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Abstract. Solvers for Boolean Satisfiability (SAT) are state-of-the-art
to solve verification problems. But when arithmetic operations are con-
sidered, the verification performance degrades with increasing data-path
width. Therefore, several approaches that handle a higher level of ab-
straction have been studied in the past. But the resulting solvers are still
not robust enough to handle problems that mix word level structures
with bit level descriptions.
In this paper, we present the satisfiability solver SWORD – a SAT like
solver that facilitates word level information. SWORD represents the
problem in terms of modules that define operations over bit vectors.
Thus, word level information and structural knowledge become available
in the search process. The experimental results show that on our bench-
marks SWORD is more robust than Boolean SAT, K*BMDs or SMT.

1 Introduction

The number of elements integrated within digital circuits grows exponentially
and this trend is going to continue for at least another 10 years. Already today
millions of gates are integrated in a single circuit. Throughout the design flow
for such complex systems, techniques to represent and manipulate the function
are needed. In particular, to formally verify the correctness of a circuit with
respect to all design states and input sequences, techniques for symbolic function
manipulation are applied.

Current state-of-the-art tools for formal verification use Boolean techniques
like Binary Decision Diagrams (BDDs) [1], AND-Inverter-Graphs [2] and provers
for Boolean Satisfiability (SAT) [3, 4]. No word level information such as knowl-
edge about arithmetic operations or structural knowledge is directly used for
function manipulation. As a result, the performance of verification tools de-
grades with increasing data-path width. Especially handling data paths is a
difficult problem.

For this reason, approaches to exploit such high level information have been
proposed in the past [5–7]. But pure word level approaches suffer from com-
plexity problems when irregularities in the word level structure occur, e.g. bit
slicing [8]. The recent concept of Satisfiability Modulo Theories (SMT) [9–12] is
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more powerful since multiple provers are combined, but still structural informa-
tion is not available. Related work is discussed in more detail in Section 2 and
empirically compared in Section 6.

In this paper, we propose SWORD – a SAT-like prover that uses word level
information and also resembles the structure of the original problem. Internally,
the problem is represented as a composition of modules; each module is defined
over bit vectors and enforces the constraints for a word level operation on the
corresponding Boolean variables. The main advantages of this approach are the
following:

– Compact problem representation:
The composition of word level modules is a much more compact representa-
tion than the transformation to Boolean constraints.

– Knowledge about structure and semantics:
This knowledge is determined by the position of a module within the problem
instance and the type of a module. Such information helps to predict the
impact of a decision or of learned information during the search process
more accurately.

– Efficient reasoning:
Different types of modules require different reasoning procedures and deci-
sion heuristics to allow for an efficient search procedure. These procedures
are designed for each type of module individually in the proposed framework.

Thus, SWORD combines the advantages of a Boolean proof procedure with the
power of word level knowledge. The proposed solver is empirically compared to
K*BMDs [6] as a word level decision diagram, the Boolean SAT solver MiniSat
[4] and the SMT solver Yices [11, 12].

The paper is structured as follows: Related work is discussed in more de-
tail in the next section. The preliminaries and limits regarding Boolean SAT
are reviewed in Section 3. Then, the basic algorithm of SWORD and the use of
modules to effectively model a problem are introduced in Section 4. Section 5 dis-
cusses the advantages of this approach. Experimental evidence for the efficiency
of SWORD in comparison to other prover paradigms is provided in Section 6.
Finally, a summary and the conclusions are presented in Section 7.

2 Related Work

Several approaches to incorporate word level information in the proof process
have been proposed so far. BDDs have been generalized to the word level quite
early [5] resulting in K*BMDs [6] as a very general form. These diagrams can
represent word level multiplications very efficiently, but whenever bit nibbling
occurs – as is common practice in circuit descriptions – the performance de-
grades. In fact, *BMDs may be exponentially large for certain functions [8].

A different approach is the transformation of the problem into Integer Linear
Programming (ILP) constraints [7]. But the same limitations to pure word level
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descriptions have been observed. A pure ILP-based approach is often too slow
for real world applications.

