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Abstract. Networks on Chip (NoC) has emerged as the paradigm for
designing scalable communication architecture for Systems on Chips
(SoCs). Avoiding the conditions that can lead to deadlocks in the net-
work is critical for using NoCs in real designs. Methods that can lead
to deadlock-free operation with minimum power and area overhead are
important for designing application-specific NoCs. The deadlocks that
can occur in NoCs can be broadly categorized into two classes: routing-

dependent deadlocks and message-dependent deadlocks. In this work, we
present methods to design NoCs that avoid both types of deadlocks.
The methods are integrated with the topology synthesis phase of the
NoC design flow. We show that by considering the deadlock avoidance
issue during topology synthesis, we can obtain a significantly better NoC
design than traditional methods, where the deadlock avoidance issue is
dealt with separately. Our experiments on several SoC benchmarks show
that our proposed scheme provides large reduction in NoC power con-
sumption (an average of 38.5%) and NoC area (an average of 30.7%)
when compared to traditional approaches.

Keywords: Networks on Chips, Systems on Chips, Message-dependent dead-
locks, routing-dependent deadlocks, topology, synthesis.

1 Introduction

Today’s Systems on Chips (SoCs) consist of a large number of computing and
storage cores that are interconnected by means of single or multiple layers of
buses In order to cope with the large communication demands of such SoCs, a
modular, scalable interconnect based on Networks on Chips (NoCs) is needed
[1]-[6].



Designing a custom-tailored interconnect that satisfies the performance and
design constraints of the SoC is important to achieve efficient NoC designs [27]-
[32]. A critical, but often neglected issue when designing NoCs is that they have
to guarantee deadlock-free operation. If the NoC has no support to either avoid
or recover from deadlocks, then correct functionality of the system cannot be
guaranteed. This can lead to system crashes and unexpected system behavior,
which is clearly unacceptable for SoCs. Designing efficient methods that avoid
such a situation with minimum power and area overhead is an important research
area in the NoC domain.

The deadlocks that can occur in NoCs can be broadly categorized into two
classes: routing-dependent deadlocks and message-dependent deadlocks [33], [7]-
[12]. Routing-dependent deadlocks occur when there is a cyclic dependency of
resources created by the packets on the various paths in the network. For regular
topologies (such as the mesh, torus), the use of restricted routing functions
based on turn models is an effective way to avoid routing-dependent deadlocks
[9], [10]. For custom application-specific NoCs, obtaining deadlock-free paths is
a bigger challenge [12], [22], [32]. The major focus of this paper is to address
this important issue of obtaining routing and message-dependent deadlock-free
network operation.

Message-dependent deadlocks occur when interactions and dependencies are
created between different message types at network endpoints, when they share
resources in the network. Even when the underlying network is designed to be
free from routing-dependent deadlocks, the message-level deadlocks can block the
network indefinitely, thereby affecting the proper system operation. An example
situation where a message-dependent deadlock occurs is presented in Figure 1(a).
In this example, two of the cores are masters and two other cores are slaves. In
this system, we assume two kinds of messages: request and response. Consider the
following situation: Master 1 sends a request to Slave 1 (Req 1), Slave 1 is replying
to a previously issued request to Master 1 (Resp 1) and at the same time, Slave
2 sends a response to Master 2 (Resp 2). When requests and responses share the
same links, Resp 2 is waiting for link 1 which is used by Req 1 and Resp 1 waits
for link 4 used by Resp 2. Meanwhile, Req1 is waiting for Slave 1, the operation
of which has been stalled as Resp 1 could not complete. Thus, none of the
messages can move ahead, leading to a deadlock situation. An interesting point
to note here is that message-level deadlocks can be avoided if the receivers have
infinitely large buffering or if they have perfectly ideal operation (consuming
all received data instantly), which would avoid queuing of the packets in the
network. Obviously, such a solution is not feasible to obtain in practice.

