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Summary. The major challenge in the wavelet transforms is that there exist dif-
ferent classes of wavelet filters for different kinds of applications. In this chapter,
we propose a generalized lifting-based wavelet processor that can perform various
forward and inverse Discrete Wavelet Transforms (DWTs) and Discrete Wavelet
Packets (DWPs) that also supports higher order wavelet filters. Our architecture is
based on Processing Elements (PEs) which can perform either prediction or update
on a continuous data stream in every two clock cycles. We also consider the nor-
malization step which takes place at the end of the forward DWT/DWP or at the
beginning of the inverse DWT/DWP. Because different applications require different
number of samples for the transforms, we propose a flexible memory size that can be
implemented in the design. To cope with different wavelet filters, we feature a multi-
context configuration to select among various forward and inverse DWTs/DWPs.
For the 16-bit implementation, the estimated area of the proposed wavelet processor
with 8 PEs configuration and 2×2×512 words memory in a 0.18-µm technology is
2.5 mm square and the estimated operating frequency is 319 MHz.

1 Introduction

For the last two decades the wavelet theory has been studied extensively [4,
7, 11, 17, 19] to answer the demand for better and more appropriate functions
to represent signals than the ones offered by the Fourier analysis. Contrary to
the Fourier analysis, which decomposes signals into sine and cosine functions,
wavelets study each component of the signal on different resolutions and scales.
In analogy, if we observe the signal with a large window, we will get a coarse
feature of the signal, and if we observe the signal with a small window, we will
extract the details of the signal.

One of the most attractive features that wavelet transforms provide is their
capability to analyze the signals which contain sharp spikes and discontinu-
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ities. The better energy compacting support the wavelet transforms offer and
also the localizing feature [5] of the signal in both time and frequency do-
mains these transforms support have made wavelet outperforms the Fourier
transform in signal processing and has made itself into the new standard of
JPEG2000 [9, 15].

Along with recent trends and research focuses in applying wavelets in
image processing, the application of wavelets is essentially not only limited to
this area. The benefits of wavelets have been studied by many scientists from
different fields such as mathematics, physics, and electrical engineering. In the
field of electrical engineering wavelets have been known with the name multi-
rate signal processing. Due to numerous interchanging fields, wavelets have
been used in many applications such as image compression, feature detection,
seismic geology, human vision, etc.

Contrary to the Fourier transform, which uses one basis function (and its
inverse) to transform between domains, there are different classes of wavelet
kernels which can be applied on the signal depending on the application.
Because different applications require different treatments, researchers have
tried to cope with their own issues and implemented only a subset of wavelets
which are suitable for their own needs such as ones that can be found in image
compression [6, 10, 15, 22] and speech processing [1, 8, 14, 16]. The power of
wavelet tools is then limited due to these approaches.

In this chapter we propose a novel architecture to compute forward and in-
verse transforms of numerous DWTs (Discrete Wavelet Transforms) and also
DWPs (Discrete Wavelet Packets) based on their lifting scheme representa-
tions. Most lifting-based wavelet processors are dedicated to compute wavelet
filters which are used only in JPEG2000 image compression where the wavelet
coefficients can be represented as integers such as Andra in [2] which required
two adders, one multiplier, and one shifter on each row and column processor
to compute (5,3) and (9,7) filters with the prerequisite that prediction or up-
date constants of the actual and the delayed samples are equal (i.e. c(1+z−1)).
Barua in [3] described the similar architecture for FPGAs that optimizes the
internal memory usage. Dillen in [13] detailed the combined architecture of
(5,3) and (9,7) filters for JPEG2000. Another example is from Martina, which
encompassed multiple MAC structure with recursive architecture in [18].

Our new proposed architecture takes into account that each lifting step
representation of an arbitrary wavelet filter may have two different update
constants and the Laurent polynomial may have higher order factors (i.e.
c1z

−p + c2z
−q), which are common in various classes of wavelet filters such

as Symlet and Coiflet wavelet filters. Additionally, the proposed architecture
also considers the normalization step which takes place at the end of the
forward DWT/DWP or at the beginning of the inverse DWT/DWP for the
applications that require to conserve the energy during the transform. In order
to be flexible, the proposed architecture provides a multi-context configuration
to choose between various forward and inverse DWTs/DWPs. Because wavelet
transforms work with large number of samples, the proposed architecture can
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be configured to have an arbitrary memory size (i.e. the powers of two) to
cope with the application demands.

