
Adaptation strategies in Multiprocessors System
on Chip

Remi Busseuil, Gabriel Marchesan Almeida, Luciano Ost,
Sameer Varyani, Gilles Sassatelli, and Michel Robert

Laboratoire d’Informatique, de Robotique et de Microelectronique
de Montpellier (LIRMM), Universite Montpellier 2, CNRS, France

{Remi.Busseuil,Gabriel.Marchesan,ost,Sameer.Varyani,

Gilles.Sassatelli,}@lirmm.fr

http://www.lirmm.fr

Abstract. Multi-processor System-on-Chips (MPSoCs) have become
increasingly popular over the past decade. They permit balancing perfor-
mance and flexibility, the latter being a key feature that makes possible
reusing the same silicon across several product lines or even generations.
This popularity makes highlight on new challenges to deal with the in-
creasing complexity of such systems. Programmability issues, for exam-
ple, are considered with a lot of attention, as those architectures allow
new dimensions in design exploration. In this context, the development
of adaptable mechanisms permits the optimization of the system be-
havior. This chapter explors three different adaptable mechanisms, and
shows their benefits : frequency scaling, task migration techniques and
memory organization. The modification of the frequency of each pro-
cessor of a multi-core system allows fine tuning of power consumption
under a varying process workload. Task migration permits balancing load
among the several processors the system is made of. Our long-term vi-
sion of future embedded devices lies in adaptive systems made of thou-
sands of processors in which tasks frequently migrate in response to the
system state that is continuously monitored. Memory organization is a
crucial criterion in MPSoC performance optimization, as memory ac-
cess latency of remote data increases exponentially with respect to the
number of cores. The computation-based programming model commonly
used in single-core or few-cores based systems are no more suitable, and
a transaction-based model are necessary to reach performances needs of
new multimedia application.

Keywords: MPSoC, Adaptation, Memory Architecture, Network-on-
Chip

1 Introduction

Multiprocessor Systems-on-Chips (MPSoCs) are commonly adopted in electronic
industry for their power efficiency and performance capabilities [1]. MPSoCs are
multidisciplinary systems that combine multiple homogeneous/heterogeneous
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processing elements (PEs), dedicated hardware (e.g. digital signal processing,
DSP) and software (e.g. operating systems) in order to cope with different appli-
cations requirements (e.g. real time deadlines, throughput). Due to the intensive
and parallel communications inherent to embedded applications, networks-on-
chip (NoCs) are employed since their are more scalable, flexible and power effi-
cient when compared to traditional on-chip infrastructures (e.g. shared busses)
[2] [3].

Given the great dynamism imposed by user-requests and internal system
mechanisms (e.g. temperature control), embedded applications can present un-
predictable behavior [4]. Such dynamism leads in workload and communication
patterns variation, which demands run-time techniques that can provide the nec-
essary adaptability to the system in order to optimize the resource utilization
while maintaining high performance [5].

Therefore, the deployment of new techniques to achieve runtime system
adaptability is mandatory [6]. Distributed DVFS (dynamic voltage and fre-
quency scaling), power gating, dynamic task mapping, task migration, are exam-
ples of runtime techniques that make it possible to optimize various parameters
such as application performance and/or power consumption. Dynamic Frequency
Scaling (DFS) is a widely used technique aimed at adjusting computational
power to application needs. It is often associated to Dynamic Voltage Scaling
(DVS) therefore enabling to achieve significant power reductions when comput-
ing demand is low; some cited benefits also comprise the reduction of thermal
hotspots that participate in the accelerated aging of the circuits due to the ther-
mal stress.

Static and dynamic mapping have been used to define the placement of each
task , aiming to reduce the communication latency and energy dissipation inside
the NoC. Static mapping defines task placement at design time, while in dynamic
mapping tasks are allocated onto PEs at the execution time [7]. However, during
the execution the task’s performance may degrade due to e.g. higher PE load
or NoC congestion. In this case, tasks may be re-mapped to other PEs to meet
application requirement. Dynamic re-mapping employs both mapping (static
and/or dynamic) and task migration. The task migration process consists in
extracting the state of a given task that is already executing on the source
PE and transferring it to a destination PE that will execute it. Task migration
requires migration points, context saving, context restoring, among other actions
not handled by the task mapping mechanisms (e.g. updating the connections of
the migrated task with other tasks on the communicating PEs) [8].

Some challenges related to the adoption of task migration into NoC-based
MPSoCs still remain. For instance, the task migration performance depends on
run-time events that are considered before and during the relocation of given
task when it is necessary [9]. Thus, the performance overhead of task migration
cannot be very high. The migration execution cost should be low since hard
real time deadlines must be met, while maintaining low power dissipation [9]
and temperature [10]. Thus, the designer should find a good trade-off between
complexity and performance (e.g. implementation and execution), as well as
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transparency and reusability, which are directly related to the level that the mi-
gration process will be provided (e.g. user, kernel levels) [11]. In this context, an
important aspect inherent to the task migration process is the adopted memory
organization, which can be classified in shared (Figure 1 - a) and distributed
(Figure 1 - b)[8]. In the first case, all PE are entitled to access any location in
the shared memory, thus the migrating a task comes down to electing a differ-
ent processor for execution. In turn, distributed memory MPSoCs, both process
code and state have to be physically migrated from a processor local memory to
another, while synchronizing exchanged messages [12].
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Fig. 1. Memory Organization: (a) Shared Memory, (b) Distributed Memory

Both approaches differ in terms of how to access and transfer the task code
from one point to another, which has a considerable impact in terms of perfor-
mance. In this context, this article presents three main contributions: (i) a Dy-
namic Frequency Scaling strategy using feedback controlers to meet a streaming
application throughput requirement,(ii) validation of two task migration mecha-
nisms into an RTL-modeled NoC-based homogenous MPSoC, leading to accurate
results, and (iii) a hybrid memory architecture that can be employed to optimize
the performance of task migration mechanisms.