Combining Boolean provers and word level provers seems to be more promis-
ing. The framework proposed in [13] is based on an ATPG engine that is en-
hanced by arithmetic word level primitives. An arithmetic constraint solver is
applied to validate bit level assignments on the circuit. But the powerful learning
concepts known from Boolean SAT are not incorporated.

Due to the tremendous improvements in the performance of provers for
Boolean SAT in the recent past [14–16, 4], several researchers investigated the
combination of SAT with other proof techniques, i.e. Satisfiability Modulo The-
ories (SMT) [9–12]. An SMT solver integrates a Boolean SAT solver with an-
other solver (or multiple solvers) for specialized theories. Usually, the SAT solver
works on an abstract representation of the problem and steers the overall search
process. Each satisfiable assignment for the Boolean SAT problem has to be val-
idated on the concrete problem using the theory solver. The solver proposed in
[17] can be seen as a specialized SMT solver for bit vector logic. Tightly coupling
the different solvers, especially to enforce learning due to conflicts resulting from
partial assignments and to efficiently carry out implications, is a challenge in
this area. Usually, validating a given SAT assignment by using the theory solver
is very time consuming. Therefore, the overall performance is limited by the per-
formance of the theory solver. In our framework no theory solvers are needed.
Moreover, structural information about the original problem is available.

A very general theoretical framework for hierarchical SAT solving was pre-
sented in [18]. There, the problem is also decomposed into modules, where each
module may have different implication procedures. But no experimental evidence
was given and no hints for an implementation were provided.

Nonetheless our solver works similar to such a hierarchical solver. Besides
specialized implication procedures also dedicated decision heuristics are applied
to different types of modules.

3 Boolean SAT Solving

Our algorithm inherits the basic structure of a classical algorithm to solve a
problem instance of Boolean Satisfiability (SAT) [14]. Therefore, we briefly re-
view the techniques applied in Boolean SAT solvers.

3.1 Definition

The Boolean satisfiability problem (SAT problem) is to determine whether there
exists an assignment α to an Boolean function f such that f(α) = 1 (i.e. f is
satisfiable) or to prove that no such assignment exists (i.e. f is unsatisfiable).

A SAT instance is represented as a Boolean formula in Conjunctive Normal
Form (CNF) which is given as a set of clauses; each clause is a set of literals
and each literal is a propositional variable or its negation. The CNF formula
is satisfied if all clauses are satisfied. A clause is satisfied if at least one of its
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Fig. 1. DPLL algorithm in modern Boolean SAT solvers

literals is satisfied. A variable is satisfied when 1 is assigned to the variable, the
negation of a variable is satisfied under the assignment 0.

3.2 Basic Algorithm

The basic search procedure to find a satisfying assignment is shown in Fig. 1 and
has the structure of the DPLL algorithm [19, 3]. Instead of simply traversing the
complete space of assignments, intelligent decision heuristics [16], conflict based
learning [14] and sophisticated engineering of the implication algorithm [15] lead
to an effective search procedure. The description follows the implementation of
the procedure in modern SAT solvers. While there are free variables left (a), a
decision is made (c) to assign a value to one of these variables. Then, implications
are determined due to the last assignment by Boolean Constraint Propagation
(BCP) (d). This may cause a conflict (e) that is analyzed. If the conflict can be
resolved by undoing assignments from previous decisions, backtracking is done
(f). Otherwise, the instance is unsatisfiable (g). If no further decision can be
done, i.e. a value is assigned to all variables and this assignment did not cause
a conflict, the CNF is satisfied (b). In the following, the decision level d denotes
the number of variables assigned by decisions in the current partial assignment,
i.e. neglecting variable assignments due to implications.

3.3 Limits of Boolean SAT

Due to the translation of the problem into CNF, the power of BCP as an im-
plication engine and the efficiency of learning are limited. In the verification
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domain, the original problem is usually given at the word level. Operations are
defined over bit vectors. Each Boolean variable that is visible in a bit vector at
this level is called module variable in the following. The translation of word level
operations over bit vectors of module variables into CNF involves the creation
of a large number of auxiliary variables [20]. The dependencies between these
variables are modeled by constraints in terms of clauses.

