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Abstract. Highly scaled CMOS devices in the nanoscale regime would inevitably
exhibit statistical or probabilistic behavior. Such behavior is caused by process
variations, and other perturbations such as noise. Current circuit design method-
ologies, which depend on the existence of “deterministic” devices that behave
consistently in temporal and spatial contexts do not admit considerations for prob-
abilistic behavior. Admittedly, power or energy consumption as well as the asso-
ciated heat dissipation are proving to be impediments to the continued scaling
(down) of device sizes. To help overcome these challenges, we have character-
ized CMOS devices with probabilistic behavior (probabilistic CMOS or PCMOS

devices) at several levels: from foundational principles to analytical modeling,
simulation, fabrication, measurement as well as exploration of innovative ap-
proaches towards harnessing them through system-on-a-chip architectures. We
have shown that such architectures can implement a wide range of probabilis-
tic and cognitive applications. All of these architectures yield significant energy
savings by trading probability with which the device operates correctly—lower
the probability of correctness, the greater the energy savings. In addition to these
PCMOS based innovations, we will also survey probabilistic arithmetic—a novel
framework through which traditional computing units such as adders and multi-
pliers can be deliberately designed to be erroneous, while being characterized by
a well-defined probability of correctness. We demonstrate that in return for erro-
neous behavior, significant energy and performance gains can be realized through
probabilistic arithmetic (units)—over a factor of 4.62X in the context of an FIR

filter used in a H.264 video decoding—where the gains are quantified through
the energy-performance product (or EPP). These gains are achieved through a
systematic probabilistic design methodology enabled by a design space spanning
the probability of correctness of the arithmetic units, and their associated energy
savings.

1 Introduction and Overview

Device scaling, the primary driver of semiconductor technology advances, faces sev-
eral hurdles. Manufacturing difficulties in the nanometer regime yield non uniform de-
vices due to parameter variations, and low voltage operation makes them susceptible to
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perturbations such as noise [18, 25, 32]. In such a scenario, current day circuit design
methodologies are inadequate to design circuits, since they depend on devices with de-
terministic (in terms of their temporal behavior, since they are operated at high voltages)
and uniform spatial behavior. To design robust circuits and architectures in the presence
of this (inevitable) emerging statistical phenomena at the device level, it has been spec-
ulated that a shift in the design paradigm, from the current day deterministic designs to
statistical or probabilistic designs of the future, would be necessary [2].

We have addressed the issue of probabilistic design at several levels: from foun-
dational models [26, 27] of probabilistic switches establishing the relationship between
probabilistic computing and energy, to analytical, simulation and actual measurement
of CMOS devices whose behavior is rendered probabilistic due to noise (which we term
as probabilistic CMOS, or PCMOS devices). In addition, we have demonstrated design
methodologies and practical system-on-a-chip architectures which yield significant en-
ergy savings, through judicious use of PCMOS technology, for applications from the
cognitive, digital signal processing and embedded domains [3, 13]. In this paper we
present a broad overview of our contributions in the area of probabilistic design and
PCMOS, by surveying prior publications [3, 5, 6, 13, 26, 27]. The exception is our recent
work on probabilistic arithmetic, a novel framework through which traditional comput-
ing units such as adders and multipliers while erroneous, can be used to implement ap-
plications from the digital signal processing domain. Specifically, our approach involves
creating a novel style of “error-prone” devices with probabilistic characterizations—we
note in passing that from a digital design and computing standpoint, the parameter of
interest in a PCMOS device is its probability of correctness p—derived by scaling the
voltages to extremely and potentially undesirably low levels [19], referred to as over-
scaling.