This chapter is organized as follow: Section 2 gives an overview of adaptable
mechanisms already developed in the literature. Section 3 explains two commu-
nication strategies during task migration allowing different kind of performances.
Section 5 gives an overview of standard memory models in MPSoC, and then
presents a hybrid memory organization allowing more liberty in term of mem-
ory placement. Finally, the last section concludes about the different adaptation
strategies.

2 Adaptation Techniques in NoC-based MPSoCs

Recently, researchers have put focus on adaptation techniques in order to cope
with dynamic and unpredictable behaviors that can appear in nowadays em-
bedded systems. This section presents some work that has been conducted in
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this direction using techniques such as (i) dynamic voltage and frequency scaling
(DVFS), and (ii) task migration mechanisms.

2.1 Dynamic voltage and frequency scaling

Numerous dynamic voltage and frequency scaling (DVFS) techniques have been
proposed, aiming to allow systems to fine-tune their performance/power con-
sumption trade-off under varying workloads during runtime. Two main ap-
proaches to DVFS can be found in the literature. One of them takes a cen-
tralized view of power management and considers the global system state, its
performance constraints and its current workload to decide voltage and frequency
values it will adopt next [13] , while another partitions the system in multiple
voltage/frequency islands that can be managed separately [14]. In both central-
ized and partitioned approaches, the state change (i.e. change of frequency and
voltage values) can be triggered by events (e.g. a given threshold on processor
utilization was reached [15]) or be driven by a feedback control process that
continuously monitors the system workload [16]. The partitioned approach is a
natural match to NoC-based multicore chips, but a number of issues arise when
different parts of the NoC are on different voltage/frequency islands [17] [18].

For instance, in [19] a DVFS controlling scheme is proposed for NoC-based
MpSoCs. In turn, the works [20] and [21] employ communication load as moni-
toring parameters, which are extracted at run-time in order to tune the DVFS
controller. In [22] temperature and task synchronization are used as parameters.
In this work, these parameters are employed in a cost function, which is used as
input to a game theory model that defines the voltage and the frequency levels.
This work was extended in [23], to use communication queues that are placed
between each 2 neighbor routers in order to scale the voltage via power supply
networks. In [24] the Authors use application profile as the parameter used to
control DVFS decisions.

Due to the dynamic variations in the workload of MPSoCs and its impact on
energy consumption, PID-based control techniques have been used to dynami-
cally scale the voltage and the frequency of processors [16] [25], and recently, of
NoCs [18][26].

A proportional-integral-derivative controller (PID controller) is a generic
control-loop feedback mechanism (controller) widely used in industrial control
systems. A PID controller calculates an error value as the difference between
a measured process variable and a desired setpoint. The controller attempts to
minimize the error by adjusting the process control inputs. In the absence of
knowledge of the underlying process, a PID controller is a suitable controller
[27]. However, for best performance, the PID parameters used must be tuned
according to the nature of the process to be regulated.

The proportional, integral, and derivative terms are summed to calculate the
output of the PID controller. Defining u(t) as the controller output, the final
form of the PID algorithm is:
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u(t) = MV (t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (1)

Proportional gain, Kp : larger values typically mean faster response since
the larger the error, the larger the proportional term compensation. 2) Integral
gain, Ki: larger values imply steady state errors are eliminated more quickly. 3)
Derivative gain, Kd: larger values decrease overshoot, but slow down transient
response and may lead to instability due to signal noise amplification in the
differentiation of the error. Figure 2 summarizes a traditional PID controller.
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Fig. 2: PID Controller

application requirements, e.g. the minimal throughput the
application requires to ensure the functionality of the system
in a reliable way.

The system then calculates an error value which is obtained
by the difference between the desired and obtained throughput.
As output of the PID controller a frequency value is indicated.
This value is sent to the frequency scaling module which will
be responsible for scaling up and down the frequency of the
processor to cope with application requirements. The proce-
dure is then repeated and the obtained throughput gradually
gets closer to the desired throughput. This is explained by
the fact that after each iteration the error value is reduced
assuming that the values of P , I and D have been correctly
chosen. Fig. 3 presents an abstract system model of the
proposed strategy for each Network Processing Element (NPU)
in the architecture.
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Basically each running application is composed of one or
multiple tasks. Task are monitored by a throughput monitoring
that is responsible for calculating tasks performance in a non-
intrusive mode. This information is passed to the PID con-
troller which will be responsible for choosing the appropriated
frequency in order to speed up or slow down processing. This
strategy can be suitable for power saving in embedded systems.

Fig. 4 illustrates an overview of the proposed approach.
As previously mentioned, there is one PID controller devoted
to each task in the system that must ensure soft-real time
constraints. In this example there is one task per NPU, so
one PID controller for each processor is required. In the case
that there are multiple tasks in the same NPU, we could build
a system with multiple PID controllers in the same NPU, each
one being responsible for contributing as a factor that will be
added to the final result.