Example 1. Consider an n×n-multiplier. On the word level, 4n module variables
are needed for the bit vectors of the operands and the result.

On the other hand, the multiplier can be represented by n2 AND gates [21],
i.e. the number of auxiliary variables is in θ(n2). A single gate can be modeled
by three clauses for each element. Therefore, the multiplier can be represented
by a CNF with θ(n2) clauses1.

Simplified, all these auxiliary variables have to be considered during BCP;
but implications on auxiliary variables do not yield a reduction of the search
space for the original problem. Moreover, conflict clauses may be derived that are
defined over auxiliary variables only – again without pruning the search space of
the original problem. In principle, this problem can be prevented by introducing
additional clauses that describe the implications on module variables directly,
but then the translation becomes inefficient due to a large number of clauses.

4 Using Word Level Information

In this section, we describe the architecture of SWORD and how word level
information is used during the solve process. Therefore, we first explain the
representation of the problem and present the overall algorithm. Afterwards the
utilization of word level information in decision making, the implication engine
and conflict analysis are explained in more detail.

4.1 Representation

SWORD represents the problem in terms of so called modules. Each module
defines an operation over bit vectors of module variables. Each module variable
is a Boolean variable. By this, structural and semantical knowledge is available
and can be exploited during the search process by special algorithms for each
kind of module (we will explain this in more detail later).

Example 2. Fig. 2 shows an equivalence checking problem in terms of a miter
circuit. A multiplier is compared to a realization that sums up the partial prod-
ucts.

SWORD represents this problem by using one module representing a multi-
plier, n−1 modules representing an adder, n modules representing a multiplexor
and one module representing a comparator. No auxiliary variables are needed.
1 More efficient translations may be available, but in principle, the problem instance

still grows.
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Fig. 2. Miter example of a multiplier

Besides providing word level information the representation in terms of mod-
ules has another advantage: The problem description of SWORD is much more
compact than a CNF. To represent it for a classical SAT solver we need θ(n2)
clauses (see Example 1). Our representation consists of 2n + 2 modules, only.
Furthermore we need no auxiliary variables in total.

4.2 Overall Algorithm

The overall algorithm of SWORD is shown in Fig. 3. This algorithm is similar
to the DPLL procedure as applied in standard SAT solvers (see Section 3.2):
While free variables remain (a) a decision is made (c), implications resulting
from this decision are carried out (d), and if a conflict occurs, it is analyzed (f).
The important difference is that SWORD has two operation levels: the global
algorithm controls the overall search process and calls the local procedures of
modules for decision and implication. Thus, decision making and implication
engine can be adjusted for each type of module.

In more detail, the solver first chooses a particular module based on a global
decision heuristic (c.1). Then, this module chooses a value for one of its variables
according to a local decision heuristic (c.2). Afterwards, the solver calls the local
implication procedures (d.2) of all modules that are potentially affected (d.1) by
the previous decision or implication. Here a variable watching scheme similar to
the one presented in [15] is used which can efficiently determine these modules.
The chosen modules imply further assignments and detect conflicts.

In the following, the global and local algorithms are described in more detail,
respectively.
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Fig. 3. Algorithm

4.3 Decision Strategies

Global Decision. The global decision procedure chooses a module that assigns
a value to one of its connected module variables. So the global decision procedure
has to decide which module will make the best decision, i.e. which decision of a
module leads to as many implications as possible. Therefore, a (global) heuristic
is employed to decide which modules are “more important” than others. To
determine the importance of a particular module, semantical information such
as the type or structural information such as the position within the overall
problem are available.

Example 3. Again, consider the miter circuit shown in Fig. 2. In this example
the primary inputs and the outputs of the multiplier module are considered
more important than, for example, the select input of one of the multiplexors.
Therefore, the global decision heuristic selects the multiplier module first.

