identified either by hand
analysis of the control network or through synthesis tools (e.g., report timing
-loops command in Design Compiler).

LF01 enjoys the property that there is no internal path in the fork that con-
nects any of its branch Stalls to its corresponding Valid. This reduces the cycles
substantially. Similarly, LJ1011 enjoys the property that there is no internal
path in the join that connects any of its input channel Valid signals to its cor-
responding Stall. This also reduces the cycles substantially. Hence, the fork-join
combination of LF01−LJ1011 results in the minimum number of combinational
cycles among all the other fork-join combinations. This, in turn, minimizes the
need to use eager forks to cut the cycles, resulting in minimizing the total area
and power consumption of the hybrid control network.

8.2 Runtime Boosting

Eager forks can enjoy better performance than lazy due to the early start they
provide for ready branches (Sect. 5.1). However, we show in this section that
under some constrained input behavior, a lazy fork can replace an eager fork
without any performance loss. In that context, we will use the term LFork to
refer to the lazy forks LF00 and/or LF01.

A 2-output EFork operation will reduce to the KM of Fig. 15a if the EFork
registers are initialized to logic one and if the following input combinations are
avoided [13]:

1. (Vl = 1)&(Sr1 = 0)&(Sr2 = 1)
2. (Vl = 1)&(Sr1 = 1)&(Sr2 = 0)

The KM of the lazy forks LF00 and LF01, with the above input combinations
avoided, is shown in Fig. 15b. Comparing Fig. 15a and Fig. 15b, it is apparent
that, under these conditions, the EFork will behave exactly the same as the lazy
forks, except in the case when both branches are stalled simultaneously. One
might add a conservative constraint by avoiding such an input as well. However,
as the following verification will confirm, when both branches are stalled, the
lazy forks will have both branches in the Idle state, while the EFork will keep
them in the Retry state. Since there is no data transfer occurring in either states
(i.e., I or R), there is no performance advantage of the EFork comparing to the
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(a) EFork (b) LFork

Fig. 15. Vr1 (or Vr2) of the EFork and LFork under some constrained input behavior,
respectively.

Fig. 16. Performance equivalence verification setup.



17

LFork in such a case. Hence, we conclude that the above stated conditions are
sufficient to replace an EFork with LF00 or LF01 without any performance
loss. We, therefore, refer to the above conditions as the performance equivalence
conditions, or, for short, the equivalence conditions.

To verify this argument, the verification setup of Fig. 16 is employed. The
whole structure is modeled in the symbolic model checker, NuSMV [4]. The input
and output channels of both the EFork and LFork are connected to terminal
Elastic Buffers (EBs). The EBs are initialized in random states. The EFork
input and two output channels are named: L E (read Left Eager), R1 E (read
Right1 Eager), R2 E (read Right2 Eager), respectively. Similarly, the LFork
input and 2 output channels are named: L L, R1 L, R2 L, respectively. V and
S are prepended to the channel names to indicate the Valid and Stall signals of
these channels, respectively.

All the blocks as well as the clock generator have been connected syn-
chronously inside NuSMV. The clock changes phase with each unit verification
cycle. The Transfer state on the EFork input and output channels are defined
as follows:
DEFINE L E T := VL E & !SL E;
DEFINE R1 E T := VR1 E & !SR1 E;
DEFINE R2 E T := VR2 E & !SR2 E;
Similarly, for the LFork:
DEFINE L L T := VL L & !SL L;
DEFINE R1 L T := VR1 L & !SR1 L;
DEFINE R2 L T := VR2 L & !SR2 L;

A performance mismatch can occur if any of the channels in the EFork
transfers data while the corresponding channel in the LFork does not. Hence,
we define TOKEN MISMATCH on the different channels as follows:
DEFINE L TOKEN MISMATCH := (L E T xor L L T);
DEFINE R1 TOKEN MISMATCH := (R1 E T xor R1 L T);
DEFINE R2 TOKEN MISMATCH := (R2 E T xor R2 L T);