The rest of the paper is organized as follows. In Section 2 we outline the founda-
tional principles of PCMOS technology based on the probabilistic Switch. In Section 3
we show approaches through which these abstract foundational models can be realized
in the domain of CMOS, in the form of noise susceptible scaled CMOS devices operating
at low voltages. The two laws of PCMOS technology using novel asymptotic notions
will be the highlights. To help with our exposition, it will be convenient to partition the
application domain into three groups (i) applications which benefit from (or harness)
probabilistic behavior at the device level naturally, (ii) applications that can tolerate
(and trade off) probabilistic behavior at the device level (but do not need such behav-
ior naturally) and (iii) applications which cannot tolerate probabilistic behavior at all.
We will briefly sketch our approach towards implementing PCMOS based architectures
for application categories (i) and (ii), in Section 4.1 and Section 4.2 respectively. In
Section 5, we describe probabilistic arithmetic. In Section 6, we outline other emerging
challenges such as design for manufacturability, and present a novel probabilistic ap-
proach towards addressing one such problem—the problem of multiple voltage levels
on a chip. Finally, in Section 7, we conclude and sketch future directions of inquiry.
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2 Foundational Principles

Probabilistic switches, introduced by Palem [27], incorporate probabilistic behavior as
well as energy consumption as first class citizens and are the basis for PCMOS devices.
A probabilistic switch is a switch, which realizes a probabilistic one-bit switching func-
tion. As illustrated in Figure 1, the four deterministic one bit switching functions (Fig-
ure 1(a)) have a probabilistic counterpart (Figure 1(b)) with an explicit probability pa-
rameter (probability of correctness) p. Of these, the two constant functions are trivial
and the others are non-trivial. We consider an abstract probabilistic switch sw to be the
one which realizes one of these four probabilistic switching functions. Such elementary
probabilistic switches may be composed to realize primitive boolean functions, such as
AND, OR, NOT functions.
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Fig. 1. (a) Deterministic one bit switching functions (b) Their probabilistic counterparts with
probability parameter (probability of correctness) p

The relationship between probabilistic behavior—the probability with which the
switching steps are correct—and the associated energy consumed was shown to be an
entirely novel basis for energy savings [26]. Specifically, principles of statistical ther-
modynamics were applied to such switches to quantify their energy consumption, and
hence the energy consumption (or energy complexity) of a network of such switches.
While a switch that realizes the deterministic non-trivial switching function consumes
at least κt ln 2 Joules of energy [24], a probabilistic switch can realize a probabilistic
non-trivial switching function with κt ln(2p) Joules of energy in an idealized setting.
For a complete definition of a probabilistic switch, the operation of a network of proba-
bilistic switches and a discussion of the energy complexity of such networks, the reader
is referred to Palem [27].

3 The CMOS Domain: Probabilistic CMOS

Probabilistic switches serve as a foundational model supporting the physical realiza-
tions of highly scaled probabilistic devices as well as emerging devices. In the domain
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of CMOS, probabilistic switches model noise-susceptible CMOS (or PCMOS) devices op-
erating at very low voltages [6]. To show that PCMOS based realizations correspond to
abstract probabilistic switches, we have identified two key characteristics of PCMOS:
(i) probabilistic behavior while switching and (ii) energy savings through probabilis-
tic switching. These characteristics were established through analytical modeling and
HSpice based simulations [6, 19] as well as actual measurements of fabricated PCMOS
based devices.
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Fig. 2. (a) PCMOS switch (b) Representation of digital values 0 and 1 and the probability of error
for a PCMOS switch

For a PCMOS inverter as shown in Figure 2 (a), the output voltage (Vout) is prob-
abilistic, in this example, due to (thermal) noise coupled to its output. The associated
noise magnitude is statistically characterized by a mean value of 0 and a variance of
σ2. The normalized output voltage Vout

σ can be represented by a random variable whose
value is characterized a Gaussian distribution as shown in Figure 2 (b), where the vari-
ance of the distribution is 1. The mean value of the distribution is 0 if the (correct)
output is meant to be a digital 0, and Vdd

σ if the (correct) output is meant to be a digital
1. In this representation, the two shaded regions of Figure 2 (b) (which are equal in
area) correspond to the probability of error associated with this PCMOS inverter dur-
ing each of its switching steps. From this formulation, we determine the probability of
correctness denoted as p, by computing the area in the shaded regions and express p as

p = 1− 1
2
erfc

(
Vdd

2
√

2σ

)
(1)

where erfc(x) is the complementary error function

erfc(x) =
2√
π

∞∫
x

e−t2dt (2)

Using the bounds for erfc derived by Ermolova and Haggman [9], we have

p < 1− 0.28e−1.275
Vdd

2

8σ2 (3)
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Using this expression to bound Vdd and hence the switching energy 1
2CVdd

2 from
below, we have, for a given value of p, the energy consumed represented by