The rest of the chapter is organized as follows. Section 2.1 describes the
second generation of wavelets and the concepts regarding wavelet transforms
and wavelet packets. The proposed architecture, including the processing ele-
ment, the MAC-unit, the configuration and the context switch, the memory,
the controller, are explained in Section 3. Section 4 discusses the performance
of the proposed architecture and finally Section 5 concludes the contribution.

2 Backgrounds

2.1 Lifting Scheme

Contrary to the filter approach, which separates the signal into low and high
frequency parts and performs the decimation on both signals afterwards, the
second generation of wavelets reduces the computation by performing the dec-
imation in advance. The second generation of wavelets, more popular under
the name of lifting scheme, was introduced by Sweldens [21]. The basic prin-
ciple of lifting scheme is to factorize the wavelet filter into alternating upper
and lower triangular 2× 2 matrix.

Let H(z) and G(z) be a pair of low-pass and high-pass wavelet filters:

H(z) =

kh
∑

n=kl

hnz
−n (1)

G(z) =

kh
∑

n=kl

gnz
−n (2)

where hn and gn are the corresponding filter coefficients. N = |kh − kl| + 1
is the filter length and the corresponding Laurent polynomial degree is given
by h = N − 1. By splitting the filter coefficients into even and odd parts, the
filters can be rewritten as:

H(z) = He(z
2) + z−1Ho(z

2) (3)

G(z) = Ge(z
2) + z−1Go(z

2) (4)

and the corresponding polyphase representation is:

P (z) =

[

He(z) Ge(z)
Ho(z) Go(z)

]

(5)

Daubechies and Sweldens in [12, 21] have shown that the polyphase rep-
resentation can always be factored into lifting steps by using the Euclidean
algorithm to find the greatest common divisors. Thus the polyphase represen-
tation becomes:
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Fig. 1. Forward lifting steps.

P (z) =

[

K 0
0 1/K

] 1
∏

i=n

[

1 ai(z)
0 1

] [

1 0
bi(z) 1

]

(6)

where ai(z) and bi(z) are the Laurent polynomials and K is the normalization
factor.

Fig. 1 shows the arrangement of the lifting scheme representation. The
Laurent polynomials bi(z) and ai(z) are expressed as predictor Pi(z) and
updater Ui(z). The signal Sj is split into even and odd parts. Prediction and
update steps occur alternately. The predictor Pi(z) predicts the odd part from
the even part. The difference between the odd part and the predicted part is
computed and used by the updater Ui(z) to update the even part. At the end,
the low-pass and the high-pass signals are normalized with a factor of K and
1/K respectively.

By factoring the wavelet filters into lifting steps, it is expected that the
computation performed on each stage (either it is a prediction or an update)
will be much less complex. As an example, the famous Daub-4 wavelet filter
with the low-pass filter response:

H(z) =
1 +

√
3

4
√
2

+
3 +

√
3

4
√
2

z−1 +
3−

√
3

4
√
2

z−2 +
1−

√
3

4
√
2

z−3 (7)

can be factored into lifting steps:

P (z) =

[
√
3−1√
2

0

0
√
3+1√
2

]

[

1 −z
0 1

] [

1 0

−
√
3
4 + 2−

√
3

4 z−1 1

] [

1
√
3

0 1

]

(8)

Since the finding of the greatest common divisors is not necessarily unique,
the result of the Laurent polynomials may also differ. The Daub-6 and the
popular (5,3) and (9,7) wavelet filters can be factored into lifting steps with
maximum degree of ±1 [12] whereas Symlet-6 and Coiflet-2 (the lifting com-
putations are not detailed here due to page limitation) may have two up-
date/prediction terms and also z±5 factor on its Laurent polynomials.

2.2 Wavelet Transform and Wavelet Packet

Wavelet transform is a multi-resolution signal analysis. In the traditional
wavelet transforms, only the low-pass signal is used on the next transforma-
tion level to generate a multi-resolution representation of the corresponding



Lifting-Based DWT & DWP Processor 5

LP↓2

LP↓2

HP↓2

HP↓2

(a) DWT

LP↓2

LP↓2

LP↓2

HP↓2

HP↓2

HP↓2

(b) DWP

Fig. 2. Two different transformations.

signal. In wavelet packets, both low-pass and high-pass signals are analyzed,
resulting equally spaced frequency bands. Fig. 2 depicts both schemes. Note
that the illustration uses wavelet transforms based on filter-approach instead
of lifting-scheme in order to ease understanding the concept for both schemes.
LP and HP correspond to low-pass and high-pass filter pair and ↓2 corre-
sponds to down-sampling by two. It is obvious that DWT will require less
computation time compared to DWP, because at each level, the number of
samples is decreased by two. Also, the controller that controls the processor
to perform DWTs and their inverses is straightforward, while the controller
to perform DWPs and their inverses is more complicated due to the fact that
the number of frequency bands that need to be processed increases two fold
at each transform. As an example, performing four levels wavelet packet on
a signal leads to 16 frequency bands whereas performing four levels wavelet
transform generates 5 frequency bands.

