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Abstract Recently introduced, three-level logic Sum of Pseudoproducts (SPP) forms al-
low the representation of Boolean functions with much shorter expressions than
standard two-level Sum of Products (SOP) forms, or other three-level logic
forms. In this paper the testability of circuits derived from SPPs is analyzed.
We study testability under the Stuck-At Fault Model (SAFM). For SPP networks
several minimal forms can be considered. While full testability can be proved
for some classes, others are shown to contain redundancies. Experimental results
are given to demonstrate the efficiency of the approach.

Keywords:  Reliability and Testing, Testability, Design for Testability, SPP Three-Level Net-
work.

1. Introduction

An important aspect of logic synthesis is the problem of deriving high-
quality design from the initial specifications. A given Boolean function may
be realized by a large variety of circuits, very different in terms of struc-
ture. In this framework the selection of a logic network, out of all possible
known models (e.g., SOP [Coudert, 1994], ESOP [Koda and Sasao, 1995,
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Sasao, 1993, Sasao, 1996], EXSOP [Chattopadhyay et al., 1997, Debnath
and Sasao, 1999, Dubrova et al., 1999], OR-AND-OR [Debnath and Vransic,
2003], SPP [Ciriani, 2003b, Luccio and Pagli, 1999], ESPP [Ishikawa et al.,
2002)), is critical and depends on multiple factors. Moreover it is very difficult
to define a theoretical model that captures the problem in its generality. Thus
the objective is to synthesize a circuit that optimizes a cost function involving
different factors. In particular we are interested in several features like:

1 the size of the algebraic expression, in order to estimate the area occu-

pied by the logic gates;

2 the number of levels in the network, in order to estimate the delay of the
longest path through the gates;
the implementability of the network in the current technologies;
the existence of efficient minimization algorithms;

wn W

the testability properties of the network;
6 the power consuming of the network.

The standard synthesis is performed with Sum of Products (SOP) minimiza-
tion procedures, leading to two-level circuits. More-than-two level minimiza-
tion is much harder, but the size of the circuits can significantly decrease. In
many cases three-level logic is a good trade-off among circuit speed, circuit
size, and the time needed for the minimization procedure [Sasao, 1989]. Algo-
rithms for exact minimization have worst case exponential complexity, hence
the time to attain minimal forms may become huge for increasing size of the
input.

In this paper we focus on a special three-level network called Sum of Pseu-
doproducts (SPP) and on the more general Sum of k-Pseudoproducts (k-SPP).
This choice is motivated by the fact that SPP networks often satisfy the above
mentioned properties:

SPP expressions, introduced in [Luccio and Pagli, 1999], can be seen as a
direct generalization of SOP expressions using EXOR gates. An SPP form
consists of the OR of pseudoproducts, where a pseudoproduct is the AND of
EXOR factors (i.e., EXOR of literals). In the recent paper [Ishikawa et al.,
2002] a modified version of SPP networks, called ESPP and consisting of an
EXOR of pseudoproducts, has been proposed. Among three-level networks,
SPP forms are particularly compact [Ciriani, 2003a, Ciriani, 2003b]. However
SPP forms have two major disadvantages: (i) they require large computational
effort for the minimization; (ii) they have been originally defined for EXOR
gates with unbounded fan-in, but in most technologies, EXOR gates with many
inputs are slow, expensive and often not easily implementable [Weste and
Eshraghian, 1993]. Therefore, in recent studies [Ciriani, 2003a, Ciriani, 2003b,
Ciriani and Bernasconi, 2002], k-SPP forms with a fixed maximum number of
literals (k) in the EXOR factors have been introduced.
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Experimental results [Ciriani, 2003a, Ciriani, 2003b, Ciriani and Bernasconi,
2002] show that the size of the k-SPP minimal forms is not significantly larger
than the one for unbounded fan-in, but the computational effort drastically de-
creases, especially when k = 2. Thus, 2-SPP forms are reasonable upper
bounds of the exact SPP forms, and are a good trade-off between the com-
pactness of SPP forms and the efficiency of SOP minimization. Furthermore
2-SPP forms require a reduced number of different EXOR gates and are more
practicable for the current technology. Moreover, preliminary results on multi-
pliers indicate that SPP networks are also low power consuming [Ciriani et al.,
2003].