To realize this efficiently, the global decision heuristic currently uses a static
priority based on the type of the module. Here, more complex modules (e.g. mul-
tipliers) are considered as being more important and, therefore, are selected for
a decision with a higher priority than less complex modules. The complexity is
measured in the number of two-input gates needed to describe a module. Fur-
thermore, the priority of a particular module can be increased/decreased when
it is located near to the primary inputs/outputs or the objective. By this, each
global decision can be done very efficiently, because no complex data manipula-
tion is necessary.
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Local Decision. The local decision procedure of a module assigns a value to
one of its module variables. The impact of a particular decision depends on the
type of a module. Therefore, different strategies are applied for different types
of modules. For example, a module representing a multiplier uses a different
heuristic than a module representing an AND gate. In the following, an adder
exemplifies the local decision procedures of SWORD.

An n-bit adder ADD : Bn × Bn → Bn+1 is considered which is represented
by a module in SWORD. The module variables connected to this module are
given by an−1, . . . , a0 and bn−1, . . . , b0 that represent the inputs of the adder and
on, . . . , o0 that represent the outputs.

For an adder, assigning some variables ai, bi or oi (with n > i ≥ 0) while
variables aj , bj or oj (with i > j ≥ 0) are still unassigned, often does not allow to
imply values for the outputs since then, the value of the respective carry bits are
unknown, too. In contrast, when all of the least significant bits of both operands
are given, the corresponding bits of the outputs can be determined. Therefore,
the variable representing the least significant unassigned bit is assigned first.

In the implmentation, the local decision procedure is realized as a Finite
State Machine (FSM). This allows to carry out decisions efficiently. The FSM
has n + 1 states and is in state i (n > i ≥ 0) when all variables with lower
significance than i are assigned, i.e. aj , bj and oj (i > j ≥ 0) are assigned. Thus,
if the FSM is in state i, only the variables ai, bi and oi are considered. If all
of these variables are assigned, the FSM proceeds to state i + 1. Otherwise, at
least two of these variables are unassigned (because an implication is carried out
when only one variable is unassigned, as explained in the next section).

An additional state R is needed to recalculate the state when it was inval-
idated: Due to backtracking the state of the local FSM of a module may be
invalidated because currently assigned variables may become unassigned. This
is recognized by tracking the decision level. The decision level of the last state
transition, i.e. since the last change of a state, is stored in dch and the lowest
decision level that has been reached after a backtrack intermediately is stored
in dbt. The state of the FSM may only be invalidated when dbt < dch.

Example 4. Fig. 4 illustrates this mechanism. The global search tree is indicated
by the plain line and the decision levels that are reached are also shown. A
transition of the FSM of a module is indicated by a cross. The table shows the
values of dch and dbt before the transition is done. The first transition occurs at
A and dch is changed from 0 to d; dbt is uninitialized. At B the decision level has
increased; the state is still valid; dch is updated to d + 1. Due to a backtrack dbt

is set to d + 2. Thus, at C the state from decision level d + 1 is still valid. In
contrast, when transition D is done, the state is potentially invalid and has to
be recalculated.

The resulting FSM for a 3-bit adder is shown in Fig. 5; only state transitions
are indicated, internal variables are not shown.
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Fig. 5. FSM for an adder

4.4 Implication Engine

The implication engine is also divided into a global part and local procedures
that are dedicated to the type of a module.

Detection of Affected Modules. Globally, those modules that may be af-
fected by a previous decision or implication have to be identified. This is done
by a variable watching scheme. Currently, a conservative approach is applied:
the local propagation procedure of each module that contains a variable that
has been assigned is called. Such a static scheme is efficient, because module
variables usually only connect to a few modules – often only two modules.

Local Implication. The local implication procedures only consider the con-
nected module variables for the propagation of values. For efficiency these pro-
cedures do not determine all implications that are possible, but only those that
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can be derived efficiently. Again, the local implication procedure of an adder
exemplifies the local implication procedures.