Not only the challenges on the controller, the major issue in DWP is
that the resulting HP signals are much smaller than the LP parts in normal
circumstances. Thus performing multi-level DWP using integer arithmetics
would make these HP signals go to zero, which lead to lower achievable SNR
values, if it is not carefully performed.

3 Proposed Architecture

The lifting-based forward DWT/DWP splits the signal into even and odd
parts at the first stage. The split signals are processed by an alternating series
of predictors and updaters (on some wavelet filters, an updater may come be-
fore a predictor). On the final stage, the multiplication with the normalization
factor takes place in order to conserve the energy. The inverse DWT/DWP
performs exactly everything backwards. It starts with the multiplication with
normalization factor, continues with a series of updaters and predictors, and
finishes with the merging of the outputs.

As a predictor and an updater perform a similar computation, the hard-
ware architecture for both functions is exactly the same. Taking this into ac-
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count, we propose a novel wavelet processor which is based on M processing
elements to cope with M lifting steps. Due to the nature of the lifting scheme,
wavelet filters that have longer lifting scheme representations can easily be
broken down into smaller lifting steps that the processor can compute (i.e.
M lifting steps each). Which means that the processor that implements M
processing elements is not limited to perform the transform up to M lifting
steps only.

The core behind our proposed architecture is the processing element (PE),
which performs the prediction or the update. To maximize the performance,
the PE utilizes the parallelism by using a pipeline mechanism to guarantee
the outputs to be available in every clock cycle (actually every two clock
cycles as detailed later). As the lifting scheme breaks a wavelet filter into
smaller predictions and updates, the resulting predictor and updater can be
limited to have a maximum Laurent polynomial degree of one. Nevertheless,
the predictor or the updater of higher order wavelet filters may have the higher
factors as well. Without loss of generality, we can formulate the predictor or
the updater polynomial as:

l(z) = c1z
−p + c2z

−q (9)

with c1 and c2 as the polynomial constants and |p− q| ≤ N . This implies that
on each stage (either as a predictor or an updater), the PE would perform
two multiplications and two additions. As an example, the first predict and
update steps of Daub-4 can be written as:

[

s′

d

]

=

[

1
√
3

0 1

] [

s
d

]

=

[

s+ d ·
√
3

d

]

(10)

[

s′

d′

]

=

[

1 0

−
√
3
4 + 2−

√
3

4 z−1 1

] [

s′

d

]

=

[

s′

d+ s′ · −
√
3

4 + s′ · 2−
√
3

4 z−1

]
(11)

which perform one multiplication and one addition in order to solve s′ (as
shown at the top resulting term in Eq. 10) and two multiplications and two
additions to solve d′ (as shown at the bottom resulting term in Eq. 11).

3.1 Architecture of the Processing Element

Taking into account that multipliers are expensive in term of area and the PE
receives two samples (s and d) at once, we have decided to lower the input
rate by half. From the performance point of view, the processing rate of the
PE will be equal to the processor speed and no longer twice as fast. This also
implies that the bottleneck issues on the input and output ports with the
memory will not occur. From the hardware implementation point of view, the
PE requires only one multiplier and one adder. This optimization, as detailed
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Fig. 3. Block diagram of the processing element.

later, is accomplished by multiplexing the operands of the multiplier inputs
(the multiplier and the multiplicand) and by feeding the adder result back via
the multiplexer.

Fig. 3 depicts the proposed PE. The PE has two selectors S1 and S2 to
choose the prediction or the update samples that correspond to the factors p
and q from the Laurent polynomial. Two constants which represent the filter
coefficients are defined and configured by the controller. By delaying the actual
samples, selector S3 controls the prediction or the update that requires future
samples. Selector S4 is a bypass selector. Because lifting steps of the higher
order wavelet filters may require distance prediction or update samples, the
maximum depth of the unit delay z−m, that determines the maximum delay
level, can be freely chosen during the design.