Beside the synthesis aspect, testability is a major aspect of the design pro-
cess. Up to 40% of the overall design costs are due to testing. For this, as-
pects of testability should be considered from the very beginning [Williams
and Parker, 1982]. For several two-level forms detailed studies on testabil-
ity have been performed. But, to the best of our knowledge, for three-level
networks testability has not been considered so far.

In this paper the testability of 2-SPP and SPP forms is studied from a theo-
retical and practical point of view under the Stuck-At Fault Model (SAFM).

The classical stuck-at fault model (SAFM) is well-known and used through-
out the industry [Breuer and Friedman, 1976]. In SAFM it is assumed that a
defect causes a basic cell input or output to be fixed to either 0 or 1. Thus, all
failures with this effect will be detected by tests for stuck-at faults.

The investigations with respect to the SAFM are usually based on the sin-
gle fault assumption, i.e., one assumes that there is at most one fault in the
circuit. Under this model it is proved that general SPP networks, minimized
with respect to the number of literals, are free of redundancies by construction.
Whereas it can be shown by counter-examples that SPPs, minimized with re-
spect to the number of products, are not fully testable. The same result holds
for the specific class of 2-SPPs. Experimental results are given to demonstrate
the efficiency of the approach.

The paper is structures as follows: In Section 2 notation and definitions are
given. The stuck-at fault model is introduced and basics on SPP networks are
reviewed. The testability results are presented in Section 3. In Section 4 details
on the experimental setup and the practical results are given. Finally, the results
are discussed in Section 5.

2. Preliminaries

2.1 Stuck-at Fault Model (SAFM)

Let C be any combinational logic circuit over a fixed library. A fault in the
SAFM [Breuer and Friedman, 1976] causes exactly one input or output pin
of a node in C to have a fixed constant value (0 or 1) independently of the
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values applied to the primary inputs of the circuit. More precisely we have the
following

DEFINITION 1 A stuck-at fault with fault location v is a tuple (v[i],€) or
([{)v, €), where vli] ([i]v) denotes the i-th input (output) pin of v, and € € {0, 1}
is the fixed constant value.

For brevity, in the following we simply speak of stuck-at-0 or stuck-at-1 (s-a-0,
s-a-1) faults, if the context is clear.

DEFINITION 2 An input t to C is a test for a fault F, iff the primary output
values of C on applying t in the presence of F are different from the output
values of C in the fault free case.

A fault is testable, iff there exists a test for this fault. The goal of any test
pattern generation process is a complete test set for the circuit under test in the
considered fault model, i.e. a test set that contains a test for each testable fault.

The construction of complete test sets requires the determination of the
faults which are not testable (= redundant), even though it is easy to see that in
general the detection of redundancies is coNP-complete. Redundancies have
further unpleasant properties: they may invalidate tests for testable faults and
often correspond to locations of the circuit where area is wasted [Breuer and
Friedman, 1976). For this, synthesis procedures which result in non-redundant
circuits are desirable.

A node v in C is called fully testable, if there does not exist a redundant
fault with fault location v. If all nodes in C are fully testable, then C' is fully
testable.

EXAMPLE 3 Consider the circuit in Figure 1. A s-a-0 fault at the output of
the gate (x1 @ x2) can be tested by setting inputs x3 and x4 to 1.

This is needed to ensure the propagation along the upper AND-gate. Since
the EXOR of x3 and x4 then becomes 0, the output of the lower AND-gate
becomes also 0, ensuring the propagation of the faulty value along the OR-
gate at the output. The test is independent of the value of input x1.