The implication procedure works similar to the decision procedure: If, for
example, the input bit ai and the output bit oi and all less significant input
bits (aj and bj with i > j ≥ 0) are assigned, then the third variable (bi in
the example) can be implied. This implication procedure does not guarantee to
detect implications on higher significant bits and is therefore not too powerful.
But in most cases implications on these bits are improbable.

The implication procedure relies on the same FSM that is used for decisions.
Additionally, the carry bits cn−1, . . . , c0 are internally updated at each state
transition. In state i (n > i ≥ 1) carry bit ci−1 is also given. Therefore, an
implication can be carried out efficiently based on the current state i, the value
of the carry bit ci−1 and the values of the module variables ai, bi, oi.

Note, due to the implication procedure a conflicting assignment may not be
detected directly. But when the FSM reaches state n, i.e. all module variables
are assigned, the consistency of the assignment will be validated. However, due
to the order of decisions conflicts are usually detected early. The mechanisms for
conflict analysis are explained in detail in the next section.

4.5 Conflict Analysis

In SWORD, conflict analysis and learning are quite similar to the classical ap-
proach of a SAT solver. Upon detection of a conflict, the module returns the
conflicting variables to the global solve process. Then, conflict analysis is carried
out. Currently, we adapted the implementation of MiniSat [4]. Because SWORD
does not work in terms of clauses, a separate implication graph is stored globally.
Each module updates this graph when an implication is carried out. The learned
information is stored in terms of clauses as in standard SAT solvers. Therefore,
an additional clause module exists which handles all clauses generated by conflict
analysis (and applies the known state-of-the-art SAT techniques).

Note, that the implication graph itself is more compact than the one of a
Boolean SAT solver, because there are no auxiliary variables contained in the
graph. As a result all clauses derived by conflict analysis consist of module
variables and prune the search space of the original problem domain directly.

The conflict graph keeps track of the reasons for a particular assignment.
Thus, the identification of a reason is crucial in this context. The smaller the
reason, the smaller the conflict clauses and the more effectively the search space
is pruned. Again, an adder is used to give an idea of how the implication graph
is created.

Example 5. Assume, oi is implied based on the internal value of ci−1 and the
module variables ai and bi. Furthermore, due to previous assignments ai−1 =
0 and bi−1 = 0, the reasons for these assignments are already stored in the
implication graph. In this case input bits with lower significance than i − 1 do
not influence the value of oi, because no carry bit is propagated beyond i − 1.
Thus, the four variables ai, bi, ai−1 and bi−1 are identified as the reason for
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the implication on oi. The four edges (ai, oi), (bi, oi), (ai−1, oi) and (bi−1, oi) are
added to the implication graph. Note, that the reasons for ai−1 = 0 and bi−1 = 0
are already stored in the graph.

Like in standard SAT solvers, only conflict clauses up to a certain length are
learned. The ratio behind this heuristic is that short clauses prune a large part
of the search space while longer clauses are less valuable.

Semantical knowledge is also exploited in this process. For example, a conflict
clause is not learned if it contains variables that are associated to a complex
module like a multiplier – in this case only backtracking is carried out. This
heuristic is motivated by the observation that usually a large number of clauses is
learned that describe the behavior of a multiplier which causes memory overhead
but does not speed up the search.

5 Discussion

The first observation is that SWORD represents problems in a much more com-
pact way than a CNF based solver. In contrast to modeling the internal structure
of a module by clauses, the functionality is described on an algorithmic level. As
already explained, this leads to a smaller number of variables and less constraints
that have to be handled.

At the same time, this representation enables more efficient implications.
Instead of a large number of clauses usually only the connecting modules have
to be considered to imply a value for a particular variable. The implication
procedures of particular modules are not as strong as possible (using the notation
of [18] they are not maximally implicative and in the notation of constraint
programming they are not fully arc-consistent). Of course, it is possible to create
stronger implication procedures, but only at the cost of more complex modules
and higher computation time. Currently, the implication procedures are crafted
manually and exploit the knowledge about the decision order. By this, it is
possible to trade-off between implicative power and efficiency. Investigating more
powerful procedures that are automatically generated remains future work. One
promising approach that starts from BDDs has been suggested in [22].