Fig. 4 details the MAC (Multiply-and-Accumulate) unit which is imple-
mented inside the PE. Both multiplier unit and adder unit require only one
clock cycle to perform their function. C1 and C2 correspond to the Laurent
polynomial constants, whereas M1 and M2 correspond to the outputs of the
samples that are selected by S1 and S2. The multiplexer for M1 and M2 as
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Fig. 4. Multiply-And-Accumulate unit.

a matter of fact does not exist and is drawn here only to illustrate the MAC
process. A shifter is utilized as a replacement of the more expensive divider.

The PE is divided into 3 blocks. The first block organizes the input samples
from both channels. The second block chooses the inputs of the multiplier and
performs the multiplication. As mentioned earlier, the PE utilizes only one
multiplier which is time-shared in order to perform two multiplications. The
first clock cycle performs the first multiplication (i.e. C1×M1) and the second
cycle performs the second multiplication (i.e. C2 ×M2). The third block per-
forms the summation between the reference sample and the prediction/update
values. Similar technique is applied here in order to utilize only one adder. As
shown in Fig. 4, the first addition cycle performs D + 2−R(C1 ×M1) and the
second addition cycle adds-up the first one with 2−R(C2 × M2). Whilst the
input data are integer, the shifter performs the division on the multiplication
result with 2R where R can be freely chosen. Two 1-level FIFOs (First In First
Out) are implemented to deal with the multiplier delay and a 2-level FIFO is
implemented to compensate the delay which is introduced by the adder.

3.2 Normalization

As the multiplication with the normalization factor can take place at the end
of the transform in case of forward DWT/DWP or at the beginning of the
transform in case of inverse DWT/DWP, two special processing elements to
handle this function are required. Although the normalization step is different
compared to the prediction or the update step in a manner that both inputs
s and d are multiplied with constants K and 1/K respectively, we know for
sure that two multiplications take place. To perform this normalization step,
we extend the functionality of the PEs that are located on the top and on the
bottom of the proposed wavelet processor instead of implementing a dedicated
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Fig. 5. Block diagram of the processing element which is located on the top and on
the bottom of wavelet processor.

normalizer unit. Three additional multiplexers are needed to add the normal-
ization factor unit into the PE. Fig. 5 shows the PE which is used on the top
and on the bottom of the proposed architecture. By enabling S5 and setting S1
and S3 to zero, two inputs of the multiplexer before the multiplier correspond
to the actual samples s and d (with the normalization factors K = C1 and
1/K = C2). The first multiplication product passes through the multiplexer
and the 1-level FIFO resulting s′ = Ks (the left side) and the second multipli-
cation product passes through the multiplexer resulting d′ = d/K (the right
side). Whereas the first normalization (i.e. s′ = Ks) takes place first, instead
of adding a 1-level FIFO on the right output port, the 2-level FIFO is split
into two 1-level FIFOs to make both outputs synchronized and to minimize
the latency.
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3.3 Context Switch

To cope with various lifting-based forward and inverse DWTs/DWPs, we have
separated the configuration dependent parameters from the PE. Figs. 3 and 5
show how the inputs of the multiplexer selectors and the multiplier constants
are separately drawn on the left side of the figures to emphasize the separation.
In addition the PE is designed to be simple. Thus, no finite state machine is
required to control the PE. To support different classes of wavelet filters that
require different types of configurations, we have implemented a multi-context
configuration on each PE as depicted in Fig. 6. Each PE is assigned with a
row index as a unique ID for the configuration. Multiplier constants use the
signal data paths to save the wiring cost whereas the multiplexers configura-
tion requires additional controller path. Context switch is implemented as a
memory module where the address is controlled by the context selector and
the write enable signal is controlled by the output comparator.

The active configuration can easily be selected by using this context-based
controller to cope with various wavelet filters. One benefit of having a multi-
context configuration is that the proposed wavelet processor can be configured
to perform the corresponding inverse DWTs/DWPs in a very simple manner.
Additionally, the issues regarding the boundary condition can be relaxed by
utilizing special wavelet filters on the signal boundaries which require less
or no delayed/future samples (e.g. Haar wavelet) instead of exploiting the
periodicity or the mirroring of the signal. Lastly, by using the context-based
configuration, the DWTs/DWPs that exercise longer wavelet filters can simply
be broken into smaller lifting steps. The configuration of each group of the
lifting steps will be stored in the context memory and will be used to compute
the transform.