In traditional multi-processor interconnection networks, the most common
ways to avoid message-dependent deadlocks are the use of separate logical or
physical networks for the different message types [13]-[21]. This would ensure
that the different message types do not share the network components, thereby
guaranteeing freedom from message-dependent deadlocks. The most common
method to achieve separate logical networks is the of use of separate virtual
channels for the different message types [13]. For the example design presented
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in Figure 1(a), each router input will need two virtual channels: one for the
request messages and the other for the response messages (refer Figure 1(b)).
This separation of message types is maintained at all the switches in the network.
In the case of separate physical networks, the request network is built separately
from the response network, an example of which is shown in Figure 1(c). This
is the most commonly used solution in complex bus designs such as the STBus
from STMicroelectronics [19] and several multi-processor designs [20], [21].

In this work, we show that by mapping the different message types onto
different network resources during the topology mapping and synthesis phase,
we can achieve much better NoC designs (in terms of power consumption and
network area) than traditional approaches. We present a topology synthesis al-
gorithm that specifically considers the message types and ensures the creation of
a network that is free from message-dependent deadlocks. We also implement the
common methods of deadlock avoidance: having separate virtual channels and
having physically separate networks for the message types. For all the schemes,
we make the underlying network operation free from routing-dependent dead-
locks by integrating existing methods with our topology synthesis process [12].
We perform experiments on several SoC designs, which show that our proposed
scheme provides large reduction in the NoC power consumption (an average of
38.5%) and area (an average of 30.7%) when compared to the traditional ap-
proaches.

2 Previous Work

The motivation for the use of NoCs has been established in several works [1]-[6].
The use of turn models to avoid deadlocks in mesh and torus networks has been
presented in [10]. There has been a large body of work that have focused on
developing routing-dependent deadlock-free operation for interconnection net-
works [9]-[12]. Several other works exist in the area of recovering from deadlocks
in networks [7], [8].

The design of application specific NoCs has been explored in several works
[24]-[30]. None of these works address the issue of message-level deadlock avoid-
ance, which is critical for proper system operation. Avoiding routing-dependent
deadlocks for mesh topologies has been considered in [24]. Avoiding routing
deadlocks for custom NoC topologies have been presented in [22], [31].

The use of logically separated networks to avoid message-dependent dead-
locks has been utilized in several industrial multi-processors, such as [14]-[17].
The use of physically separated networks to remove message-dependent dead-
locks is used in many designs, such as [20], [21]. In [5], message-level deadlock
freedom is achieved by a different mechanism than using logically or physically
separated networks. It utilizes an end-to-end flow control scheme, which en-
sures that messages are sent from the sender only when the receiver has enough
buffering resources to store them. This is coupled together with a network de-
sign that uses time division multiplexing to divide the network resources among
the various communicating elements, providing guaranteed throughput to con-



nections. This leads to buffering free network for such connections and removal
from message-level deadlocks. The deadlock avoidance mechanism using their
protocol is presented in [23]. As we target general NoC designs that need not
support such end-to-end flow control mechanisms, we do not compare such a
scheme with our method presented here.

sustained traffic

rates

ory Filter

IFFT

Disp
lay

ARMMem

FFT

100
100

100

100100 100

200

10

Fig. 2. Example filter application

critical stream

weighted

by 10

100
200

100
100

v6

v2

100100
100v4

v5

v3

v1

100

Fig. 3. Core graph with sustained rates
and critical streams

Partition 2(p1)
(p2)

(p3)
Partition 3 Response Message

Request Message

Partition 1

100
100

v5

v2v1 200
100

100

v3

v6

v4

100 100
100

(a) Min-cut partitions

0.63

p3

p2

p1
0.63

0.70

0.70

0.63

0.63

(b) Path selection

Fig. 4. Algorithm Examples

3 Topology Synthesis with Deadlock Freedom

We implement our routing and message-dependent deadlock-free path selection
routine as a plug-in to an established NoC topology synthesis flow.