E(p, C, σ) > Cσ2

(
4

1.275

)
ln

(
0.28
1− p

)
(4)

Clearly, the energy consumed E is a function of the capacitance C, determined
by the technology generation, σ the “root-mean-square” (RMS) value of the noise, and
the probability of correctness p. For a fixed value of C = Ĉ and p = p̂, ẼĈ,p̂(σ) =

Ĉσ2
(

4
1.275

)
ln

(
0.28
1−p̂

)
. Similarly for fixed values of C = Ĉ and σ = σ̂, ÊĈ,σ̂ a function

of p alone: ÊĈ,σ̂(p) = Ĉσ̂2
(

4
1.275

)
ln

(
0.28
1−p

)
.

We will succinctly characterize these behavioral and energy characteristics of PC-
MOS switches using asymptotic notions from computer science [7, 14, 30] in the form
of two laws. The notion of asymptotic complexity is widely used to study the efficiency
of algorithms, where “efficiency” is characterized by the growth of its running time (or
space), as a function of the size of its inputs [7, 14, 30]. The O notation provides an
asymptotic upper-bound, where, for a function f(x) where x is an element of the set of
natural numbers

f(x) = O (h(x))

given any function h(x), there exist positive constants c, x0 such that ∀x ≥ x0, 0 ≤
f(x) ≤ c.h(x).

Similarly, the symbol Ω is used to represent an asymptotic lower-bound on the rate
of growth of a function. For a function f(x) as before,

f(x) = Ω (h(x))

whenever there exist positive constants c, x0 such that ∀x ≥ x0, 0 ≤ c.h(x) ≤ f(x). In
the classical context, the O and the Ω notation is defined for functions over the domain
of natural numbers. For our present purpose, we now extend this notion to the domain
of real numbers. For any y ∈ (α, β) where α, β ∈ {<+ ∪ 0}

ĥ(y) = Ωr (g(y))

whenever there exists a γ ∈ (α, β) such that ∀y ≥ γ, 0 ≤ g(y) ≤ ĥ(y). Intuitively,
the conventional asymptotic notation captures the behavior of a function h(x) “for very
large” x. Our modified notion Ωr captures the behavior of a function ĥ(y), defined in an
interval (α, β). In this case, ĥ(y) = Ωr(g(y)) if there exists some point γ in the interval
(α, β) beyond which 0 ≤ g(y) ≤ ĥ(y). Thus our current notion can be interpreted
to mean “the function ĥ(y) eventually dominates g(y) in the interval (α, β)”. In this
paper, we will use this asymptotic approach to determine the rate of growth of energy
described in Equation 4, as follows.
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Returning to the lower-bound from (4) using the novel asymptotic (Ωr) notation.
Again, fixing C = Ĉ and σ = σ̂, let us consider the expression Ĉσ̂2

(
4

1.275

)
ln

(
0.28
1−p

)
from Equation 4, and compare it with the exponential (in p) function, Ee

Ĉ,σ̂
(p) =

Ĉσ̂2ep. We note that, when p = 0.5,

Ĉσ̂2

(
4

1.275

)
ln

(
0.28
1− p

)
< Ee

Ĉ,σ̂
(p)

Furthermore, both functions are monotone increasing in p and they have equal val-
ues at p ≈ 0.87. Hence,

Ĉσ̂2

(
4

1.275

)
ln

(
0.28
1− p

)
> Ee

Ĉ,σ̂
(p)

whenever p > 0.87. Then, from the definition of Ωr, an asymptotic lower-bound
for ÊĈ,σ̂(p) in the interval (0.5, 1) is

ÊĈ,σ̂(p) = Ωr(Ee
Ĉ,σ̂

(p)) (5)

Let Eq

Ĉ,p̂
(σ) = Ĉ

(
4

1.275

)
ln

(
0.28
1−p̂

)
σ2. Referring to (4) and considering ẼĈ,p̂(σ)

for a fixed value of C = Ĉ and p = p̂, using the Ωr notation,

ẼĈ,p̂(σ) = Ωr

(
Eq

Ĉ,p̂
(σ)

)
(6)