Lifting-Based DWT & DWP Processor 11

CONFIG

MEM

2x2

BANK

MAIN

FSM

SOURCE CTRL PE

CTRL PE

CTRL PE

CTRL PESINK

LATENCY

COUNTER

START

FINISH

RUN

DONE

CONTEXT

Fig. 7. The Proposed Wavelet Processor.

3.4 Memory Controller

Taking into account that the predictions and the updates occur alternately,
the outputs of a PE will be cross-linked with the input of the next PE. Due
to the nature of lifting steps, the prediction and the update are computed
in-place. It means that it is not necessary to save the result or the temporary
result into a different memory. One simple implementation of the proposed
wavelet processor would consist of one PE. By configuring each context with
the corresponding lifting step, the DWT/DWP and their inverses could be
computed with this simple implementation. Although it is possible to use only
one PE, a typical wavelet processor will have M chained PEs configuration to
boost the performance and to minimize memory access.

Wavelet transform is a multi-resolutional signal processing tool. To achieve
the required results, the signal needs to be transformed iteratively. In case of a
DWT, only the low-pass part of the signal is taken into account as an input for
the next transform. As a pair of low-pass and high-pass wavelet filter is used
to compute the transform, the size of the signal decreases by two after each
transformation level in this case. In contrary, a DWP uses both low-pass and
high-pass parts of the signal in order to achieve equally spaced frequency bands
after each transformation level. The total size of the signal on DWP remains
the same and the amount of the processed data will slightly increase. It is
due to the fact that low-pass and high-pass parts are treated independently
during the computation and for each part of the signal, a signal extension,
which will be detailed later on, is required to compute the transform on the
boundary regions.

Fig. 7 depicts the block diagram of the processor along with the PEs and
their configuration controller. The PEs that are located on the top and on
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the bottom of the wavelet processor have an extra capability to perform the
normalization.

Main FSM

The main finite state machine controls the wavelet processor. When the
transform is initiated, the FSM reads the necessary configurations, such as
the transformation level, forward/inverse mode, transform/packet mode, used
contexts, etc. from the config block. This configuration, as detailed later, is
divided into two categories. The first category is related to the functionalities
of the processor and the second one is related to the lifting configuration.

The main FSM prepares the source and the sink addresses where the data
will be read and stored, and also the length of the data needed to be processed.
We exploit the periodicity extension to cope with the boundaries issue in order
to compute the transform on those regions. This implies that source address
does not always start on the top of the page. Address masking techniques
are applied here to localize the page. The FSM takes care of the possibility
of having a longer wavelet transform that has to be split into several lifting
steps on the target PEs. The FSM allows multi-level forward/inverse DWT
and DWP to take place by means of iteration process.

Config

The config block contains the configuration of the wavelet transform. Two
different configuration categories are managed by this block. The functionality
part manages:

• Selecting the type of the transform that will be performed: DWT or DWP.
• Selecting the transform mode: forward transform or inverse transform.
• The amount of memory that will be involved during the transform. Note

that the processor can perform the transform on an arbitrary size of the
sample. For an example, the value 0 indicates that the transform will be
performed on the whole memory. The value 1 will make the transform
processes the half of the memory and so on.

• Number of levels the transform will compute. This is effective to perform
multi-level transform on a 1D signal. In contrary, for a 2D or higher di-
mension, the number of levels should always be set to 1.

The lifting part stores the configuration of the contexts used during the
transform. It holds an important key to support wavelet transforms that use
longer wavelet filters. If the number of lifting steps of the wavelet filters used
for the transforms are larger than the available PEs, these lifting steps have
to be split into several smaller steps that can be fit into the available PEs.
The configuration of each lifting itself is stored on the context configuration
of the PEs. This block stores only the corresponding context IDs that will be
used. Thus, by selecting the right ID one after another, the wavelet transform
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with longer lifting steps can be performed. Basically, it tells us which context
should be used for the corresponding lifting step.

Beside storing the context IDs, it also holds the read and write offset
addresses to start the transform and also the latency value for each lifting. It
is important to note that in order to compute the wavelet transform, except
for Haar wavelet filter, past and future samples are required. This becomes an
issue when the transform on the signal boundary is performed. To cope with
this boundary issue, the periodicity extension is used to locate these samples.
These offsets hold the information of the corresponding starting sample for
this periodicity extension.