3.1 Topology Synthesis Process

We assume that the application kernels are parallelized and mapped onto differ-
ent processors and hardware cores using existing tools, as done in earlier works



[24]-[32]. The communication traffic flow between the various cores is represented
by a core graph, which is taken as the input to the topology synthesis flow. The
core graph for a small filter example (Figure 2) is shown in Figure 3. The edges
of the core graph are annotated with the sustained rate of traffic flow, multiplied
by the criticality level of the flow, as done in [26].

Before presenting the path selection routine, we first present the basic topol-
ogy synthesis flow. In the topology synthesis procedure (Algorithm 1), we synthe-
size several topologies: starting from a topology where all the cores are connected
to a single switch to a topology where each core is connected to a separate switch.
For the chosen switch count, the input core graph is partitioned into those many
min-cut partitions (refer to step 2 of Algorithm 1). At this point, the communi-
cation traffic flows within a partition has been resolved.

The reason for synthesizing these many topologies is that it cannot be pre-
dicted beforehand as to whether a design with few bigger switches can be more
power efficient than a design with more smaller switches. A larger switch has
more power consumption than a smaller switch to support the same traffic. This
is because, a larger switch has a bigger crossbar and arbiter. On the other hand,
in a design with many smaller switches, the packets may need to travel more
hops to reach the destination. Thus the total switching activity will be higher
than a design with fewer hops, which can lead to higher power consumption.

The partitioning is done in such a way that the edges of the graph that are
cut between the partitions have lower weights than the edges that are within
a partition and the number of vertices assigned to each partition is almost the
same. Thus, those traffic flows with large bandwidth requirements or higher
criticality level are assigned to the same partition and hence use the same switch
for communication. Hence, the power consumption and the hop-delay for such
flows will be smaller than the other flows that cross the partitions.

Now, we integrate in the main flow the core contribution of this work (in
step 4 of Algorithm 1), i.e. an algorithm (PATH COMPUTE) that maps the
communication flows to physical paths while guaranteeing deadlock freedom.
This algorithm is explained in detail in the following paragraphs. Once the paths
for a topology are selected, Algorithm 1 resumes, where the design area, power
consumption and wire-length for the topologies are obtained. Then, the topology
that best optimizes the user objectives and satisfies all the design constraints is
chosen. The topology synthesis flow, without considering freedom from message
level deadlocks, has been presented by us in detail in [32].

In the following subsections, we explain the path selection mechanism (Algo-
rithm 2) that guarantees routing and message-dependent deadlock-free operation
of the NoC.

3.2 Avoiding Routing Dependent Deadlocks

When the PATH COMPUTE procedure is invoked, the number of switches in
the NoC and their connectivity with the cores has already been determined
(cores in the same partition share the same switch). The procedure is used to



Algorithm 1 Topology Design Algorithm

1: Vary the number of switches in the design from 1 to the total number of cores in
the design. Repeat steps 2 to 7 for each switch count.

2: For the chosen switch count, find that many min-cut partitions of the communica-
tion graph. Cores in each partition are attached to the same switch.

3: Check for bandwidth constraint violations when establishing the switches. The
bandwidth of each link is the product of the NoC operating frequency and link
width, which are inputs to the flow.

4: Find the connectivity between the switches using the function PATH COMPUTE

(presented in Algorithm 2).
5: Evaluate the switch power consumption and average hop-delay based on the se-

lected paths.
6: Perform floorplan of the design. Obtain design area, wire-lengths. Check for timing

violations on the wires and evaluate the power consumption on wires.
7: If solution minimizes objective, satisfies all constraints, note the design point and

the topology.
8: Choose the best topology and design point based on the user objectives.

connect the different switches together and find paths for the traffic that flows
across the partitions.

In the first step of the procedure, we build a complete graph, with each vertex
in the graph representing a switch in the network.