Implications and decisions are restricted to module variables. Therefore, in
contrast to CNF based SAT, no auxiliary variables can occur in the implication
graph. Thus, the size of the implication graph is reduced and, as a result, the
time needed to traverse the implication graph is reduced. Similarly, the conflict
clauses consist of module variables only. Therefore, instead of learning a large
number of locally conflicting assignments, the overall search space is pruned.

Finally, structural information about predecessors or successors of modules
is available within SWORD. Currently, this information is not fully exploited.
Only the global decision heuristic evaluates the position of modules in a static
preprocessing step. For Boolean SAT dynamic decision procedures have proven
to be much more efficient. Thus, combining structural knowledge with heuristics
from Boolean SAT is another direction for future work.
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6 Experimental Results

This section provides experimental results for SWORD in comparison to the
Boolean SAT solver MiniSat [4], K*BMDs [6] using the package of [23] as a
representative of pure word level approaches, and the SMT solver Yices using
the theory of bit vectors [11, 12]. All experiments have been carried out on an
AMD Athlon64 3500+ (Linux, 2.2 GHz, 1 GB). Unless mentioned otherwise the
time out was set to 500 CPU seconds.

We considered different benchmark problems. In the following, the name
indicates the type of the problem. The prefix ec indicates equivalence checking
of a multiplier (mul ) on the word level with another multiplier that is given
as word level module (mul ), as sum of partial products (pp ), or as gate level
description (gt ), respectively. Thereby, a miter circuit is used. In some cases, the
least significant bit was ignored in the miter (indicated by li ) and in other cases
a fault was injected at the gate level to create a satisfiable instance (indicated
by ft ). The prefix pc arith indicates a property checking problem that contains
arithmetic modules. Finally, a number indicates the bit width of the data path.

6.1 Parameter Studies

For selected representative instances Table 1 reports run times in CPU seconds
to evaluate different features of SWORD. To demonstrate the influence of the
parameters, alternative configurations are used. The last column DEF provides
the run times of SWORD in the current configuration. The influence of the de-
cision heuristic is studied in columns RAND and MSB. If the modules in the
global decision heuristic are randomly selected, the numbers in column RAND
are obtained. Column MSB gives the results, if the arithmetic modules are as-
signed from the higher to the lower bits, what is typically not clever. As can be
seen, both approaches lead to high run times and even time outs in comparison
with the heuristic shown in column DEF. In the remaining columns, learning
strategies are evaluated. Column CCLS reports results for learning all conflict
clauses regardless of the length and the origin. In column 30% only short conflict
clauses are learned that consist of up to 30% of the variables contained in the
problem instance; clauses including variables from a multiplier are learned as
well. The maximum relative length of 30% for learned clauses was experimen-
tally determined. Finally, column DEF gives the run time of SWORD using all
features: the global decision heuristic using priorities, the local decision heuristic
that assigns least significant bits first, and conflict based learning of short clauses
together with neglecting clauses coming from complex modules, like multipliers.
As can be seen, DEF is the most robust approach and clearly outperforms all
others. Therefore, this setting was used for the experiments in the following.

6.2 Comparison to Boolean SAT solver

Table 2 shows results in comparison to MiniSat. For each benchmark the number
of variables to represent the problem, the number of clauses for MiniSat and
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Table 1. Parameter studies

Heuristic Learning
circuit RAND MSB CCLS 30% DEF

ec mul mul 10 53.97 47.95 >500 36.88 37.09

ec mul pp 9 125.83 187.06 45.51 45.29 15.54

ec mul gt 10 >500 >500 >500 >500 113.84

ec mul mul li 10 59.32 48.19 >500 36.93 37.01

pc arith a 9 >500 >500 >500 37.57 37.83

pc arith b 13 >500 >500 363.42 30.68 30.91

the number of modules for SWORD are given in columns var, cls and mod,
respectively. The memory requirements (in MB) and the CPU time (in seconds)
are provided in columns mem and time. The improvement in run time of SWORD
over MiniSat (i.e. the run time of SWORD divided to the run time of MiniSat) is
shown in column imp. An x in column sat indicates whether the problem instance
is satisfiable. Since for most satisfiable instances both solvers had small run
times, we mainly report numbers for unsatisfiable instances here (satisfiability
is studied in more detailed below).