Memory

The memory is organized as 2×2 banks. This configuration describes that the
processor has two main banks (which are called bank 0 and bank 1) and each
main bank consists of one primary bank and one shadow bank. With this
technique, while the processor performs the transform on one bank (either
bank 0 or bank 1), the next data can be placed on the other bank. Thus, it
improves the overall performance by minimizing the delay caused by the data
preparation.

The memory write and read accesses are exclusive, which means that writ-
ing to the memory will write to the primary bank and reading from the
memory will read from its shadow. This state is switchable automatically,
controlled by the FSM. When the transform takes place, the FSM grants the
memory access of the selected bank to the source and sink blocks. Writing
to or reading from this bank is forbidden and it will generate an error (as
an indication of a busy signal). Nevertheless, the external interface can still
read from and write to the memory of the other non-selected bank. Thus, the
previous resulting transform, which is stored in this non-selected bank, can
be read, and also the external interface can prepare the new data for the next
transform.

Source and Sink

These blocks generate and automatically increment the read and write ad-
dresses. The source reads data from the memory and transfers it to the PEs.
The sink reads data from the PEs and writes it to the memory. A special case
is considered when performing transformations that are longer than the avail-
able PEs. During the in-between transformation, in case of forward transform,
the sink will write the data (which corresponds to the intermediate results)
to the memory in adjacent manner (resulting L-H-L-H-...). During the final
transformation, the sink writes the LP and the HP signals into two different
pages (resulting L-L-...-H-H-...). The similar handling is also performed by
the source when performing the inverse transform.
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To access the correct page, two address masks are used. The first mask is
responsible for the data indexing, and the second mask is responsible for the
page indexing.

Latency Counter

This block delays the run signal from the main FSM to initiate the sink
process. The delay amount is different for every lifting steps and it is defined
in the config block.

Details of the Memory Access

Fig. 8 illustrates the N-level and multiple lifting steps DWT. White and grey
represent the primary and the shadow banks and diagonal pattern represents
the in-between transformation. During the setup, the data is prepared and
stored in one bank (this bank is write-only and its shadow is read-only).
When the transformation is initiated, this state is reversed, and the source
and the sink control the address lines. For each lifting steps, the source reads
the written data, and the sink writes the in-between transformation result to
the shadow bank. This state is reversed again every time one lifting step is
finished, which makes the shadow bank as the primary bank and vice versa.
During the last lifting step, the sink stores the LP and the HP results into two
different pages. This whole process is performed N times with each iteration
decreases the data by half. At each finishing level, a memory copy to transfer
the previous HP result to the shadow bank is performed when necessary, e.g.
when the lifting steps are odd.

For the DWPs, the HP signal is also transformed, as depicted in Fig. 9.
Instead of executing/finalizing the transformation on each signal (LP, and
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then HP) on each level, the in-between transformations are performed on
both signals. With this technique, the banks are not switched during the in-
between transformation for both LP and HP signals. Thus, the FSM can
trigger the source to initiate the next data transfer for the next band/page
(e.g. HP) without waiting the sink to finish from the previous transform. This
solution decreases the data preparation time that is caused by exploiting the
periodicity extension and the PEs latency. No copy transfer is performed on
the DWPs/IDWPs.

4 Results and Performances

Our wavelet processor is written in VHDL and is based on the modular and
parametric approach to make the design adaptable. In this paper, we provide
the synthesis results of our wavelet processor that contains 8 PEs to pro-
cess forward/inverse DWTs/DWPs with 8-level unit delays to support higher
order wavelet filters and 16 available contexts to configure 16 different trans-
forms. The design is synthesized using 0.18-µm technology. Because wavelet
transforms deal with large numbers of samples, 2×2×512 words memory is
integrated into the processor for this implementation. Note that the wavelet
processor is also designed to be flexible in respect with the number of the sam-
ples the processor can handle. In other word, the processor can be synthesized
with an arbitrary size of the memory, as long as it follows an integer power
of two rule. The size of the memory corresponds to the maximum number of
samples the wavelet transforms can be performed by the processor.

The estimated area and frequency of various data width implementations
are reported in Table 1. For the 16-bit configuration, the proposed wavelet
processor consumes 2.5 mm2 chip area and has a maximum operating speed of
319 MHz. As a comparison, architecture from Andra with 16-bit data width
in [2] can only compute (5,3) and (9,7) filters and required 2.8 mm2 with
200 MHz operating frequency. The details of the comparisons with the other
architectures are summarized in Table 2. Note that our proposed architecture
has flexible data width and memory size.