A TOKEN MISMATCH is defined to be the ORing of any channel mismatch:
DEFINE TOKEN MISMATCH := L TOKEN MISMATCH | R1 TOKEN MISMATCH |
R2 TOKEN MISMATCH;

Finally, to force the performance equivalence conditions, we define the fol-
lowing constraint:
DEFINE C 1 := VL & (SR1 xor SR2);

Constraint C 1 is forced by using the NuSMV reserved word INVAR which
semantically defines an invariant:
INVAR C 1;
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The performance equivalence property is then verified using PSLSPEC:
PSLSPEC never TOKEN MISMATCH;

The property is proven true by the model checker. There is no clock cycle in
which any of the EFork channels is in the Transfer state while the corresponding
channel in the LFork is not transferring data as well. Hence, under the stated
performance equivalence conditions, the EFork and LFork will transfer exactly
the same number of tokens, thus, achieving the same performance.

The results can be easily extended to n-output forks with n > 2, based on
the fact that an n-output fork is logically equivalent to concatenated (n − 1)
2-output forks. Hence, all the eager forks in the control network that meet the
performance equivalence conditions can be safely replaced by lazy forks. The
result will be a hybrid control network (incorporating both eager and lazy forks)
that has the same runtime of an all eager network with substantially smaller
area and power.

8.3 Eager to Hybrid Conversion Flow

Algorithms to automatically identify which eager forks can be replaced by lazy
in a network are currently being developed [13]. For the time being, simulation-
based analysis is used. In this approach, a closed eager control network is sim-
ulated and all the fork Valid and Stall patterns are collected and analyzed. An
example will be shown in the MiniMIPS case study in Sect. 9. Starting with
an elastic control network (generated manually or through automatic tools like
CNG [12]), the following flow generates a hybrid SELF implementation (H) of
that network:

1. Define the set of all forks in the control network, Φ.
2. Construct a pure eager implementation of the control network, E1, such that

each fork F ∈ Φ is an eager fork. Define the set of forks, Φs, that do not
meet the performance equivalence conditions. Φs are the forks that must be
implemented as eager to achieve the same runtime as a purely eager imple-
mentation of the control network.

3. Construct an intermediate hybrid network, H1, such that: each fork F ∈
Φ− Φs is a lazy fork, and each fork F ∈ Φs is an eager fork.

4. In H1, identify the set of forks, Φc, that need to be replaced by eager forks
to cut the combinational cycles.

5. Build a final hybrid network,H, such that: each fork F ∈ Φ−Φs−Φc is lazy,
and each F ∈ Φs ∪ Φc is eager.

9 MiniMIPS Case Study and Results

MIPS (Microprocessor without Interlocked Pipeline Stages) is a 32-bit architec-
ture with 32 registers, first designed by Hennessey [6]. The MiniMIPS is an 8-bit
subset of MIPS, fully described in [17].
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Fig. 17. Block diagram view of the ordinary clocked MiniMIPS. Adapted from [15, 17].

9.1 Elasticizing The MiniMIPS

The MiniMIPS is used as a case study of elasticization. Figure 17 shows a block
diagram of the ordinary clocked MiniMIPS. The MiniMIPS has a total of 12
synchronization points (i.e., registers), shown as rectangles in Fig. 17: P (pro-
gram counter), C (controller), I1, I2, I3, I4 (four instruction registers), A,B and
L (ALU two input and one output registers, respectively), M (memory data reg-
ister), R (register file) and Mem (memory).