In [12], the authors present a scheme for removing deadlocks in general net-
works. The approach is also utilized in [22] for removing routing-dependent dead-
locks in NoCs. The approach removes routing-dependent deadlocks by prohibit-
ing certain turns for the packets, thereby avoiding cycles in the network. In the
next step of the PATH COMPUTE algorithm, we invoke the BLOCK TURNS
procedure (Algorithm 3) to remove turns in the logical graph to avoid deadlocks.
When we compute paths later in the PATH COMPUTE procedure, we only use
those turns that have not been blocked by the BLOCK TURNS procedure.

3.3 Avoiding Message-Dependent Deadlocks

In the next step (step 3) of the PATH COMPUTE procedure, the flows are or-
dered in decreasing rate requirements, such that bigger flows are assigned first.
The heuristic of assigning bigger flows first has been shown to provide better
results (such as lower power consumption and more easily satisfying bandwidth
constraints) in several earlier works [25], [31]. Then, for each flow in order, we
first evaluate the message type of the flow (step 4 of Algorithm 2). The message
types can either be fed explicitly by the user, or can be implicitly considered by
the tool. As an example for implicitly considering the type, in shared memory
systems, all the traffic flows that originate from processors and terminate into
memory devices are of request type. While those that originate from the mem-
ories and terminate in the processors are of response type. Note that in shared
memory systems, all inter-processor communication occur through the memory



devices. Note that, if the connection between any pair of cores constitutes mul-
tiple message types, then each message type needs to be treated as a separate
traffic flow.

Algorithm 2 PATH COMPUTE

1: Build a fully connected logical graph, with each vertex representing a switch in the
NoC.

2: Invoke the BLOCK TURNS procedure, to find the set of turns that are prohibited.
3: For each traffic flow in decreasing order of the bandwidth requirements, perform

steps 4 to 8.
4: Find the message type supported by the chosen traffic flow.
5: For i1 from 1 to number of switches in the current design and j1 from 1 to number

of switches in the current design, repeat steps 6 and 7.
6: If one or more physical links exists between the switches i1 and j1, evaluate whether

any link exists that has already been supporting the current message type & has
bandwidth to support the current flow. If so, find the marginal power consumption
to re-use this existing link.

7: Else find the marginal power consumption for opening and using the link for this
traffic flow.

8: Find the least cost path (path with least power consumption) across the switches.
For any links that were newly established for this traffic flow, associate the message
type of this flow to the links. When selecting paths, choose only those paths that
have turns not prohibited for removing routing-dependent deadlocks (based on the
method from [12]).

9: Return the chosen paths, new switch sizes, connectivity between switches and the
type of message supported by each of the links.

Next, we evaluate the amount of power that will be dissipated across each
of the switches, if the traffic for the chosen flow uses that switch. This power
dissipation value on each switch depends on the size of the switch, the amount
of traffic already routed on the switch and the frequency of operation. It also
depends on how the switch is reached (from which other switch) and whether
an already existing physical channel will be used to reach the switch or a new
physical channel will have to be opened. The last information is needed, because
opening a new physical channel increases the switch sizes and hence the power
consumption of this flow and others that are routed through the switch.

In our NoC architecture, we permit the instantiation of multiple physical
links between any two switches. When finding whether a switch is reachable from
another switch for the current traffic flow, we evaluate whether any physical links
between the switches have already been established. If so, we see the message
type of the traffic flows that have already been routed on the links. From the
set of established links, we choose a link that supports the same message type
as the current traffic flow and has enough bandwidth available to support the
current flow. If no such link is available between the switches, we evaluate the
cost of opening up a physical link for the current traffic flow.



The process of evaluating the power consumption for the current traffic flow
is repeated for all pairs of switches. Finally (in step 8 of Algorithm 2), the set
of links from the source to destination of the flow that has the least power
consumption is chosen. When choosing the paths, only those paths that do not
use any turns blocked by the BLOCK TURNS procedure is considered. Now
physical connections are actually established on the chosen path and the message
type of the current flow is assigned to the links that have been used for the flow.