2.2 2-SPP and SPP Networks

In this section we recall some basic definitions from [Ciriani, 2003a, Ciriani,
2003b, Ciriani and Bernasconi, 2002].

In a Boolean space {0, 1}" described by n variables z1, z2, ..., Zp, a 2-
EXOR factor is an EXOR with at most 2 variables, one of which possibly
complemented (an EXOR with just one literal corresponds to the literal itself).

Given two Boolean variables 1, x, all the possible 2-EXOR factors are
essentially z1, Z1, T2, T2, (21 ® z2) and (z1 ®T2) (in fact, T1 ® z2 = 1 ® To,
andT; ® Ty = 1 D x2).
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x3 x4
X1 x2 00 o1 11 10
Xl ——
00| 0 1 0 X2 —— >
x3 —
4 —
01| 1 0 1 0 X .
1| o 0 0 0 x1 —o>
x3 —
x4 —
0| o 0 1 0

Figure 1. Karnaugh map of function f with a 2-SPP cover (x1 ® x2)x324 + T1(z3 ® T4),
minimal with respect to the number of 2-pseudoproducts, and the corresponding 2-SPP circuit
representation.

DEFINITION 4 A 2-pseudoproduct is a product of 2-EXOR factors, and a 2-
SPP form is a sum of 2-pseudoproducts.

A 2-pseudoproduct P of a Boolean function f is prime iff no other 2-
pseudoproduct P’ of f exists such that P C P’.

DEFINITION 5 A set of points whose characteristic function can be repre-
sented as a 2-pseudoproduct is a 2-pseudocube.

This is a generalization of the concept of cubes. A SOP form is a particular
2-SPP form where each EXOR factor contains only one literal.

In the space {0, 1}" the number of different 2-EXOR factors with exactly 2
literals is 2 - () = n(n — 1). Thus in the worst case, 2-SPP forms require a
quadratic number of different 2-EXOR gates.

The 2-SPP synthesis problem can be stated as: given a set of points in the
Boolean space {0,1}", find its minimal cover composed of 2-pseudocubes,
where a minimal cover is represented by a sum of 2-pseudoproducts with a

minimal number of literals or with a minimal number of 2-pseudoproducts.

EXAMPLE 6 For the function f represented by the Karnaugh map in Fig-
ure 1, the following 2-SPP cover is a minimal expression with respect to 2-
pseudoproducts: (x1 ® T2)r3z4 + T1(x3 D T4).

The 2-SPP circuit representation is on the left side of the figure. On the
other hand, a 2-SPP form minimal with respect to the number of literals is
Tox3z4 + T1(x3 ® T4).

Finally, a minimal SOP form of such function is Tox3x4+T1T3T4 + T12324.

We can observe that a 2-pseudoproduct corresponds to a system of linear
equations, and a 2-pseudocube corresponds to the set of solutions of such a
system.
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EXAMPLE 7 The 2-pseudoproduct

T2 (z1 ® x3) - (23 ® Ts) - Tp - (w7 D w)
in {0,1}° corresponds to the system

9 =1 T =1
z1@z3 =1 z1®z3 =1
z3®T5 =1 =<¢ 230x5 =0

Tg = 1 rg =0
7 ®xg =1 TPy =1

When the 2-pseudocube is actually a cube, the system has only one variable
in each equation.

A 2-pseudocube can be represented with different 2-pseudoproducts corre-
sponding to different linear systems. For example, the three 2-pseudoproducts
z1- 21 (2 @ x3) - (T2 B 24), T1 - (T2 D x3) - (T2 D 24) - (T3 D T4), and
Z1 - (xe ® x3) - (z2 @ x4) represent the same set of points (i.e., 2-pseudocube):
{1011, 1100}. Of course the most convenient representation is the third one.