Observation 1: For p ∈ (0, 1), whereas the function Ee
Ĉ,σ̂

(p) grows at least ex-

ponentially in p, for a fixed C = Ĉ and σ = σ̂, the function Eq

Ĉ,p̂
(σ), grows at least

quadratically in σ, for fixed values C = Ĉ and p = p̂
Then, from (5) and (6), we have

Law 1: Energy-probability Law: For any fixed technology generation determined by
the capacitance C = Ĉ and constant noise magnitude σ = σ̂, the switching energy
ÊĈ,σ̂ consumed by a probabilistic switch grows with p. Furthermore, the order of
growth of ÊĈ,σ̂ in p is asymptotically bounded below by an exponential in p since

ÊĈ,σ̂(p) = Ωr

(
Ee

Ĉ,σ̂
(p)

)
.

Law 2: Energy-noise Law: For any fixed probability p = p̂ and a fixed technology
generation (which determines the capacitance C = Ĉ), ẼĈ,p̂ grows quadratically with

σ since ẼĈ,p̂(σ) = Ωr

(
Eq

Ĉ,p̂
(σ)

)
.

Earlier variations of these laws [5, 6, 19] were implicitly based on the asymptotic
notions described here explicitly. Together these laws constitute the characterization of
probability and its relationship with energy savings in CMOS devices level. We will now
show how this characterization helps build architectures composed of such devices and
how energy savings as well as the associated performance gains can be extended up to
the application level.
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4 Implementing Applications Using PCMOS Technology

So far, we have summarized abstract models of probabilistic switches and their imple-
mentation and characterization in the domain of CMOS. To harness PCMOS technology
to implement applications, we now reiterate that we consider three application cate-
gories: (i) applications which benefit from (or embody) probabilistic behavior intrinsi-
cally, (ii) applications that can tolerate probabilistic and (iii) applications which cannot
tolerate statistical behavior.

4.1 Applications Which Harness Probabilistic Behavior

We will first consider applications from the cognitive and embedded domains which
embody probabilistic behaviors. Probabilistic algorithms are those in which computa-
tional steps, upon repeated execution with the same inputs, could have distinct outcomes
characterized by a probability distribution. A well known example of such an algorithm
is the celebrated probabilistic test for primality [29, 34].
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Fig. 3. The probabilistic truth table for a node in a Bayesian network with 37 nodes, where the
desired probability parameter p is represented parenthetically

In particular, the applications we have considered are based on Bayesian inference
[21], Probabilistic Cellular Automata [11], Random Neural Networks [12] and Hyper
Encryption [8]. For brevity, these algorithms will be referred to as BN, PCA, RNN and HE
respectively. Common to these applications (and to almost all probabilistic algorithms)
is the notion of a core probabilistic step with its associated probability parameter. An
abstract model of such a step is a probabilistic truth table. In Figure 3, we illustrate
the probabilistic truth table for a step in BN. Intuitively, realizing such probabilistic
truth tables using probabilistic switches built from PCMOS is inherently more efficient
in terms of the energy consumed when compared to those built from CMOS technology.
This is because of the inherent probabilistic behavior of the PCMOS switches.
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We have constructed probabilistic system on a chip (PSOC) architectures for these
applications, and as illustrated in Figure 4, probabilistic system on a chip architectures
are envisioned to consist of two parts: A host processor which consists of a conventional
low energy embedded processor like the StrongARM SA-1100 [16], coupled to a co-
processor which utilizes PCMOS technology and executes the core probabilistic steps.
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Algorithm

Probabilistic and 

Accelerated Parts of 

Probabilistic 

Algorithm

Host

(SA-1100 or ASIC)

Co-Processor(s) 
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Fig. 4. A canonical PSOC architecture

The energy-performance product or EPP is the chief metric of interest for evaluating
the efficiency of PSOC based architectures [3]; it is the product of the energy consumed,
and time spent in completing an application, as it executes on the architecture. Then,
for any given application, energy-performance product gain ΓI of its PSOC realization
over a conventional (baseline) architecture is the ratio of the EPP of the baseline denoted
by the symbol β, to the EPP of a particular architectural implementation I. We note in
passing that in the context of the baseline implementation, the source of randomness is
a pseudo-random number generator. ΓI is thus:

ΓI =
Energyβ × Timeβ

EnergyI × TimeI
(7)