SWORD is quite efficient regarding memory consumption. This is due to the
problem representation. Especially word level problems are much more compact
than a corresponding SAT instance. This benefit decreases only slightly when the
problem is partially converted to gate level. Moreover, in contrast to the SAT
solver, SWORD is quite robust with respect to larger bit widths of the data
path. Considering run time, except for pc arith b[10-13], SWORD significantly
outperforms MiniSat on all benchmark circuits. For benchmarks in the table the
improvement is always larger than a factor of two and in one case even three
orders of magnitude.

Furthermore, we studied in more depth satisfiable instances. The instances
are generated by removing or substituting a single Boolean gate in a multiplier
circuit, i.e. all instances were derived from ec mul gt 16. In this manner over 4000
instances were generated. For all of them MiniSat and SWORD were started with
a time out of 5 CPU seconds. Table 3 summarizes the results by giving in the
number of instances where the solver took less than 0.01 seconds and where a
time out occurred in row two and three, respectively.

Here, it can clearly be seen that SWORD solves most of the instances in al-
most no time and in addition has fewer time outs than MiniSat. For all instances
where both solvers computed a solution within the given limit, Fig. 6 graphically
shows the results. As can clearly be seen in the lower half of the diagram, there
are many more instances that SWORD can handle in very low run time.

6.3 Comparison to Word Level Solvers

Table 4 provides run times for K*BMDs, SWORD and Yices. As expected
K*BMDs performs very well on pure word level problems and outperform SWORD
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Table 2. Comparison to MiniSat

MiniSat SWORD
circuit sat var cls mem time var mod mem time imp

ec mul mul 7 519 1766 3.98 2.02 43 3 2.73 0.35 5.77
ec mul mul 8 687 2348 4.50 10.79 49 3 2.73 1.67 6.46
ec mul mul 9 879 3014 5.65 54.96 55 3 2.73 8.02 6.85
ec mul mul 10 1095 3764 8.45 461.44 61 3 2.73 37.09 12.44

ec mul pp 7 1012 3381 4.24 3.98 228 17 2.73 0.62 6.41
ec mul pp 8 1331 4460 5.00 25.76 292 19 2.73 3.10 8.30
ec mul pp 9 1694 5689 6.93 189.24 364 21 2.73 15.54 12.17
ec mul pp 10 2101 7068 >10.16 >500 444 23 2.86 59.85 >8.35

ec mul gt 7 519 1766 3.98 2.02 274 246 2.73 0.91 2.21
ec mul gt 8 687 2348 4.50 10.79 360 328 2.86 4.69 2.30
ec mul gt 9 879 3014 5.65 54.96 458 422 2.86 23.20 2.36
ec mul gt 10 1095 3764 8.45 461.44 568 528 2.86 113.84 4.05

ec mul mul li 7 518 1761 3.99 2.03 43 3 2.73 0.34 5.97
ec mul mul li 8 686 2342 4.36 7.95 49 3 2.73 1.66 4.78
ec mul mul li 9 878 3009 5.90 88.88 55 3 2.73 7.95 11.17
ec mul mul li 10 1094 3759 8.11 409.51 61 3 2.73 37.01 11.06

ec mul gt ft 18 x 3687 12788 17.16 70.58 1880 1808 3.12 <0.01 >7058.00
ec mul gt ft 19 x 4119 14294 16.84 54.88 2098 2022 3.29 0.01 5488.00
ec mul gt ft 21 x 4575 15884 20.10 73.91 2328 2248 3.30 <0.01 >7391.00
ec mul gt ft 22 x 5055 17558 24.91 111.03 2570 2486 3.43 0.03 3701.00