The corresponding linear systems are:

1 =1 1 =1

_ _ :L‘1=1

.’L‘l:l: .’Eg@.’l,‘:g:l: Zo s =1

Tohz3 =1 ToDxy =1 Ty g = 1
oDy =1 3D zg =0 2 4

Observe that only the third system has maximum rank, i.e. its equations are
linearly independent, and indeed it corresponds to the smaller 2-pseudoproducts.
Therefore minimal 2-SPP forms are sums of 2-pseudoproducts whose systems
have maximum rank.

In [Ciriani and Bernasconi, 2002] a 2-SPP minimization algorithm is pro-
posed. As in the Quine-McCluskey approach for the SOP forms, the genera-
tion of prime 2-pseudoproducts is performed in steps by successive unions of
2-pseudoproducts. A minimal 2-SPP form is generated by choosing a minimal
subset of prime 2-pseudoproducts that covers the original function (this is the
classical set covering step of Quine-McCluskey optimization).

The SPP forms, proposed and studied in [Ciriani, 2003a, Ciriani, 2003b,
Luccio and Pagli, 1999], are a direct generalization of 2-SPP expressions,
where the EXOR factors can have an unbounded number of literals.

3. Testability in the SAFM

In this section we study the testability of 2-SPP and SPP networks under
the SAFM. As observed in Section 2.2 there exist two different notions of cost
function for the minimization of 2-SPP (SPP) forms:
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1 The cost function is the total number of 2-pseudoproducts (pseudoprod-
ucts) in the form.

2 The cost function is the total number of literals in the form.

In both cases, the minimal forms are prime and irredundant. The full testa-
bility of 2-SPP and SPP forms is guaranteed only in the second case, as proved
below, while forms minimized with respect to the number of pseudoproducts
may contain redundancies.

3.1 2-SPP Networks

We first consider 2-SPP forms minimal w.r.t. the number of 2-pseudoproducts.

THEOREM 8 2-SPP expressions minimal with respect to the number of 2-
pseudoproducts are not fully testable.

Proof.

We provide a counter-example. Consider the function f = {0101, 0111,
1001, 1010, 1101, 1110}. There are three prime 2-pseudoproducts for f: (z1 &
z2)(x3 @ 4), T2(z3 D x4), and z1(x3 D z4). The sum of any couple of them
provides a 2-SPP form, prime and irredundant, and minimal w.r.t. the number
of 2-pseudoproducts. In fact we have:

f = (z1®z2)(xs ® x4) + z2(23 D 24)
= (z1® x2)(x3 ® x4) + x1(23 D 4)
= z1(x3 D x4) + z2(x3 D T4).

Let us choose the form
f=(x1®z2)(x3 ® xz4) + z2(23 D 24).

Suppose that there is a s-a-0 at the input x2 of the gate (1 @ z2). In this
case the output of the 2-pseudoproduct (z1 @ x2)(x3 @ x4) is identical to the
output of z1(x3 @ x4). Therefore the faulty network is equivalent to

z1(23 ® 4) + T2(T3 S T4),
that is exactly the original function f. =

We now consider 2-SPP forms minimal w.r.t. the number of literals. We first
need a preliminary result. Recall that 2-SPP networks are composed of three
levels of logic: a level of 2-EXORs whose inputs are the variables; a level of
ANDs whose inputs are the outputs of the EXOR layer; and an OR among the
outputs of the AND layer.
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LEMMA 9 All possible values can be applied to the inputs of the AND layer
of a minimal 2-SPP network.

Proof. Recall that a 2-pseudoproduct can be seen as a linear system. In
a minimal 2-SPP form each 2-pseudoproduct contains a number of 2-EXOR
factors equal to the rank of its system. In other words the equations in the
corresponding system are linearly independent. This means that the outputs of
the EXOR gates are independent, i.e., the inputs to the AND layer have all the
possible values.

We can now prove the full testability of minimal 2-SPP networks.

THEOREM 10 2-SPP forms minimal with respect to the number of literals are
Sully testable.