The strategy consists in deciding controller parameters on
a task basis. To this purpose, a simulation of the MPSoC
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Fig. 4: Distributed PID Controllers

system is executed in order to obtain the step response. Fig. 5
shows the cycle-accurate simulation results and the first order
extracted model that is used for the process (Fig. 2). Based on
that high-level model, a number of different configurations of
controllers can be explored, each of which exhibits different
features such as speed, overshoot, static error.
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The values of P , I and D have been chosen to increase

the reactivity of the system. Fig. 6 presents the PID response
according to P , I and D values.
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we can observe that in the first case where P = 500, I = 50
and D = 0, the system converges to the setpoint throughput
rapidly. As result we observe an overshoot in terms of per-
formance. In the second scenario where P = 800, I = 5 and
D = −0.8, due the fact that the value of P is much bigger than
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Fig. 2. PID Controller

Due to its features, we propose the usage of a PID controller for adjusting
the appropriated frequency of the PEs at the same time as deadline miss ratio
is reduced. As most applications in embedded systems are based on soft- real
time constraints, actual architectures have to be capable of adapting to avoid
situations where deadlines are missed. For that reason, the proposed approach
considers applications requirements aiming to provide QoS (Quality-of-Service).
As entry point (setpoint in Figure 2), the system is fed with the application
requirements, e.g. the minimal throughput the application requires to ensure
the functionality of the system in a reliable way.

In the proposed approach [28], the system calculates an error value which
is obtained by the difference between the desired and obtained throughput. As
output of the PID controller a frequency value is indicated. This value is sent
to the frequency scaling module which will be responsible for scaling up and
down the frequency of the processor to cope with application requirements. The
procedure is then repeated and the obtained throughput gradually gets closer to
the desired throughput. This is explained by the fact that after each iteration
the error value is reduced assuming that the values of P, I and D have been
correctly chosen. Figure 3 presents an abstract system model of the proposed
strategy for each Network Processing Element (NPU) in the architecture.
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application requirements, e.g. the minimal throughput the
application requires to ensure the functionality of the system
in a reliable way.

The system then calculates an error value which is obtained
by the difference between the desired and obtained throughput.
As output of the PID controller a frequency value is indicated.
This value is sent to the frequency scaling module which will
be responsible for scaling up and down the frequency of the
processor to cope with application requirements. The proce-
dure is then repeated and the obtained throughput gradually
gets closer to the desired throughput. This is explained by
the fact that after each iteration the error value is reduced
assuming that the values of P , I and D have been correctly
chosen. Fig. 3 presents an abstract system model of the
proposed strategy for each Network Processing Element (NPU)
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Basically each running application is composed of one or
multiple tasks. Task are monitored by a throughput monitoring
that is responsible for calculating tasks performance in a non-
intrusive mode. This information is passed to the PID con-
troller which will be responsible for choosing the appropriated
frequency in order to speed up or slow down processing. This
strategy can be suitable for power saving in embedded systems.
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to each task in the system that must ensure soft-real time
constraints. In this example there is one task per NPU, so
one PID controller for each processor is required. In the case
that there are multiple tasks in the same NPU, we could build
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system is executed in order to obtain the step response. Fig. 5
shows the cycle-accurate simulation results and the first order
extracted model that is used for the process (Fig. 2). Based on
that high-level model, a number of different configurations of
controllers can be explored, each of which exhibits different
features such as speed, overshoot, static error.
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the reactivity of the system. Fig. 6 presents the PID response
according to P , I and D values.
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Basically each running application is composed of one or multiple tasks. Task
are monitored by a throughput monitoring that is responsible for calculating
tasks performance in a non- intrusive mode. This information is passed to the
PID controller which will be responsible for choosing the appropriated frequency
in order to speed up or slow down processing. This strategy can be suitable for
power saving in embedded systems.
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application requirements, e.g. the minimal throughput the
application requires to ensure the functionality of the system
in a reliable way.

The system then calculates an error value which is obtained
by the difference between the desired and obtained throughput.
As output of the PID controller a frequency value is indicated.
This value is sent to the frequency scaling module which will
be responsible for scaling up and down the frequency of the
processor to cope with application requirements. The proce-
dure is then repeated and the obtained throughput gradually
gets closer to the desired throughput. This is explained by
the fact that after each iteration the error value is reduced
assuming that the values of P , I and D have been correctly
chosen. Fig. 3 presents an abstract system model of the
proposed strategy for each Network Processing Element (NPU)
in the architecture.
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multiple tasks. Task are monitored by a throughput monitoring
that is responsible for calculating tasks performance in a non-
intrusive mode. This information is passed to the PID con-
troller which will be responsible for choosing the appropriated
frequency in order to speed up or slow down processing. This
strategy can be suitable for power saving in embedded systems.
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to each task in the system that must ensure soft-real time
constraints. In this example there is one task per NPU, so
one PID controller for each processor is required. In the case
that there are multiple tasks in the same NPU, we could build
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system is executed in order to obtain the step response. Fig. 5
shows the cycle-accurate simulation results and the first order
extracted model that is used for the process (Fig. 2). Based on
that high-level model, a number of different configurations of
controllers can be explored, each of which exhibits different
features such as speed, overshoot, static error.
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Figure 4 illustrates an overview of the proposed approach. As previously
mentioned, there is one PID controller devoted to each task in the system that
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must ensure soft-real time constraints. In this example there is one task per
NPU, so one PID controller for each processor is required. In the case that there
are multiple tasks in the same NPU, we could build a system with multiple PID
controllers in the same NPU, each one being responsible for contributing as a
factor that will be added to the final result.

The strategy consists in deciding controller parameters on a task basis. To
this purpose, a simulation of the MPSoC system is executed in order to obtain
the step response. Figure 5 shows the cycle-accurate simulation results and the
first order extracted model that is used for the process (Figure 2). Based on
that high-level model, a number of different configurations of controllers can
be explored, each of which exhibits different features such as speed, overshoot,
static error.
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application requirements, e.g. the minimal throughput the
application requires to ensure the functionality of the system
in a reliable way.