pc arith a 6 572 1980 4.11 3.78 55 10 2.73 0.36 10.50
pc arith a 7 740 2562 5.00 28.52 61 10 2.73 1.72 16.58
pc arith a 8 932 3228 6.93 196.98 67 10 2.73 8.21 23.99
pc arith a 9 1148 3978 >10.16 >500 73 10 2.73 37.83 >13.21

pc arith b 10 250 852 3.60 0.01 77 17 3.89 1.42 <0.1
pc arith b 11 268 911 3.61 0.01 82 17 4.68 4.68 <0.1
pc arith b 12 286 970 3.59 0.01 87 17 6.70 12.24 <0.1
pc arith b 13 304 1029 3.59 0.01 92 17 7.70 30.91 <0.1

in this case (e.g. benchmark set ec mul mul). But when the description is pro-
vided at the bit level the performance degrades significantly (ec mul gt). Further-
more, bit level operations cannot be handled efficiently (ec mul mul li). Yices
also handles the pure word level problems extremely efficient. But again, when
word level and lower level descriptions are mixed, the performance degrades. On
these benchmarks SWORD is more robust.

6.4 Summary

SWORD is very efficient in comparison to the most powerful available SAT solver
on our verification benchmarks. This especially holds if the word level structure
can be exploited. Furthermore, in contrast to other word level approaches that
break down if Boolean operations are used, SWORD is very robust also in this
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Table 3. Data for satisfiable instances

time MiniSat SWORD

<0.01 50 2183
>500 708 565

 0.01

 0.1

 1

 0.01  0.1  1

SW
O

R
D

MiniSat

Fig. 6. Run time for satisfiable instances

case. This can be seen in the comparison with K*BMDs and Yices which often
do not finish within the given time out.

7 Conclusions

We presented the solver SWORD that uses a SAT like algorithm and exploits
word level information in the search process. SWORD works on a representation
of the problem in terms of modules. This yields a powerful framework for decision
making, implications and conflict analysis. Considering a problem directly at the
word level significantly reduces the size of the instances. Moreover, the word level
information is exploited in all steps of the search process. In contrast to other
word level solvers, SWORD is robust with respect to bit level operations on our
benchmarks.

In future work, the efficiency of SWORD will be further improved by inves-
tigating more powerful decision heuristics and engineering the watching mech-
anisms for implication and backtracking. Furthermore, the local procedures for
different types of modules are currently coded manually; an automatic approach
to generate this code could be applied to study different version of the pro-
cedures for a single type of module. Finally, the application to other problem
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Table 4. Comparison to K*BMDs and SMT

circuit K*BMD SWORD Yices

ec mul mul 7 <0.01 0.35 <0.01
ec mul mul 8 <0.01 1.67 <0.01
ec mul mul 9 <0.01 8.02 <0.01
ec mul mul 10 <0.01 37.09 <0.01

ec mul pp 7 0.01 0.62 15.83
ec mul pp 8 0.01 3.10 105.56
ec mul pp 9 0.01 15.54 >500
ec mul pp 10 0.01 59.85 >500

ec mul gt 7 3.48 0.91 10.93
ec mul gt 8 13.60 4.69 82.40
ec mul gt 9 53.45 23.20 >500
ec mul gt 10 202.31 113.48 >500

ec mul mul li 7 >500 0.34 0.29
ec mul mul li 8 >500 1.66 1.96
ec mul mul li 9 >500 7.95 58.15
ec mul mul li 10 >500 37.01 >500

pc arith a 6 0.5 0.36 <0.01
pc arith a 7 2.1 1.72 <0.01
pc arith a 8 8.7 8.21 <0.01
pc arith a 9 35.8 37.83 <0.01

pc arith b 10 1.69 1.42 0.07
pc arith b 11 3.18 4.68 0.15
pc arith b 12 6.36 12.24 0.34
pc arith b 13 12.82 30.91 0.96

domains than verification is an important topic. As one example logic synthesis
for reversible circuits with SWORD was introduced in [24].
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