When compared to a baseline implementation using software executing on a Stron-
gARM SA-1100, the gain of a PCMOS based PSOC is summarized in Table 1

Algorithm ΓI
Min Max

BN 3 7.43
RNN 226.5 300
PCA 61 82
HE 1.12 1.12

Table 1. Minimum and Maximum EPP gains of PCMOS over the baseline implementation where
the implementation I has a StrongARM SA-1100 host and a PCMOS based co-processor
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In addition, when the baseline is a custom ASIC realization (host) coupled to a func-
tionally identical CMOS based co-processor, in the context of the HE and PCA applica-
tions, the gain ΓI improves dramatically to 9.38 and 561 respectively. Thus, for appli-
cations which can harness probabilistic behavior, PSOC architectures based on PCMOS
technology yield several orders of magnitude improvements over conventional (deter-
ministic) CMOS based implementations. For a detailed explanation of the architectures,
experimental methodology and a description of the applications, the reader is referred
to Chakrapani et. al. [3].

4.2 Applications Which Tolerate Probabilistic Behavior

Moving away from applications that embody probabilistic behaviors naturally, we will
now consider the domain of applications that tolerate probabilistic behavior and its
associated error. Specifically, we considered applications wherein energy and perfor-
mance can be traded for application-level quality of the solution. Applications in the
domain of digital signal processing are good candidates, where application-level qual-
ity of solution is naturally expressed in the form of signal-to-noise ratio or SNR. To
demonstrate the value of PCMOS technology in one instance, we have implemented
filter primitives using PCMOS technology [13], used to realize the H.264 decoding al-
gorithm [23].

As illustrated in Figure 5(b), the probability parameter pδ of correctness can be low-
ered uniformly for each bit in the adder; which is one of the building blocks of the FIR
filter used in the H.264 application. While this approach saves energy, the corresponding
output picture quality is significantly degraded when compared to conventional CMOS
based and error-free operation. However, as illustrated in Figure 5(c), if the probability
parameter is varied non-uniformly following the biased method described earlier [28],
significantly lower energy consumption can be achieved with minimal degradation of
the quality of the image [28]. Hence, not only can PCMOS technology be leveraged
for implementing energy efficient filters, but can also be utilized to naturally trade-off
energy consumed for application level quality of solution, through novel probabilistic
biased voltage scaling schemes [13, 28].

5 Probabilistic Arithmetic

Following our development of characterizing error in the context of probabilistic behav-
iors induced by noise and considering an adder as a canonical example,we will associate
a parameter δ, which indicates the magnitude by which the output of a computing el-
ement, an adder for example, can deviate from the correct answer before it is deemed
to be erroneous; thus, an output value that is within a magnitude of δ from the correct
value is declared to be correct. The rationale for this approach is that in several embed-
ded domains in general and the DSP domain in particular—a topic to be discussed in
some detail in the sequel—error magnitudes below a “tolerable”’ threshold, quantified
through δ, will be shown to have no impact on the perceived quality of an image. The
probability of correctness pδ of the probabilistic adder is defined, following the fre-
quentist notion, to be the ratio of the number of correct values of the output compared
to the total number of values.
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Note that our approach to realizing energy savings and performance gains is entirely
novel, and can be distinguished from similar aggressive and well-known approaches
to voltage scaling: Our approach is aimed at designing arithmetic elements that are
deliberately designed to function in an erroneous manner, albeit in a regime where such
erroneous behavior can be characterized through probabilistic models and methods.

5.1 Probabilistic Arithmetic Through Voltage Overscaling

It is well known that energy savings can be achieved through scaling down supply volt-
ages in a circuit. However, in the past, this approach resulted in increasing propagation
times, consequently lowering the circuit’s performance. Instead of avoiding bit errors
through conventional voltage scaling, we advocate a probabilistic approach through
voltage overscaling. We consider an approach here wherein the speed of the system
clock is not lowered, even as the switching speed of the data path is lowered by voltage
scaling.