The system then calculates an error value which is obtained
by the difference between the desired and obtained throughput.
As output of the PID controller a frequency value is indicated.
This value is sent to the frequency scaling module which will
be responsible for scaling up and down the frequency of the
processor to cope with application requirements. The proce-
dure is then repeated and the obtained throughput gradually
gets closer to the desired throughput. This is explained by
the fact that after each iteration the error value is reduced
assuming that the values of P , I and D have been correctly
chosen. Fig. 3 presents an abstract system model of the
proposed strategy for each Network Processing Element (NPU)
in the architecture.
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system is executed in order to obtain the step response. Fig. 5
shows the cycle-accurate simulation results and the first order
extracted model that is used for the process (Fig. 2). Based on
that high-level model, a number of different configurations of
controllers can be explored, each of which exhibits different
features such as speed, overshoot, static error.

0 1 2 3 4 5 6

140

160

180

200

220

240

260

280

300

TIME (s)

TH
RO

UG
HP

UT
 (K

B/
s)

 

 

MEASURED THROUGHPUT
FREQUENCY CHANGING
THEORETICAL THROUGHPUT

Fig. 5: Obtained Throughput vs Theoretical Throughput
The values of P , I and D have been chosen to increase

the reactivity of the system. Fig. 6 presents the PID response
according to P , I and D values.

0 1 2 3 4 5 6 7

120

140

160

180

200

220

240

260

280

300

TIME (s)

TH
R

O
U

G
H

PU
T 

(K
B/

s)

 

 

K
p
=500 ,K

i
=50, K

d
=0

K
p
=800, K

i
=5, K

d
= 0.8

K
p
=50, K

i
=15, K

d
= 3

Fig. 6: PID Controller Response
Assuming that the setpoint of the system is around 260KB/s

we can observe that in the first case where P = 500, I = 50
and D = 0, the system converges to the setpoint throughput
rapidly. As result we observe an overshoot in terms of per-
formance. In the second scenario where P = 800, I = 5 and
D = −0.8, due the fact that the value of P is much bigger than

!"#$

Fig. 5. Obtained Throughput vs Theoretical Throughput

The values of P, I and D have been chosen to increase the reactivity of the
system. Figure 6 presents the PID response according to P, I and D values.

Assuming that the setpoint of the system is around 260KB/s we can observe
that in the first case where P = 500, I = 50 and D = 0, the system converges
to the setpoint throughput rapidly. As result we observe an overshoot in terms
of performance. In the second scenario where P = 800, I = 5 and D = -0.8,
due the fact that the value of P is much bigger than I, we can also observe
an overshoot in terms of performance.The system throughput presents a high
oscillation due to the small value of I. At least, when P = 50, I = 15 and D
= -3 we see that system throughput increases slowly. This is explained by the
fact that the value of P is very small and then the convergence time is longer.
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Fig. 2: PID Controller

application requirements, e.g. the minimal throughput the
application requires to ensure the functionality of the system
in a reliable way.

The system then calculates an error value which is obtained
by the difference between the desired and obtained throughput.
As output of the PID controller a frequency value is indicated.
This value is sent to the frequency scaling module which will
be responsible for scaling up and down the frequency of the
processor to cope with application requirements. The proce-
dure is then repeated and the obtained throughput gradually
gets closer to the desired throughput. This is explained by
the fact that after each iteration the error value is reduced
assuming that the values of P , I and D have been correctly
chosen. Fig. 3 presents an abstract system model of the
proposed strategy for each Network Processing Element (NPU)
in the architecture.
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Fig. 3: System Model

Basically each running application is composed of one or
multiple tasks. Task are monitored by a throughput monitoring
that is responsible for calculating tasks performance in a non-
intrusive mode. This information is passed to the PID con-
troller which will be responsible for choosing the appropriated
frequency in order to speed up or slow down processing. This
strategy can be suitable for power saving in embedded systems.

Fig. 4 illustrates an overview of the proposed approach.
As previously mentioned, there is one PID controller devoted
to each task in the system that must ensure soft-real time
constraints. In this example there is one task per NPU, so
one PID controller for each processor is required. In the case
that there are multiple tasks in the same NPU, we could build
a system with multiple PID controllers in the same NPU, each
one being responsible for contributing as a factor that will be
added to the final result.

The strategy consists in deciding controller parameters on
a task basis. To this purpose, a simulation of the MPSoC
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Fig. 4: Distributed PID Controllers

system is executed in order to obtain the step response. Fig. 5
shows the cycle-accurate simulation results and the first order
extracted model that is used for the process (Fig. 2). Based on
that high-level model, a number of different configurations of
controllers can be explored, each of which exhibits different
features such as speed, overshoot, static error.
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Based on this information we have chosen to use the first controller, because it
converges to a stable system relatively fast.

2.2 Task Migration Support in MPSoC Architecture

Task migration techniques have been widely explored in the literature, notably
in the domains of Graphic Processing Unit (GPU) computing and High Perfor-
mance Computing (HPC).

Those techniques allows efficient load balancing strategies aiming to satisfy
different system requirements. For instance, Streichert et al. [35] employ task
migration to keep the correct execution of an application by migrating executing
tasks from a PE that presents a fault (stopped working) to another non-fault
PE. The architecture details are not presented in this work, although authors
claim that this approach can be applied to current FPGA architectures.

As mentioned before, according to the memory organization task migration
can be classified in shared memory and distributed memory designs.

Task migration in shared memory systems Most of today’s off-chip mul-
ticore systems rely on shared memory architecture. In such cases, the task mi-
gration is facilitated by the fact that no data has to be physically moved in the
structure (see Figure 1-a): since all cores can access any location in the shared
memory, task migration can be done just be electing another CPU to execute the
task. Several efficient implementations on general purposes OS, such as Windows
or Linux, exist in the literature [36].