To perform elasticization, each register is replaced by an elastic buffer (EB).
Then, the register to register data communications in the MiniMIPS are ana-
lyzed. The following registers pass data to both A, B : R, and to R : C, I2, I3,
L, M , and to C : C, I1, and to I1, I2, I3, I4 : C, Mem, and to L : A, B, C, I4,
P , and to M : Mem, and to Mem : B, C, L, P , and to P : A, B, C, I4, L, P .
For each register to register data communication there must be a corresponding
control channel. The resultant control network can be implemented in different
ways. Figure 18 shows a control network that has been hand-optimized to min-
imize the number of joins and forks used in the control network (to reduce area
and power consumption) [11]. From the control point of view, the register file
(R) and memory (Mem) in a microprocessor can be treated as combinational
units [5]. Hence, we did not incorporate a separate EB for the register file (R)
in Fig. 18. For the purpose of this case study, the memory (Mem) is off-chip.
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Fig. 18. Hand-optimized control network of the elastic clocked MiniMIPS. Adapted
from [11].

From the elastic control point of view, the MiniMIPS control signals (e.g.,
RegWrite, IRWrite, etc.) are considered part of the data plane and they need
their own control channels. Mapping between datapath signals in the clocked
MiniMIPS and the control channels in the elastic MiniMIPS should be self ex-
planatory for most signals. RFWrite, in Fig. 17, is the register-file-write control
channel. RFWrite valid must be active if data is going to be written in the reg-
ister file. Therefore, RFWrite valid has been ANDed with RegWrite inside the
register file.

Both the clocked and purely eager elastic MiniMIPS have been synthesized,
placed, routed and fabricated in a 0.5 µm technology. The functionality of the
fabricated processors have been verified on Verigy’s V93000 SoC tester using the
testbench in [17]. The eager implementation of the SELF protocol has been used
(EFork and LJ0000 have been used to implement all the forks and joins in the
control network, respectively). Table 5 summarizes chip measurements. It shows
that elasticizing the MiniMIPS has area and dynamic and idle power penalties
of 29%, 13% and 58.3%, respectively. For accurate idle power comparison, both
designs have been set to the same state (through a test vector) before measuring
the average idle supply current.

Both MiniMIPS have been fabricated without the memory block. Memory
values have been programmed inside the tester. Hence, we had to make an as-
sumption about the memory access time, and the assumptions affect the max-
imum operating frequency of both MiniMIPS in the same way. Therefore, the
actual value of memory access time would minimally affect the performance com-
parison. Hence, we chose an arbitrary value of zero for memory access time for
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Table 5. Clocked and eager elastic MiniMIPS chip results. Measurements are done at
5V and 30◦

Clocked MiniMIPS Eager Elastic MiniMIPS Penalty

Area (µm X µm) 1246.765 X 615.91 1284.1 X 771.54 29%

Pdyn @80 MHz (mW) 330 373 13%

Pidle (µW) 16.3 25.8 58.3%

fmax (MHz) 91.7 92.2 -0.5%

both designs. Schmoo plots for both clocked and elastic MiniMIPS are shown in
Fig. 19.

It should be noted that these measurements do not take advantage of bubble
problems that occur if one needs to have flexible interface latencies or extra
pipeline stages inserted.

There is no performance loss due to elasticization. Part of the reason for
the noticeable area and power overheads is that the MiniMIPS is, relatively, a
small design (8-bit datapath). However, part of it too is the usage of eager forks.
The EFork has one flip-flop per each branch that consumes power every cycle.
Add to this, its gate complexity. Next subsections will show the area and power
savings when switching from eager SELF implementation to hybrid SELF.

9.2 Eager Versus Lazy SELF Implementations

Lazy forks can substantially reduce the area and power of the elastic control
network. However, when combined with lazy joins, the combinational cycles are
typically prohibitive causing deadlocks or oscillations (Sect. 7).

Furthermore, lazy forks can suffer inferior performance comparing to eager, in
the presence of bubbles. To measure this advantage, a different number of bubbles
are inserted at the register file outputs (i.e., before registers A and B of Fig. 18,
simultaneously). Table 6 compares the number of clock cycles required by each
of purely lazy and eager implementations of the MiniMIPS control network to
complete the testbench program of [17]. For the lazy protocol, the LF01-LJ0000
combination is used. The behavioral simulations used some timing constraints to
avoid possible oscillations. Table 6 shows that, in this case, there is an advantage
for using eager forks, specially with a large number of bubbles in the system.
The table also shows that there is no runtime penalty due to elasticization in
the absence of bubbles.