Thus, source of error is caused by the gap between the values of the clock period,
γ, and the effective switching speed σ. To understand this point better, consider keep-
ing the system clock period, γ, fixed at 6ns in the context of a “probabilistic adder”;
throughout this paper, we will consider the ripple-carry algorithm [20] for digital ad-
dition. Now, consider that as a result of voltage overscaling, for a particular input, the
adder switches at a slower clock value of σ = 7ns, potentially yielding an incorrect
result when its output is consumed or read by the system every 6ns. Thus the output is
not completely calculated at 6ns (system clock speed) intervals since the adder takes
7ns to completely switch in this example. However, by lowering the operating voltage
of the adder and thus increasing σ, the energy consumption of the adder is lowered as
well. In this case, the relationship of interest is between the rate at which the output
value is incorrect and the associated savings in energy. As one would expect, error rates
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will be increased while yielding greater energy savings and this relationship will be
characterized in Section 5.2.

5.2 Energy Savings Through Overscaled PCMOS

Typically, the nominal clock rate for a computing element is set by allowing for the
worst case, critical path delay. However, the critical path is not active for most oper-
ational data sets, since the active path in the circuit is determined by the input data.
In order to maintain correct operation, all potential propagation paths must be consid-
ered and the system clock rate must accommodate this worst case. This results in a
clock period to delay (clock-to-delay) gap necessary to account for worst case. Voltage
overscaling, however, attempts to take advantage of this gap by trading deterministic
operation in exchange for energy savings.

Empirically Characterizing the Energy-Probability Relationship Through Bench-
marks To demonstrate the potential energy savings through overscaled PCMOS, we
consider an 18-bit ripple-carry adder, a 9-bit two’s-complement tri-section, array mul-
tiplier, and a 6-tap 9-bit FIR filter composed of adders and multipliers. In each of these
cases, we will execute three benchmark data sets: (i) uniformly distributed random
data, (ii) H.264 data from a low quality video source, and (iii) H.264 data from a high
quality video source. As seen in Table 2, all three cases show reductions in energy con-
sumption. However, H.264 data sets yield greater energy reductions when compared to
uniformly distributed data. This is due to the fact that H.264 video data tends to have
little variance and relatively infrequent output switching and as a result, only small por-
tions of the circuit are active on occasions when there is output switching. As a result,
the computation infrequently causes delays greater than the system clock period.

Conversely, uniformly distributed data exercises all portions of the circuit because
of an associated larger variance. Accordingly, there is a smaller clock-to-delay gap and
as a result, the energy savings are lower for a given probability parameter p.

Table 2. Voltage Overscaled PCMOS Energy Savings for Benchmark Data Sets

Computing Element Benchmark pδ E(pδ) ∆pδ ∆E(pδ) pδ Sacrifice Energy Savings
Adder Uniform data 0.9999 0.88pJ 0.0001 2.59pJ 0.01% 75%

Enom = 3.47pJ Low Quality H.264 0.9993 0.62pJ 0.0007 2.85pJ 0.07% 82%
δ threshold = 127 High Quality H.264 0.9998 0.62pJ 0.0002 2.85pJ 0.02% 82%

Multiplier Uniform data 0.9998 8.30pJ 0.0002 11.73pJ 0.02% 59%
Enom = 20.03pJ Low Quality H.264 0.9549 2.11pJ 0.0451 17.92pJ 4.51% 89%
δ threshold = 127 High Quality H.264 0.9862 2.11pJ 0.0138 17.92pJ 1.38% 89%

FIR Uniform data 0.9999 102.89pJ 0.0001 34.67pJ 0.01% 25%
Enom = 137.56pJ Low Quality H.264 0.9998 37.37pJ 0.0002 100.19pJ 0.02% 73%
δ threshold = 255 High Quality H.264 0.9999 57.46pJ 0.0001 80.1pJ 0.01% 58%
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As in the case of PCMOS devices, the energy-probability relationship will be used
to characterize our design space. As an illustrative example, we will consider an 18 bit
ripple carry adder and its overscaled variants. The design space is characterized by three
dimensions. The probability parameter pδ , the energy and the relationship between γ
and σ. For example in Figure 6, consider a specific value of energy. For this fixed energy
budget, the probability of correctness is determined by the clock period of the circuit.
As a result of these three properties, there exists a 3-dimensional design space where
probability of correct output can be traded for energy savings and performance gains.
A plot of one possible design space for a PCMOS adder is shown in Figure 6.