Proof. Since 2-SPP forms are prime and irredundant, the proof of the full
testability for AND and OR gates is the same as for SOP forms. As proved
in Lemma 9, the inputs to the AND gates are directly controllable, i.e., all
possible values can be applied. We are then left only with the case of s-a-
fault at inputs of EXOR gates. We prove by contradiction that any fault can be
tested.

Let (z; @ x;) - p + s be a representation of f in 2-SPP form minimal w.r.t
the number of literals, where p is a 2-pseudoproduct and s is the rest of the
minimal 2-SPP form.

Let us consider the case x; = 0, i.e., s-a-0 in z;. Then the network computes
the faulty function fp = x; - p + s. By contradiction suppose that fr = f,
then

zj-p+s = (z;®x;) p+s
Tjri p+T;Ti-p+s = Tz p+T;Ti-p+s
zjr;-p+s = Tjx;-p+Ss.

Since z;x; - p N T;x; - p = ), we have that
zjz;-pCs and Tjz;-pCs,

which implies that z; - p C s. Therefore f contains (z; @ z;) - p and z; - p.
We now observe that

zi-p+ (i @) -p=xi-p+a;-p.
We have
zi‘p—i—(xi@xj)-p = Zj%; - p+T;T;-p+T;T;-p
= X% p+T;% P+ Ti%p+T;T;cp
= Ti"p+Tjp.
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Therefore we reach a contradiction to the minimality w.r.t. the number of
literals of the 2-SPP form for f. The minimal 2-SPP form for f would be
x; - p+ s instead of (z; ® z;) - p+ s.

The case of negated variables is identical. An analogous proof holds for a
s-a-1 fault.

3.2 SPP Networks

SPP networks have an unbounded number of literals in the EXOR gates. If
we consider forms minimal w.r.t. the number of products, then we have the
same result as for 2-SPP networks, since the counter-example given in the
proof of Theorem 8 still holds.

Consider now SPP forms minimal w.r.t. the number of literals. The result is
analogous to the one for 2-SPP forms:

THEOREM 11 SPP forms minimal with respect to the number of variables
are fully testable.

Proof.

Following the proof for 2-SPP forms we now have to prove the testability of
general EXOR gates. Let (z; @ h) - p + s be a representation of f in SPP form
minimal w.r.t the number of literals, where h is an EXOR factor, not including
x;, p is a pseudoproduct and s is the rest of the minimal SPP form.

Let us consider the case x; = 0, i.e. s-a-0 in x;. Then the network computes
the faulty function fr = h-p-+ s. By contradiction suppose that fr = f, then

h-p+s = (z;®h)-p+s
hz; p+hT;-p+s = hz;-p+hT;-p+s
hx;,-p+s = Emi-p-l—s.

Since hx; - p N ha; - p = 0, we have that
hz;-pCs and -ﬁxi-pgs,

which implies that 2; - p C s. Therefore f contains (z; @ h) - p and z; - p.
Observe that
zi-p+(zi®h)-p==zi-p+h-p.

We have

T p+(zi®h)-p = hxi-p+hai-p+hTi-p
ha; - p+hai-p+hz; - p+hTi-p
= zi-p+h-p.

Il



308 Valentina Ciriani, Anna Bernasconi, Rolf Drechsler

Therefore we reach a contradiction to the minimality w.r.t. the number of
literals of the SPP form for f.

Indeed a minimal form for f would be h - p + s instead of (z; ® h) - p + s.
An analogous proof holds for the s-a-1 fault. 76

However, in practice SPP networks are defined once a variable ordering is
fixed. In this case the above theorem, which refers to SPP forms minimal with
respect to any possible variable ordering, does not hold any more. Moreover,
as shown below, the SPP forms minimal w.r.t. a fixed variable ordering are no
longer fully testable.

Let us consider minimal SPP forms depending on a variable ordering (for
more details on SPP networks, see [Ciriani, 2003a, Ciriani, 2003b, Luccio and
Pagli, 1999]). For example, consider the Boolean function f = {0011, 0100,
1000, 1111}, and the variable ordering 0 = 1 < 79 < T3 < Z4.