In order to realize the fixed-point multiplication between the samples and
the coefficients, we utilized an integer multiplier and a shifter to reduce the
hardware cost. As the compensation, this implementation leads to errors
caused by the rounding of the wavelet coefficients and the cropping of the
multiplication results. To measure the level of correctness of our design, we
perform DWTs/DWPs and their corresponding inverse transforms on some
predefined signals. Four different 8-bit full-swing signals, which are used as
references, are forward and inverse transformed using Daub-4, Symlet-6, and
Coiflet-2 wavelet filters with no integer coefficients. The random signal has a
uniform distribution.

The lifting step coefficients of these wavelet filters are summarized in Ta-
ble 3. These coefficients are shortened to save space. Because the coefficients
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Table 1. Estimated area and frequency of proposed wavelet processor with 8 PEs
and 2×2 memory banks.

Data Width
Est. Area % Area for Est. Frequency

(in mm2) Logic (in MHz)

16-bit 2.501 30.60 % 319.49

20-bit 3.120 31.38 % 298.51

24-bit 3.780 32.63 % 285.71

28-bit 4.376 32.57 % 262.47

32-bit 5.134 34.63 % 241.55

Table 2. Comparison with other Lifting-Based Architectures.

Arch. Speed Area Filter Transform Data Width Mem. Size

Andra [2]
200 MHz

2.8 mm2
(5,3) DWT

16-bit 128
(0.18-µm) (9,7) IDWT

Dillen [13]
110 MHz

–
(5,3) DWT

16-bit 256
(FPGA) (9,7) IDWT

Seo [20] 150 MHz
5.6 mm2

(5,3) DWT
12-bit 512

(0.35-µm) (9,7) IDWT

Wang [23]
100 MHz

1.1 mm2 Daub-4 DWP 18-bit 8
(0.18-µm)

Ours
242 MHz

5.1 mm2 Arbitary
DWT,IDWT 32-bit* 512*

(0.18-µm) DWP,IDWP Configurable Configurable

have to be represented as integers, depending on the data width, they will be
magnified with some factor, and the result will be rounded and used as lifting
coefficients. ModelSim is used to compare and verify the results. The SNR is
computed using:

SNR(dB) = 20× log10

( ∑ |signal|
∑ |signal− result|

)

(12)

where signal corresponds the input vector and result corresponds the output
of the forward and inverse transforms.

Because wavelet transform is a multi-resolution signal processing tool, we
perform four-level DWTs and DWPs to give a better overview of the perfor-
mance of our wavelet processor. The SNR values of the different data width
implementations for 4-level DWTs and DWPs are reported in Table 4 and Ta-
ble 5 respectively. Depending on the data widths, SNR values vary between
29 dB and 140 dB in case of DWTs and between 27 dB and 138 dB in case
of DWPs, which are sufficient for most applications. DWPs achieve slightly
lower SNR values due to the fact that the high-pass signals after each trans-
formation level get smaller and tend toward zero. Thus information losses are
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Table 3. Lifting coefficients of Daub-6, Symlet-6, and Coiflet-2 wavelet filters.

Type Daub-6 Symlet-6 Coiflet-2

Updater 2.425 z0 -0.227 z0 -2.530 z0

Predictor 0.079 z−1 -0.352 z0 -1.267 z−1 0.216 z0 -0.240 z−1 0.342 z0

Updater -2.895 z1 0.561 z2 0.505 z1 -4.255 z2 3.163 z1 15.268 z2

Predictor -0.020 z−2 0.045 z−3 0.233 z−2 0.006 z−3 -0.065 z−2

Updater -18.389 z3 6.624 z4 -63.951 z3 13.591 z4

Predictor 0.144 z−5 -0.057 z−4 0.001 z−5 0.002 z−4

Updater -5.512 z5 -3.793 z5

Normalizer 0.432 2.315 -0.599 -1.671 0.108 9.288

Table 4. SNR values of different data width implementations (in dB) for 4-level
forward and inverse DWT.