Fig. 6. Energy/performance/probability tradeoff for an 18-bit, ripple-carry adder: at nominal
clock rate (11 ns period), at 1.8X faster clock rate (6 ns period), and at 3.7X faster clock rate (3
ns period)

By extension, energy can be saved and performance improved by increasing the
error rate pδ . This novel approach to achieving significant energy savings are possible
since a “small” decrease in the probability of correctness can yield a disproportionate
gain in energy savings (Table 3) as well as in the associated EPP. This energy-probability
tradeoff is also characterized in Section 5.2 through the energy-probability or E-p re-
lationship of elemental gates used to realize probabilistic arithmetic. Through this re-
lationship, we provide a coherent characterization of the design space associated with
probabilistic arithmetic. Specifically, the design space is determined by the parameters
γ and σ yielding a probability parameter pδ , with an associated energy consumption
E(pδ).

Using this notion of probabilistic arithmetic primitives as building blocks, we im-
plement two widely used DSP algorithms: the fast Fourier transform (FFT) and the finite
impulse response (FIR) filter. As a result of the probabilistic behavior of the arithmetic
primitives, the associated DSP algorithm computations are also probabilistic. In this pa-
per, we show the EPP gains in the context of the FIR filter in Section 5.2, and extend it to
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Table 3. Probability of correctness and energy savings for a PCMOS adder

Benchmark pδ Degradation Energy Savings
Low Quality Video 0.07% 82%

demonstrate gains at the application level in the context of a movie decoded using this
filter based on the H.264 standard. Briefly, from the perspective of human perception,
the degradation in quality is negligible whereas the gains quantified through the EPP
metric were a factor of 3.70X as presented in Section 5.2).

There are several subtle issues that have played a role in this formulation, notably
the ability to declare a phenomenon—the behavior of adder in our case—to be prob-
abilistic based on aposteriori statistical validation. A detailed analysis is beyond the
scope of this discussion, and the interested reader is referred to Jaynes’s excellent treat-
ment of this topic [17].

Case Study of an FIR To analyze the value and the concomitant savings derived from
voltage overscaled PCMOS, we have evaluated H.264 video decoding algorithm. Motion
compensation is a key component of the H.264 decoding algorithm. Within this motion
compensation phase a six-tap FIR is used to determine luminosity for the H.264 image
blocks using 1, −5, 20, 20, −5, and 1 as the coefficients at taps [0..5] respectively.
Video data from a low quality source (military video of ordnance explosion) and a
high quality source (video from the 20th Century Fox movie XMen 2) were used for
experimentation.

Experimental Framework First, the FIR was decomposed into its constituent adder
and multiplier building blocks. These building blocks were then decomposed into full
adders classified by type and output loading. Each full adder class was then simulated
in HSpice for all input state transitions that result in an output state transition. This was
repeated for both the sum and carry out bits of the full adder classes, and the resulting
output transition delays were then summarized into a transition-delay lookup table. All
input state transitions that did not result in an output state transition were considered
to have no delay. HSpice simulation was then repeated with 1000 uniformly distributed
random input combinations for each full adder class to determine average switching
energy.

Building on this HSpice model and using a C-based simulation, benchmark data
was used and using the current and previous states for both input and output at each full
adder, the delay is estimated for each model using the look-up table previously devel-
oped using the HSpice simulation framework. Individual full adder delays were further
propagated to building block outputs, which were then propagated to FIR outputs and
compared to a specified clock period γ. Any FIR output delays violating timing con-
straints were considered to be erroneous and the appropriate bit was deemed incorrect
and forced to be erroneous. The results of the outputs of the FIR filter in the fully func-
tional context is then compared to those derived from overscaling to determine pδ and
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SNR. Energy consumption was determined by adding the energy of each individual full
adder comprising the FIR and the results were compared to conventional operation (at a
supply voltage Vdd=2.5V ). The overall delay in the FIR filter was determined by maxi-
mum propagation delay calculated as the sum of worst case delays for each full adder
in the critical path.

Finally, H.264 decoding was performed using a program written by Martin Fiedler.
The original code was modified to inject bit-errors determined by the C simulation
described above. The resulting decoded frames were then compared to originals to de-
termine SNR. Energy consumption was calculated as the FIR energy consumption for
the specific voltage overscaling scheme employed.