The function f is indeed a pseudocube, and its minimal SPP network, w.r.t. the
variable ordering o, is (21 ® 22 ® z3)(x1 ® 22 D z4). Meanwhile if we choose
the variable ordering z3 < x; < z2 < x4, then a minimal SPP form is
(z3 ® x1 @ x2)(x3 D T4), which contains less literals than the former form.

In the case of 2-SPP networks, the number of literals in the minimal forms
is instead independent of the variable ordering (see [Ciriani and Bernasconi,
2002] for more details); for this reason the testability theorem holds in any
case.

If we fix an ordering, then the proof of testability given above cannot be
applied anymore, as the following counter-example shows. Consider the func-
tion f = {00011, 00100, 00110, 01001, 01011, 01110, 10001, 10011, 10110,
11011, 11100, 11110}. Once the variable ordering 0 = 1 < x3 < 3 < Z4 is
fixed, there are eleven prime pseudoproducts for f.

A minimal form for f in the variable ordering o is:

f=(x1®x2® 23 ® 24) (23D x5) + T4(T3 B x5) .

Suppose that there is a s-a-0 at the input x4 of the gate (z1 ® x2 ® T3 D 4).
In this case the faulty function is:

fr= (21 @Dz ® x3)(x3 D x5) + T4(T3 D T5) .

It is easy to verify that f = fr but the pseudoproduct pr = (21 ® T2 &
x3)(z3 @ xs5) is not represented in the order o. Therefore it is not in the set
of eleven prime pseudoproducts used to form the minimal expression. In this
case the fault cannot be detected because f is indeed in minimal form w.r.t. the
variable ordering o and f = fr. Of course, if we do not fix a variable ordering
then

(1 @ z2 @ 23 ® 24)(23 ® T5) + T4(23 D T5)

is not a minimal form for f.
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In summary, we get:

THEOREM 12 SPP forms minimal with respect to the number of literals in a
fixed variable ordering are not fully testable.

4. Experimental Results

In this section experimental results for the SAFM are reported. The methods
described above have been implemented in C. The experiments have been run
on a Pentium III 450MHz CPU with 128 MByte of main memory.

The three-level forms have been optimized using the tools described in [Ciri-
ani and Bernasconi, 2002] and the generated networks have been written as
BLIF files. The verification of the correctness of the synthesis process and the
testability analysis have been carried out in SIS [Sentovich et al., 1992]. The
benchmarks are taken from LGSynth93 [Yang, 1991].

In a first series of experiments the quality of SPP forms (optimized by differ-
ent criteria) are compared to two-level approaches. By this, an impression on
the quality of the approaches is provided for a set of benchmarks. To this end
we count the number of literals and gates (AND and EXOR) of an expression.

In the multi-level context the cost function is the total number of literals
in all gates (see [Eggerstedt et al., 1993, Hachtel and Somenzi, 1996]). The
problem is that in many technologies EXOR and OR (or AND) gates have
different costs.

In [Hachtel and Somenzi, 1996] the authors consider a 2-input EXOR gate
asrz®dy==zx-y—+7ZT-7. Thus the cost in literals of a 2-input EXOR gate is 4,
while the cost of the 2-input OR and AND gates is 2. This is also proportional
to the number of transistors used for the CMOS technology mapping (i.e., 4
transistors for AND/OR gates and 8 transistors for the EXOR gate).

More in general, by the associative property of the EXOR operator, we can
always see a k-input EXOR gate as the composition of (k — 1) 2-input EXOR
gates. Therefore, we can use a function p where a k-input EXOR gate costs
4(k — 1), and k-input OR/AND gates cost k. This cost function corresponds
to the CMOS cost described in [Eggerstedt et al., 1993].