Other developments closer to MPSoC have been made, notably based on
locality considerations [37] for decreasing communication overhead or power
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consumption [38]. In [39] authors propose a scalable shared memory MPSoC
architecture with global cache coherence. The architecture is built around 4096
cores, which uses a logically shared physically distributed memory with cache co-
herence enforced by hardware. In [40], authors present a migration case study for
MPSoCs that relies on the µClinux operating system and a checkpointing mech-
anism. The system uses the MPARM framework, and although several memories
are used, the whole system supports data coherency through a shared memory
view of the system.

Task migration in distributed memory systems The main issue of im-
plementing task migration in shared memory MPSoCs is the scalability of the
system. There is a strong tendency for the next generation of homogeneous MP-
SoC in using systems with distributed memory targeting scalable and massively
parallel architectures [41][42].

A number of work in the literature based on distributed memory systems has
been implementing task migration in shared memory [8][43] [44]. In [43] each PE
runs a single operating system (OS) instance in its logical private memory. PEs
execute tasks from their private memory and explicitly communicate with each
other by means of shared memory. The target platform uses a shared bus as
interconnect.

In the case of distributed memory MPSoCs, both process code and state
have to be migrated from a processor private memory to another, and syn-
chronizations must be performed using exchanged messages. While this proves
straightforward in typical general-purpose computers thanks to the presence of a
memory management unit (MMU), implementing task migration on tiny MMU-
less embedded processors is challenging [8].

In [45] a dynamic task allocation strategy is proposed. The work evaluates
task allocation strategies based on bin-packing algorithms in the context of MP-
SoCs. The mechanism adopted is based on a copy model. The whole context
(code, data, stack, and contents of internal registers) is migrated and there is no
task execution during the transfer. The interprocessor communication is based
on send/receive primitives. However, in this work neither explanation about the
task migration protocol nor the impact in term of performance of such mecha-
nism is given.

Taking into account the future homogeneous MPSoC systems trend, scalable
architectures with purely distributed memory system are required. However, to
the best of our knowledge, no purely distributed memory architecture that en-
ables task migration without using shared memory are present in the litterature.
Furthermore, very few information are available about migration strategies in-
side distributed memory architecture, and no migration technique exploration
has been done. In the Section 3 of this article, two migration techniques in a
complete distributed memory system are presented.
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3 Task migration techniques in purely distributed
MPSoC

3.1 Task migration protocols

In [46], we have proposed a new algorithm capable of supporting task migration
at run-time. Migration decisions were taken with local information and in a
distributed way, each processing unit taking care of its own tasks. This paper
puts focus on communication during task migration, stressing the reliability and
performance issues raised by such procedure. It presents two communication
techniques stressing the benefits and performance penalty of each.

Hardware and Software support for task migration The initial platform
used to implement our concepts consists of an homogenous array of processing
elements. Those elements are distributed on a 2D-mesh Network on Chip. For
this reason, they are called Network Processing Unit (NPU). Each NPU is com-
posed by two layers: a network layer used to route the packets into the network,
and a processing layer. Figure 7 shows the architecture of the platform.

...· · ·

T1

T2

T3 RAMCPU

UART Timer NI

Task 2
Task 3

Microkernel

Network layer

Processinglayer

Fig. 7. Structural view of the platform

The network layer consists of a light router based on the Hamiltonian Routing
Algorithm [47]. The Network on Chip is derived from [48]. It provides packet
switching routing with unique predictable route for each packet from the same
sender and receiver. Hence, neither reordering nor acknowledgment is necessary.

The processing layer is composed by a compact RISC processor with a MIPS-
I instruction set [49]. It also includes some peripherals like RAM, a UART, a
timer and an interrupt controller connected through a bus. However, no Memory
Management Unit, no cache and no memory protection support are provided to
keep the NPU as small as possible. A multitasking real-time preemptive mi-
cro kernel runs on each NPU, providing all the asynchronous operating system
features required (multi task management, exception handling, communication,
etc.). Both the software and the hardware part of this layer comes from [50].
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Communications are handled through hardware and software FIFO: incom-
ing data coming from an external NPU are buffered into a small hardware FIFO
located in the network layer, triggering simultaneously an interrupt to the pro-
cessing layer. It activates data demultiplexing from the hardware fifo to the
software FIFO linked to the appropriate receiver task. In case of communication
between two tasks on the same NPU, data go directly to the software FIFO
using an exception process of the operating system.

In a programming point of view, two functions are provided: MPI Send()
and MPI receive() derived on the Message Passing Interface model [51]. In com-
pliance with the Khan Process Network (KPN) model of computation, the send
function is non blocking while the receive function is blocking. As we have a
message passing programming model, we do not need any memory synchroniza-
tion.

To handle communication in such globally asynchronous system, each NPU
possesses a routing table with all the tasks running locally, as well as the position
of all predecessors and successors tasks. Thus, the position of every task the
operating system needs to communicate with is known. A master NPU (named
NPU11) keeps tracks of every tasks, successors and predecessors in the entire
chip. If a task requires opening a new communication channel, the Operating
System will modify its own routing table and the one of the master NPU. If the
position of the task to communicate with is not know, a query is sent to the
master NPU.

Non continuous communication The first migration protocol is depicted in
Figure 8. We consider two tasks hosted on two different NPUs communicating
together: task 1 is the sender whereas task 2 is the receiver. Task 2 begins a
migration procedure. First, the NPU hosting task 2 will remove its entry in the
routing table of its predecessor node, as well as in the master node (step 1). As
these nodes do not possess task2 position anymore in their routing table, the
communication between task 1 and task 2 will stop. Task 2 can now migrate to
its destination NPU (step 2).