Daub-6

Source 16-bit 20-bit 24-bit 28-bit 32-bit

Sinusoid 42.90 67.04 89.38 115.00 138.52

Sawtooth 40.93 65.19 88.34 113.31 137.03

Step 44.98 67.07 87.95 114.19 138.88

Random 40.17 64.92 88.62 113.06 136.87

Symlet-6

Sinusoid 37.04 61.95 88.40 111.85 134.88

Sawtooth 35.75 60.22 85.84 108.89 133.17

Step 34.97 64.94 91.83 112.53 140.07

Random 36.52 61.18 85.93 109.37 133.51

Coiflet-2

Sinusoid 31.35 55.13 78.56 101.70 124.05

Sawtooth 29.80 52.85 76.83 100.13 123.19

Step 31.86 56.75 79.89 101.45 123.60

Random 29.01 52.83 77.53 101.93 125.27

affected at these bands. The 16-bit implementation achieves lower SNR values
due to the fact that the lifting coefficients have a large dynamic range that
is between 0.001 and 64. The same reason applies for Coiflet-2 wavelet filter.
The improvement of the SNR values can be achieved by increasing the data
width.

The proposed wavelet processor can accept input data stream and perform
the computation in every two clock cycles made possible by the pipeline struc-
ture and the resource sharing. The total latency on each PE is 4 clock cycles.
One clock cycle is consumed by the input registers, 1+1 by the multiplier (two
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Table 5. SNR values of different data width implementations (in dB) for 4-level
forward and inverse DWP.

Daub-6

Source 16-bit 20-bit 24-bit 28-bit 32-bit

Sinusoid 39.66 63.92 87.49 111.65 136.02

Sawtooth 37.45 62.05 85.26 109.80 134.00

Step 41.11 63.85 86.79 112.82 137.83

Random 37.19 61.75 84.11 109.34 133.41

Symlet-6

Sinusoid 35.41 60.03 85.22 108.95 131.86

Sawtooth 33.79 58.24 82.98 106.96 130.10

Step 34.25 62.31 87.14 108.17 134.37

Random 33.35 58.40 82.67 106.87 129.71

Coiflet-2

Sinusoid 29.26 53.07 76.74 100.13 123.01

Sawtooth 27.09 51.00 74.44 98.75 121.57

Step 29.49 53.75 76.65 98.84 122.46

Random 26.75 51.33 74.64 98.49 120.88

multiplications are performed), and 1+0 by the adder (two summations are
performed where one cycle is “stolen” from the multiplier). Additional sample
latency (2 clock cycles per future sample) will add-up to the total latency on
the PEs which require this feature. The PE that is configured to perform the
normalization step has latency of 3 clock cycles.

For the wavelet processor with M PEs, the total time needed to compute
L-stage forward/inverse DWT is:

TDWT = L(Ts + Td) + 2S(1− 0.5L) + S(1− 0.5L−1) (13)

where S is the signal length, Ts is the setup delay and Td =
∑m=M

1 TPEm

is the circuit delay with TPEm
as the PE latency delay of the m-th PE. The

second term is the contribution of the actual transform whereas the last term
is the result of the memory copy process.

In case of a L-stage forward/inverse DWP, the total time is formulated as:

TDWP = L(Ts + Td) + LS (14)

The second term is the contribution of the low-pass and high-pass parts which
have to be processed as well. No memory copy process takes place on perform-
ing forward/inverse DWP.
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5 Conclusions

The facts are that wavelets have a very wide spectrum and there exists differ-
ent classes of wavelet filters that can be used depending on the application. We
have proposed a novel architecture that is able to compute various wavelet
transforms and their inverses based on their lifting scheme representations.
Because of diversities in application’s need, we have designed the wavelet pro-
cessor that can perform not only DWTs, but also DWPs.

The proposed wavelet processor is based on M chained PEs to compute
the prediction/update of the lifting steps, and it can be configured easily to
support higher order lifting polynomials, as the result of the factorization of
the higher order wavelet filters. To cope with different wavelet filters, the de-
veloped wavelet processor includes a multi-context configuration so that users
can easily switch between transforms (including their inverses). The wavelet
processor is full-customized to manage different application demands which
require different accuracy. Additionally, the architecture takes into account
the energy conservation property of the wavelet transform by providing the
normalization step that occurs at the end of the forward DWT/DWP or at
the beginning of the inverse DWT/DWP. Due to its locality property, wavelet
transform has a straightforward implementation in hardware. Considering also
that wavelet transforms work with arbitrary number of samples, we deliver
this freedom into our wavelet processor. Using 0.18-µm technology, the esti-
mated area of the proposed wavelet processor with 16-bit configuration and
2×2×512 words memory is 2.5 mm2 and the estimated operating speed is
319 MHz.
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