The runtime advantage of the eager versus lazy designs is illustrated in the
following example (taken from the MiniMIPS control network of Fig. 18). Fig-
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(a) Schmoo plot for clocked MiniMIPS.

(b) Schmoo plot for elastic MiniMIPS.

Fig. 19. Fabricated chips schmoo plots. Red boxes are for failed tests, while green are
for passed ones.

ure 20 shows a simplified part of the MiniMIPS control network. We added one
bubble before the A register, and another one before the B register, labeled b1
and b2 respectively. Consider the clock cycle when V A and V B go low. SC1
will go high through join JABCI4P . In FC (assuming SC2 is low), V C is high,
SC1 is high. A lazy FC will invalidate the data at C2 (i.e., deasserts V C2) until
SC1 goes low again. Hence, no new data token can be written at register b1 or
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Table 6. Simulation runtime (in terms of #cycles) of the testbench in [17] in case of
lazy and eager protocols. Bubbles are inserted at the register file outputs.

Fork/Join Combination 0 Bubbles 1 Bubble 3 Bubbles

Lazy Protocol: LF01-LJ0000 98 195 389

Eager Protocol: EFork-LJ0000 98 147 245

Clocked MiniMIPS 98 - -

b2 until the stall condition on C1 is removed (i.e., SC1 goes low again). On the
other hand, an eager FC will validate the data on C2 (i.e., asserts V C2) for the
first clock cycle giving C2 branch an early start. Hence, new data tokens can be
written immediately in registers b1 and b2 in the following cycle.

Fig. 20. A sample structure where eager protocol will have runtime advantage over
lazy.

9.3 Eager Versus Hybrid SELF Implementations

The hybrid SELF implementation attempts to achieve the same performance
of the eager SELF with less area and power consumption, by using as many
lazy forks as possible. Without a loss of generality, we will apply both eager and
hybrid implementations to the elastic MiniMIPS control network of Fig. 21. This
control network achieves the same register-to-register communications as the one
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Fig. 21. CNG-optimized control network of the elastic clocked MiniMIPS [12].

in Fig. 18 but with two fewer joins and two fewer forks. It is auto-generated by
the CNG tool, a tool that given the required register-to-register communications
will automatically generate a control network with the minimum total number
of joins and forks [12]. Furthermore, we insert zero to three bubbles (i.e., EBs
that hold no valid data) at the register file output (i.e., at the inputs of A and
B registers simultaneously). In practice, this might be done, for example, to
accommodate a high latency register file without affecting the functionality of
the whole system.

The flow of Sect. 8.3 will be followed to construct the hybrid implementa-
tion. Starting with an all eager implementation of the closed control network of
Fig. 21 (call it E1), we run the sample testbench program of [17]. The simulation
waveform of each eager fork in the network is analyzed. EForks whose input be-
havior does not meet the performance equivalence conditions (of Sect. 8.2) are
then identified. These are the forks that must be implemented as eager in the
(to-be) hybrid control network in order to maintain the same performance as
the all eager network. The set of these forks will be called φs.