Algorithm 3 BLOCK TURNS

1: Select a node with minimum degree from the logical graph.
2: Mark all turns around this node as blocked, and allow all turns that start from this

node.
3: Remove the node and all its adjacent edges from further consideration for this

procedure.
4: Repeat all the above steps, until all the nodes have been considered.

Example 1. Let us consider the example from Figure 4(a). The input core graph
has been partitioned into 4 partitions. We assume 2 different message types: re-
quest and response for the various traffic flows. Each partition pi corresponds
to the cores attached to the same switch. Let us consider routing the flow with
a bandwidth value of 100 MB/S between the vertices v1 and v2, across the par-
titions p1 and p2. The traffic flow is of the message type request. Initially no
physical paths have been established across any of the switches. If we have to
route the flow across a link between any two switches, we have to first establish
the link. The cost of routing the flow across any pair of switches is obtained. We
annotate the edges between the switches by the cost (marginal increase in power
consumption) of sending the traffic flow through the switches (Figure 4(b)). The
cost on the edges from p2 are different from the others due to the difference in
initial traffic rates within p2 when compared to the other switches. This is be-
cause, the switch p2 has to support flows between the vertices v2 and v3 within
the partition. The least cost path for the flow, which is across switches p1 and p2
is chosen. Now we have actually established a physical path and a link between
these switches. We associate the message type request for this particular link.
This is considered when routing the other flows and only those traffic flows that
are of request type can use this particular physical link. We also note the size
and switching activity of these switches that have changed due to the routing of
the current flow.

4 Experimental Platform

We have built accurate analytical models for calculating the power consumption,
area and delay of the ×pipes network components [36].



Fig. 5. ×pipes building blocks: (a) switch, (b) NI, (c) link

4.1 Architectural Overview

The ×pipes NoC [36], [37] library consists of a set of parameterizable soft-macros
for the network components (Figure 5). The NoC is instantiated by deploying
a set of components in an arbitrary topology and by configuring them. There
are three main components in the ×pipes library: switches, Network Interfaces
(NIs) and links.

The backbone of the NoC is composed of switches, whose main function is
to route packets from sources to destinations. Arbitrary switch connectivity is
possible, allowing for implementation of any topology. Switches provide buffer-
ing resources to lower congestion and improve performance. In ×pipes, output
buffering scheme is utilized, where FIFOs are present on each output port of the
switch. Switches also handle flow control [38] issues of the NoC, which resolves
the conflicts among the packets that request access to the same physical links.
The ×pipes architecture supports the use of different flow control strategies, such
as the ACK/NACK and STALL/GO protocols. For the experiments performed
in this paper, we use the ACK/NACK protocol for flow control.

An NI is needed to connect each IP core to the NoC. NIs convert transaction
requests/responses into packets and vice versa. Packets are then split into a
sequence of smaller units, referred to as flits (FLow control unITS). In ×pipes,
two separate NIs are defined, an initiator and a target one, respectively associated
to system masters and system slaves. A master/slave device will require an NI
of each type to be attached to it. The interface among IP cores and NIs is



Fig. 6. The MPARM SystemC virtual platform

point-to-point and follows the OCP 2.0 [39] protocol, guaranteeing maximum
re-usability. We use source based routing scheme, where each NI has a look-up
table to specify the path that packets will follow in the network to reach their
destination. Two different clock signals can be attached to NIs: one to drive
the NI front-end (OCP interface), the other to drive the NI back-end (×pipes
interface). The ×pipes clock frequency must be an integer multiple of the OCP
one. This arrangement allows the NoC to run at a fast clock even though some
or all of the attached IP cores are slower, which is crucial to keep transaction
latency low. Since each IP core can run at a different divider of the ×pipes
frequency, mixed-clock platforms are possible.