It is important to notice that during the transfer of the task, the commu-
nication channels are closed downstream and upstream, which translates into
buffering.

Finally, when the code has arrived in the destination NPU, the task is sched-
uled and the master routing table as well as the predecessor routing table are
updated (step 3). Hence, communication can be resumed (step 4).

Figure 9 shows the datagram of the protocol. No packets are emitted during
the migration.

Continuous communication with rerouting The second protocol used for
task migration was designed with the idea of keeping communication channel
open. The purpose is avoiding interrupting data transfer so as to achieve the
highest possible level of performance. To fulfill such requirements, two features
were developed: storage and forwarding of the incoming packets.
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Fig. 8. First migration protocol

Sender Task Node
Receiver Task Node

before migration
Receiver Task Node

after migration Master Node

Migration starts

Run until no more
packets arrive

Fig. 9. First migration protocol datagram

Figure 10 shows the second migration protocol. The initial situation is same
as before: 2 tasks are communicating, task 1 sending to task 2 (step 0). When
the NPU decides to trigger a migration, it does not have to notify the task
predecessors anymore: the operating system will reroute the software fifos linked
to this task into another fifo dedicated for migration (step 1). The packets are
stored during the transfer of task 2 code to the destination node (step 2). When
the task is rescheduled, it informs the node where it came from to initiate the
redirection (step 3). At the same time, it updates the routing table of the master
node and its predecessors. The Operating system of the new node containing task
2 has to now take care of two FIFOs: one coming from the redirection, which
will be serviced first, and the other from the sender with its updated routing
table, which has to be serviced after the whole redirected packets (step 4).
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Fig. 10. Second migration protocol

To avoid reordering, rerouted packets have to be serviced before those coming
from the new communication channel. A end of transmission packet is sent in
the end of the redirected stream to inform the new receiver NPU that it can
process the packets coming directly from the senders.

Sender Task Node
Receiver Task Node

before migration
Receiver Task Node

after migration Master Node

Migration starts

Store  the
arriving    packets

Process redirected packets
before arriving packets

Fig. 11. Second migration protocol datagram

Figure 11 shows the datagram of the migration procedure with redirection.
Some hypothesis can be made comparing the datagram of the two protocols.
First, the complexity of the second protocol is higher in term of computation,
because of the storage and redirection functions, but also in term of message
passing, with many more service messages. Concerning communication load, the
fact of keeping the communication channel and sending a burst of redirected
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packets suggests a heavier bandwidth occupation. However, as closing and re-
opening latency are avoided, higher computation rate of the whole structure and
better computation performance are expected.

3.2 Experimental results

Benchmark procedure The purpose of this section is to evaluate the over-
head of dynamic task migration with the two protocols. In order to fairly assess
the performance overhead induced by the proposed task migration strategies,
experiments are conducted in best effort mode, therefore all implementations
aim at maximizing performance rather than ensuring quality of service. This al-
lows stressing the architecture as much as possible, hence migration cost become
prominent rather than compensated by transient increase in cpu usage.

The experiments have been made on a case study yet realistic: the mjpeg
decoding application. To simplify the experiment, only the three main tasks of
mjpeg decoding have been implemented: IVLC, IDCT and IQUANT. A quick
profiling shows the average percentage of CPU time of each task in a sequential
execution: IVLC take around 85% of the CPU time, IDCT 8% and IQUANT 5%.
Figure 12 shows the task graph of the MJPEG application with the percentage
of CPU time for each.

Sender IVLC IQANT IDCT
2% 85% 5% 8%

Fig. 12. MJPEG Task graph with percentage of computation time

Figure 13 shows the two different mappings that were used for our migra-
tion experiment: starting from configuration 1, the task 2 will migrate to NPU
2, which corresponds to the configuration 2. As the purpose here is to vali-
date our algorithm and to evaluate the efficiency of each one, no considerations
about mapping efficiency are treated. The only assumption done here is that
configuration 2 is better suited for high performance, because the heaviest task
(IVLC) is computed in a single NPU. This assumption will be confirmed by
the performance benchmarks on static mapping in configuration 1 and 2, in the
next paragraphs. More considerations about mapping issues are available in the
articles referenced in Section 2.2 of this chapter.

Evaluation of communication capabilities The evaluations in term of per-
formance were made each time for 4 configurations: considering a static mapping
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Fig. 13. Task configurations used in the benchmarks

with the configuration 1, considering a static mapping with configuration 2, trig-
gering a migration of task 2 to go from configuration 1 to configuration 2 using
the first protocol, and finally the same scenario with the second protocol. The
migration order is triggered 6.5 ms after the beginning of the computation, to
ensure the system is in a steady state (every task is running and computing
packets).

Figure 14 shows the throughputs of the MJPEG for the 4 cases presented.
The static mappings have, as expected, almost regular throughputs: the first
configuration providing a 1 MB/s throughput while the second providing a 1.5
MB/s throughput. This result confirms the assumption made in the previous
section about the higher compute capability of the second mapping.

Few observations can be done comparing the two migration protocols. First,
even if the migration order is triggered at the same time, the migration process
occurs at a different time. This can be explained by the fact that the two migra-
tion protocols use two different procedures before migrating the task: the first
one closes the connection before the migration while the second relies on the
forwarding techniques explained previously.

The second point stressed by Figure 8 is the migration time. The migration
time here refers to the time between two steady states where the throughput is
stable. In that case, the second protocol, with reordering, migrates much more
rapidly than the first one: only 0.8 ms are necessary to reach the new throughput
while 3.45 ms are necessary for the first one. We can see here the benefit of the
second proposed technique, compared to the first one: the latency induced by
closing and reopening the communication is here almost negated.