Analysis of the simulation waveforms of the MiniMIPS case (with 0 to 3
bubbles at the register file output) shows that all forks except FC and FL re-
ceive Valid and Stall patterns that meet the performance equivalence conditions.
Hence, all the forks except FC and FL can be safely implemented as lazy forks
without any performance loss. For FC, we observe repetitive Stall patterns sim-
ilar to those shown in Fig. 22. The numbered columns in Fig. 22 represent the
clock cycles. The red 0s and 1s are the branch Stall signal values at the corre-
sponding clock cycles. It is obvious that the Stall patterns at C1 and C3 meet
the conditions of Sect. 8.2 (they do not stall at all). Hence, branches C1 and
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C3 can be safely connected through a lazy fork (call it FC 1 3). Similarly, the
Stall patterns at branches C2 and C4 meet the replacement conditions (their
Stall patterns always match). Hence, branches C2 and C4 can also be connected
through another lazy fork (call it FC 2 4). FC 1 3 and FC 2 4 should be con-
nected through an eager fork since their corresponding Stall patterns do not
match. The resultant hybrid FC implementation is shown in Fig. 23. EF and
LF in the Figure refer to eager and lazy forks, respectively. Similarly, based on
the simulation waveform analysis, branches 1 and 2 of FL could be connected
through a lazy fork (FL 1 2). FL 1 2 must be connected eagerly to the third
branch of FL to maintain the runtime of an all eager implementation.

Fig. 22. Stall patterns at the branches of FC in the
presence of bubbles.

Fig. 23. Hybrid imple-
mentation of FC

As stated in Sect. 8.3, a hybrid network (call it H1) is now constructed.
All forks of H1 are implemented as lazy except those in set (φs) (i.e., that do
not meet the equivalence conditions). H1 typically involves combinational cycles
formed by the connection of lazy forks and joins. To cut the cycles in H1, more
forks have to be implemented as eager (call this set of forks φc). The number of
forks in φc depend on the lazy fork and join combination used. Some lazy fork-
join combinations exhibit more cycles than others and, hence, require more eager
fork replacements. The MiniMIPS control network is implemented using all the
correct 12 lazy fork-join combinations (with some eager fork replacements). The
network is also implemented with an all eager control network.

The set of all forks that had to be implemented as eager (to both maintain
the performance and cut the cycles) is listed in Column 2 for each combination
in Table 7.

Table 7 shows the synthesis results. The Artisan academic library for IBM’s
65nm library was used for physical design. The MiniMIPS control network has
been synthesized separately from the data path. All area and power numbers
in Table 7 are for the control network only. All combinations have passed post
synthesis simulation (with 0 to 3 bubbles). The MiniMIPS testbench program
in [17] was used to validate correctness. Column 1 in Table 7 lists the different
combinations (sorted by their area). Column 2 lists the eager fork replacements
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in each implementation. Unsurprisingly, LF01−LJ1011 needs the least number
of eager fork replacements (See Sect. 8.1), tying with LF00 − LJ1011 in this
specific network. Column 3 lists the number of combination cycles in the control
network (after eager fork replacements), which is zero for all of them. Column 4
lists the synthesis area. LF00− LJ1011 requires minimum area among all with
31.8% reduction comparing to an all eager implementation. LF01 − LJ1111
comes second.

Column 5 lists the dynamic and leakage power consumption reported by the
synthesis tool. Power is calculated with different number of bubbles inserted at
the output of the register file. To accurately estimate the power, we simulated
the synthesized netlist and generated an saif file that was read by the synthesis
tool to calculate the power. Synthesis and simulation was done at 4 ns clock
period for all the implementations. LF00 − LJ1011 consumes the least power
among all with up to 32.5% and 32.1% dynamic and leakage power reduction
comparing to an eager implementation. LF01− LJ1011 comes second.

Finally, column 6 lists the required runtime (in terms of number of clock
cycles) to finish the testbench program in [17]. The hybrid networks all achieve
the same runtime as the eager implementation.
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10 Conclusion

Lazy implementations of fork and join control buffers of SELF latency insensitive
protocol are implemented and formally verified. A novel hybrid SELF protocol
network is introduced that combines the advantages of both eager and lazy
elements. It is cycle free and has the same performance as an all eager imple-
mentation. A MiniMIPS case study showed that hybrid implementations achieve
the same runtime as the all eager implementation with a reduction of 31.8% and
up to 32.5% and 32.1% in area and dynamic and leakage power consumption,
respectively.
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