To get accurate simulation in a flexible environment, we integrate the NoC in
MPARM (Figure 6). MPARM allows for accurate injection of functional traffic
patterns as generated by real IP cores (processors, DMA engines, etc.) during a
benchmark run. Further, it provides facilities for debugging, statistics collection
and tracing.

4.2 Area and Power Models

To get an accurate estimate of these parameters, the place&route of the com-
ponents is performed using Cadence SoC Encounter [35]. From the layout-level
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Fig. 8. Impact of frequency on the area and energy of a 5×5 switch, for 0.13µm technology

implementations, the back-annotated accurate wire capacitances and resistances
are obtained, with a 0.13µm technology library. The switching activity in the
network components is varied by injecting functional traffic. The capacitance,
resistance and the switching activity report are combined to estimate power
consumption using Synopsys PrimePower [34].

A large number of implementation runs were performed, varying several pa-
rameters, such as the number of input, output ports, link-width and the amount
of switching activity for the NoC switches. When the size of a NoC switch in-
creases, the size of the arbiter and the crossbar matrix inside the switch also
increases, thereby increasing the critical path of the switch. To have accurate
delay estimates of the switches, we model the maximum frequency that can be
supported by the switches, as a function of the switch size. An example set of
values are presented in Figure 7.

We used linear regression to build analytical models for the area and power
consumption of the components as a function of these parameters. Due to the
intrinsic modularity and symmetry of NoC components, the models built are very



accurate (with maximum and mean error of less than 7% and 5%, respectively)
when compared to the actual values. In the ×pipes architecture, each core is
connected to a separate NI [36]. Hence, we consider the power consumption of
the NI to be part of the power consumption of the core.

The impact of the targeted frequency of operation on the area and energy
consumption of an example 5× 5 switch obtained from layout-level estimates is
presented in Figure 8. Note that we plot the energy values (in power/MHz) in-
stead of the total power. This is to avoid the inherent increase in power consump-
tion due to increase in frequency of the network. When the targeted frequency
of operation is below a certain frequency, referred to as the nominal operating
frequency (around 250 MHz in the plots), the area and energy values for the
switch remains the same. However, as the targeted frequency increases beyond
the nominal frequency, the area and energy values start increasing linearly with
frequency. This is because, the synthesis tool (such as Synopsys DC [34]) tries
to match the desired high operating frequency by utilizing faster components
that have large area and energy overhead. When performing the area, power es-
timates, we also model this impact of desired operating frequency on the switch
area, power consumption.

5 Experimental Results

In this section, we present detailed experimental studies of our approach (which
we further refer to as INT-TOP meaning message-dependent deadlock avoidance
integrated with topology synthesis process) and compare it with traditional ap-
proaches:

(1) Using logically separate networks (L-SEP): In this scheme, we use sepa-
rate buffers at each input, with as many buffers as the different message types,
modeling the virtual channel based approach to remove message-dependent dead-
locks.

(2) Using physically separate networks (P-SEP): In this scheme, we design
physically different networks for each message type. For both these schemes we
apply our topology synthesis procedure to obtain the network topologies.

(3) With a design that has no support to avoid message-dependent deadlocks
(ORIG). Note that this base system cannot be employed in SoCs, as it cannot
guarantee proper system operation. We present the experimental results for this
scheme to only evaluate the overhead incurred in the other schemes to support
deadlock-free operation.

5.1 Comparison on SoC designs

We apply the deadlock prevention methods to five different SoC designs: Multi-
media system (MULT 30 cores), IMage Processing application (IMP-27 cores),
Video PROCessor (VPROC-42 cores), MPEG4 decoder (12 cores) and Video
Object Plane Decoder (VOPD-12 cores). The communication characteristics of
some of these benchmarks is presented in [40]. There are two types of messages
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that are supported in each design: request and response. Each design consists
of almost equal number of request and response traffic flows. This is because,
every processor core communicates through the memory core, necessitating two-
way communication (hence a request and response traffic flow) between the
processors and memories. To make a fair comparison of the different schemes,
we use the same synthesis approach and design constraints for synthesizing the
topologies.