However, in term of minimum bandwidth, the first protocol sees its band-
width only dropping down to 0.45 MB/s whereas the second one goes down
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Fig. 14. Throughput of MJPEG for each case

to 0.07 MB/s. This can be explained by the higher complexity of the second
protocol: storage and forwarding processes prove computationally intensive and
therefore reduce application performance during the transient phase.

This last consideration can be expected to be the main parameter when a
strategy of migration has to be chosen. In streaming application like MJPEG
for example, a minimum throughput is required, which can be prohibitive for
the second protocol. However, in application which does not require real-time
constraint, like compression or non streaming communication, the efficiency of
the second protocol is higher.

Figure 15 shows the timing jitter for the 4 cases. The Y axis has been made
logarithmic to clarify the results. We can observe that the timing jitter is, as
expected, better in the second mapping than in the first one, and that the
dynamic mapping scenarios vary as expected from the jitter value point of view.
Moreover, this figure confirms the observations made previously: the timing jitter
of the second dynamic mapping scenario shows a high and sharp peak during
migration.

However, if we average the jitter during the migration time, the first algo-
rithm gives a process time of 0.83 ms while the second gives 1.01 ms, i.e. less
than 22% larger. The same average evaluation of the bandwidth during migra-
tion gives a throughput of 0.93 MB/s for the first algorithm and 1.31 MB/s for
the second.

3.3 Task Migration - Closing Remarks

In this section we have proposed two task migration mechanisms for distributed
memory MPSoCs: the first one closing the communications during the process,
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Fig. 15. MJPEG timing jitter for each case

the second one using buffering and redirection to avoid closing communications.
Performance analysis has been made to compare both algorithms. Results have
been validated thanks to a 2*2 homogeneous MPSoC architecture based on a
distributed memory structure and a NoC.

Those benchmarks show that the overhead of the migration mechanisms is
low and amortized by the performance gain of a better load distribution. The key
parameter concerning the choice of the migration algorithm lies in the application
specifications: in the case of real-time application, the first algorithm may prove
to be more suitable because of the lower observed jitter in packet arrival. For best
effort-application, the second algorithm will achieve a better global performance.

4 Memory Organization in MPSoC

4.1 Two Memory Management Philosophies, Implying Two
Computation Models

In the literature, memory management in MPSoCs can be divided into two
categories: shared memory models and distributed memory models.

Historically, shared memory models, with a vision of a single unified mem-
ory that can be accessed by any component are the most used. This popularity
came from the original single core, single memory Von Neumann machine. To
cope with multi-cores new architectures, caches strategies, including data co-
herency protocols have been implemented so that the compatibility with the old
architectures still remains. Simultaneous Multi Threading (SMT), derived from
this philosophy, is still the more commonly used model of computation in stan-
dard home computer CPUs. However, the heavy cost due to memory coherency
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controllers leads to a reconsideration of the memory model in embedded systems
from shared memory to distributed memory.

The distributed memory model considers each core having its own indepen-
dant memory. Communication and synchronization between the cores are made
through messages. This model is derived from HPC, where a number of stan-
dards and API have been created, such as the Message Passing Interface (MPI)
[51]. This model does not need any hardware memory coherency controllers (as
each core is data independent), but leave the synchronizations to the software,
making parallel computation harder. Nowadays, designing a complete message
passing multi-tasking Operating System still remains a challenge [52].

Although the link between a memory model and a hardware architecture
is obvious, it is interesting to note that a memory model does not rely on a
particular hardware, and that some architectures possessing different memory
modules distributed across the chip finally used a shared memory model. Those
architectures are called Distributed Shared Memory models (DSM) as they have
a physically distributed memory, but logically shared [53].

Such architectures imply a Non Uniform Memory Access (NUMA). To achieve
correct performances, caches are provided that store remote memory data into a
local faster memory. To maintain memory consistency inside those platforms, a
cache coherency protocol is provided. Hence, those architectures are also called
Cache-Coherent NUMA (cc-NUMA) architectures.

4.2 A Hybrid Memory Model

General Description The hybrid memory model described in this section has
the aim of taking advantage of the two historical models. It consists in consid-
ering a distributed memory model, but with the addition of a Remote Memory
Access (RMA). Hence, every core can access every memory inside the chip. How-
ever, no hardware cache coherency system has been implemented. The shared
memory in this model is considered as critical small portion of memory, used
only for general decision. No hardware cache coherency has been implemented
to avoid the heavy cost of hardware data synchronization.

To preserve coherency of the shared memory, software cache coherency has
to be implemented. The main advantage of software cache coherency is the fact
that the programmer has a global view of the system, and so can optimize the
protocol of synchronization depending on the nodes possessing the data [54]:
knowing the owner of the data and the order of read/write operations on it
allows more precise flush/invalidate actions in the caches. However, software
cache coherency implies a higher performance penalty for the computation of
the synchronization protocols. For that reason, the use of shared memory has to
be made with caution.

Initial Harware Platform The initial platform used to develop this hybrid
memory model was the same as described in section 3.1. To increase the compute
capability of each NPU, the MIPS-I CPU was replaced by an Harvard based
architecture using the Microblaze instruction set: the SecretBlaze [55].
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The Remote Memory Access To provide the access of memory located in a
distant node, a RMA module has been implemented in the Network layer, which
creates a Request/Acknowledge protocol to read data through the NoC. This
RMA module is composed by two blocks: a Send-RMA module and a Reply-
RMA module. The connections between these modules and the NoC were made
with two more asynchronous fifos, as shown in figure 16.