FIR Results As shown in Figure 7, voltage overscaled PCMOS operation yielded a 47%
reduction in energy consumption with a 2X factor increase in performance, resulting in
an EPP ratio of 3.70X for high quality video. We also consider a low quality military
video, where the primary requirement is object recognition, and larger gains in energy
savings and performance are possible. Thus, voltage overscaled PCMOS operation yeilds
a 57% reduction in energy consumption and 2.19X factor increase in performance gain
with an EPP ratio of 4.62X in this case where the quality of the output video is not as
significant as the high quality case.
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Fig. 7. Application level impact of our approach on high quality H.264 video comparing voltage
scaled PCMOS [bottom](with an EPP ratio of 3.70X) to the original H.264 frames [top]

6 Related work and Some Implementation Challenges

The use of voltage scaling in an effort to reduce energy consumption has been explored
vigorously in previous work [4, 22, 36, 37]. In each of these papers, increased propa-
gation delay was considered the primary drawback to voltage overscaling. To main-
tain circuit performance and correctness while simultaneously realizing energy savings
through voltage scaling, several researchers employ the use of multiple supply voltages
by operating elements along the critical path at nominal voltage and reducing supply
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voltages along non-critical paths [4, 22, 36, 37]. Supply voltage scheduling and its in-
terplay with path sensitization along with task scheduling has been studied as well [4,
22, 36].

Offering a contrasting approach, in [15, 33, 35], propagation delay errors are re-
moved through error correction in a collection of techniques named “algorithmic noise-
tolerance (ANT)”. In [15], difference-based and prediction-based error correction ap-
proaches are investigated and in [35], adaptive error cancellation (AEC) is employed
using a technique similar to echo cancellation. In [33], the authors propose reduced
precision redundancy (RPR) to eliminate propagation delay errors with no degradation
to the SNR of the computed output. Our work can be distinguished from all of these
methods through the fact that our designs permit the outputs of the arithmetic units to
be incorrect, albeit with a well-understood probability.

The actual implementation and fabrication of architectures that leverage PCMOS
based devices poses further challenges. Chief among them is “tuning” the PCMOS de-
vices, or in other words, controlling the probability parameter p of correctness. Addi-
tionally, the number of distinct probability parameters is a concern, since this number
directly relates to the number of voltage levels [6]. We make two observations aimed
at addressing these problems: (i) Having distinct probability parameters is a require-
ment of the application and the application sensitivity to probability parameters is an
important aspect. That is, if an application uses probability parameters p1, p2, p3, for
example, it might be the case that the application level quality is not affected when only
two distinct values, say p1, p2 are used. This, however can only be determined experi-
mentally and is a topic being investigated. (ii) Given probability parameters p1 and p2,
other probability parameters might be derived through logical operations. For example,
if the probability of obtaining a 1 from a given PCMOS device is p and the probability of
obtaining a 1 from a second PCMOS device is q, a logical AND of the output of the two
PCMOS devices produces a 1 with a probability p.q. Using this technique, in the context
of an application (the case of Bayesian inference is used here), the number of distinct
probability parameters may be drastically reduced. Since the probability parameter p
is controlled through varying the voltage, this, in turn reduces the number of distinct
voltage levels required and is another topic being investigated.

7 Remarks on Quality of Randomness and Future Directions

In any implementation of applications which embodies probability, the quality of the
implementation is an important aspect apart from the energy and running time. In con-
ventional implementations of probabilistic algorithms—which utilize hardware or soft-
ware based implementations of pseudo random number generators to supply (pseudo)
random bits,—it is a well known fact that random bits of “low quality” affect applica-
tion behavior, from the correctness of Monte Carlo simulations [10] to the strength of
encryption schemes. To ensure that application behavior is not affected by low qual-
ity random bits, the quality of random bits produced by a particular strategy should be
evaluated rigorously. Our approach to determine the quality of random bits, is to use
statistical tests to determine the quality of randomness. To study the statistical proper-
ties of PCMOS devices in a preliminary way, we have utilized the randomness tests from
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the NIST Suite [31] to assess the quality of random bits generated by PCMOS devices.
Preliminary results indicate that PCMOS affords a higher quality of randomness; a fu-
ture direction of study is to quantify the impact of this quality on the application level
quality of solution.
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