The communication pattern (core graph) for one of the applications (IMP)
and the best synthesized topology for our proposed scheme (INT-TOP) are pre-
sented in Figures 9(a) and 9(b). The design consists of 12 processors (Proc 0 to
Proc 11), a private memory for each processor (PM 0 to PM 11), a shared mem-
ory (SHM), a semaphore memory (SMM) and an interrupt device (INT). In the
application, all communication from the processors are of request message type



and communication to the processors are of response message type. In Figure
9(b), those links that support request message type are in bold and those links
that support response message type are dashed.
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The network power consumption, based on the functional traffic for the
various designs using the different schemes is presented in Figure 10. As seen
from this figure, the INT-TOP scheme presented in this work, outperforms the
two conventional message-dependent deadlock avoidance schemes: L-SEP and
P-SEP. Our proposed scheme leads to an average of 38.5% reduction in NoC
power consumption when compared to the state-of-the-art deadlock avoidance
schemes. When compared to our INT-TOP scheme, the L-SEP scheme requires
large buffering requirements, as each virtual channel needs separate buffering re-
sources. The P-SEP scheme requires more switches than the INT-TOP scheme,



as the request and response messages utilize different networks. Interestingly,
our proposed scheme incurs only a 2.5% increase in power consumption when
compared to the ORIG scheme, where no message-dependent deadlock avoid-
ance support is provided. This is mostly due to the efficient allocation of links
to the different message types by our topology synthesis procedure. The switch
area for the different schemes for the SoC designs, normalized with respect to
the area of the base system (ORIG) is presented in Figure 11. The proposed
method results in an average of 30.68% reduction in area when compared to the
state-of-the-art schemes.

5.2 Effect of Different Number of Message Types

In this sub-section, we examine the power consumption of the proposed scheme,
when the number of different message types is varied. The number of message
types in a system depends on the underlying computation architecture. Cache
coherent systems typically support several different message types. As an exam-
ple, the S-1 multi-processor supports 4 different message types [18] and each type
must be mapped onto different resources in the network. In [17], a more sophis-
ticated protocol is used, which leads to seven different message types. To see the
impact on the number of different message types, we created a synthetic bench-
mark having the traffic characteristics of the VPROC design. In this benchmark,
around 80 different traffic flows exist, each one representing a message. We fixed
the number of messages and varied the number of message types in the design
from 1 to 7. The network power consumption for our proposed scheme, for the
different number of message types is presented in Figure 12. This figure shows
that our proposed scheme results in efficient designs, even for a large number
of message types. Moreover, the rise in power consumption with an increasing
number of message types saturates (designs with 6 and 7 message types have
nearly the same power consumption), as most messages are already mapped onto
unique links in the network.

5.3 Frequency Trade-offs

The algorithm presented here can also be used to perform frequency selection
for a certain design. In this case, the frequency of operation of the NoC can
be varied and the best topology can be synthesized for each frequency point.
A higher operating frequency results in links having more bandwidth. Thus a
smaller NoC can satisfy the design constraints. A trade-off curve for frequency
vs power consumption of the network for the VPROC is presented in Figure 13.
From such a curve, the most power-efficient operating frequency can be chosen
for the design.

6 Conclusions

For Networks on Chips (NoCs) to be used in industrial designs, NoCs should
guarantee proper system operation under all conditions. Achieving deadlock-free



operation of the network with minimum power consumption and area overhead
is critical for application-specific NoCs. In this work, we have focused on address-
ing the major issue of avoiding routing and message-dependent deadlocks during
the network operation. We have shown that by mapping the different message
types onto different network resources during the topology mapping and synthe-
sis phase, we can achieve large reductions in network power consumption and
network area when compared to the state-of-the-art approaches. In future work,
we plan to compare deadlock recovery schemes with the proposed scheme for
NoCs.
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