Router

NoC
INTERFACE

LOCK

RMA
REPLY

RREMOTEEMOTE AACCESSCCESSMMEMORYEMORYMMODULEODULE

RMA
SEND

BUS CONNECTIONS TO THEMEMORY AND CPU

Network
Layer

Fig. 16. Network on Chip with Remote Memory Access module

The Send-RMA is responsible of servicing memory requests from the CPU.
For a Write request, it first packetizes a flag corresponding to the write request,
and then the addresses and data to write. For a Read request, it sends the flag
corresponding to the read request, and then only the addresses to read. It then
waits for the response and sends the data back to the CPU. The FSM describing
the Send-RMA behavior is depicted figure 17-a.

The Reply-RMA receives the request coming from the other cores, and ser-
vices them. For a Write request, data are written into the memory, and for a
Read request data are read from the memory, then packetized and sent back
to the source NPU. The FSM describing the Reply-RMA behavior is depicted
figure 17-b.

Therefore, a master bus connection is needed for the Reply-RMA module
to access memory, while a slave bus connection is sufficient for the Send-RMA
module.

Memory Mapping The distributed memory model which our system is de-
rived has private memory for each node. Therefore, every node may have the
same address mapping. However, the addition of the RMA module, allowing ac-
cess to every memory modules in the architecture, requires an addressing scheme
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enabling remote NPU memory access. For legacy reason with our previous ar-
chitecture, the 4 highest bits are kept for the selection of the bus connection.
Bits 20 to 27 are used to select the coordinates of the memory node, in case of
a remote access. The last 20 bits are used for memory address. This mapping
provides a small static virtualization of the memory - as the local memory is
located at the same address space for every node. This allows simpler memory
management, as local access can be detected using the same strategy for each
node.

Thanks to this memory mapping, we can address up to 256 NPUs, with 1
MB of RAM each.

0232731 19

M E M O R Y A D D R E S S

RAM Address :
Max addressed size = 1 MB

NPU XNPU YBus ID:
•RAM
• Cache
• Uart…

Fig. 18. Memory mapping

Performance Since the transmission of the data through the NoC is time con-
suming, the local bus of each NPU has to be controlled carefully, to avoid unec-
essary stalling. Hence, the Reply-RMA possesses a buffer to store the addresses
and data coming from the NoC before servicing them. As the requests are cache
requests, the buffer has the size of a cache line. Thanks to that mechanism, the
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Reply-RMA module has an access time to the bus similar to the one of the local
cache.

Figure 19 shows the number of clock cycles for each type of memory request.
The number of 32-bits words of a cache line has been set to 8. So a memory
operation handles 8 words of 32 bits, i.e. 256 bits. Measures have been made for
different memory requests: from the local NPU, from a 1-hop distant NPU, and
from a 2-hop distant NPU (i.e. the data have to go through 2 routers plus the
local one).

An important factor in the memory access performance is the maximum NoC
throughput. The Hermes router (introduced in Section 3.1)uses an asynchronous
channel to send the data, with a tunable number of bit send for each transaction.
As a transaction takes two clock cycles, the maximum throughput is directly
linked to the number of bits send per transaction (the channel width). The
throughput can be calculated using equation 2.

Throughput =
Channel width

2
∗ Frequency (2)

The frequency of our design has been set to 50 MHz. The experiments have
been made with a channel width of 4, 8, 16, and 32 bits, which leads to a
maximum throughput of 100 MBps, 200 MBps, 400 MBPs, and 800 MBPs re-
spectively. The maximum throughput of the wishbone bus is 1600 MBps.
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Fig. 19. Time to memory access in clock cycles

The figure shows that channel width is an important factor regarding the
time to access the memory. Doubling the number of bits in the channel leads
to a decreasing time to access of 53%, 55% and 59% respectively. Bus read and
write transactions for a cache line takes 10 clock cycles. With a 200 clock cycles
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access time approxymately, the 32-bit wide channel router gives competitive
results for a classical L1 cache remote fetch: if we assume a remote miss rate
of 1% of the total miss rate, the performance of the cache will only decrease to
84% compared to local miss only. In comparison, standard DDR memory access
latency is around 5000 clock cycles.

Another point stressed by this figure is the importance of the location of the
data. Fetching a data from a 2 node distant NPU leads to a inscrease of 13% to
16% in access time compared to fetching from a 1 node distant NPU. We can
notice that the wider the channel, the bigger the access time. This is due to the
fact that the data are more buffered for small channels, which leads to a bigger
latency during the access process. For these channels, this buffering, which is
only slightly affected by the number of nodes crossed, takes a bigger part of the
access time. Wide channels, however, are less affected by the buffering, and so
comparatively more affected by the data location.

4.3 Memory Organization - Closing Remarks

In this section we have seen the different constraints and so the possible op-
timizations given by a hybrid distributed/shared memory structure. This new
degree of freedom offers new load balancing strategies, since we can distribute
the data independently to the execution.

5 Conclusion

This paper has presented an overview of adaptation issues in distributed memory
MPSoCs. A new frequency scaling strategy for streaming applications has been
developed, using feedback controllers. Next, two task migration protocols have
been presented and compared. Finally, a hybrid memory approach has been
described, allowing remote memory access inside a distributed archiecture.

The complementarity of those tools allows a global adaptation strategy whith
increasing performance thanks to the combination of each. Indeed, frequency
scaling can be used to ensure the reach of system requierements, while the
two task migration protocols will balance the load through the platform. The
throughput variations leaded by the migration processes will be lowered thanks
to the frequency scaling.

Concerning the new memory organization, future work will include the devel-
opment of a load balancing strategy based on the execution of data from another
NPU without transfering the code, thanks to the remote memory access. The
long term goal will be to conduct experiments with dynamic selection of the
best suited load balancing techniques - from remote execution and the two task
migration techniques - with respect to either application specifications or local
parameters such as FIFO occupation or CPU workload.
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