Table 1 compares the costs of minimal 2-SPP, SOP and SPP forms (2-SPP
and SPP networks are minimized with respect to the number of literals in the
expressions). In the first column the name of the benchmark is given. In the
next column the costs are given for 2-SPP, SOP and SPP forms. Here, u is the
cost for the 2-SPP network, while p is the cost for the SOP network. The cost
for the SPP network is u’. #E is the number of different EXOR gates in 2-SPP
and SPP forms. The star * indicates that the SPP algorithm did not terminate
after 172800 seconds (corresponding to 2 CPU days).

The minimization algorithms are designed for exact synthesis of 2-SPP and
SPP forms. Indeed the set of prime 2-pseudoproducts (pseudoproducts) is ex-
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Table 1.  Costs for benchmark functions in 2-SPF, SOP and SPP forms

2-SPP Sop SPP

name u | #E w /e | 6" T #E ] u/u”
9sym 168 | 18| 588 ] 029 | 188 ] 30| 0.9
addm4 || 694 | 34 || 1407 | 049 | * *
adrd 105 S| 415 025 || 118 | 10| 089
clip 202 | 26 || 769 | 052 | * *
dist 471 | 26| 879 | 054 | 636 | 50| 0.74
51m 232 | 19| 402 | 058 || 243 | 23 | 095
life 180 | 16 || 756 | 024 || 180 | 16 | 1.00
ma 735 | 28 || 1214 | 061 || 835 | 48 | 0.88
max512 || 620 | 35 || 1032 | 0.60 O *
mipd 500 | 25 || 869 | 058 || 524 | 32| 095
newcond || 161 | 11 || 239 | 0.67 | * *
radd 105 S| 415] 025 118 | 10| 089
1d53 64| 61 175 037 66| 7| 097
73 212 11| 903 ] 023 || 187 | 15| L13
root 281 | 21| 376 | 075 || 366 | 31 ] 0.77
squars 101 | 6 120 084 | 112| 8| 090
Xor5 2% 2 9% | 025 18] 1] 133
z4 91| 6 311 | 029 || 100 ] 10| o091

actly computed. Since we used some heuristics [Fiorenzo-Catalano and Malu-
celli, 2001, Tebboth and Daniel, 2001] in solving the set covering problem,
the number of literals in the expressions in Table 1 are upper bounds for the
minimal solutions.

The corresponding minimization times are given in Table 2. We note that
2-SPP and SPP forms are much more compact than the corresponding SOP
expressions, 2-SPP minimization is also faster than SPP minimization with the
exceptions of 9sym and xorb. This is due to the fact that the SPP minimization
algorithm takes advantage of some regularities of functions (see [Bernasconi
et al., 2003]), which cannot be exploited by the 2-SPP synthesis.

For all forms, the number of redundancies under the SAFM are given in
Table 3. If SOPs are minimized, i.e. they are prime and irredundant, the corre-
sponding networks are also fully testable. But compared to 2-SPP forms they
are significantly larger in size (see above). Corresponding to the theoretical
results in Section 3, it can be observed that 2-SPPs are fully testable in the
SAFM (see Theorem 10), while SPPs may contain redundancies. Indeed the
redundancies in SPP networks are due to the heuristic used for their synthesis,
and to the fact that the variable ordering in the minimization algorithms is fixed
(see Theorem 12).
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Table 2. Minimization times (in seconds)

name | 2-spp ] SOP || SPP
9sym 242.67 || 5.32 147.58
addm4 50.96 || 0.87 *
adr4 6.69 || 0.10 88.22
clip 1662.27 || 0.38 *
dist 924.10 || 0.14 || 8196.00
fS1m 64.00 || 023 443.00
life 120.40 || 0.03 262.00
mé4 890.94 || 0.67 || 9929.40
max512 341.24 || 0.53 *
mlp4 339.51 1.62 || 1423.74
newcond || 1485.01 0.01 *
radd 15.20 || 0.08 144.00
rd53 0.10 || 0.01 0.20
rd73 24.10 {| 0.03 114.00
root 272.32 || 0.08 || 1597.70
squar5 042 || 0.01 0.64
xor5 0.05 {| 0.01 0.02
z4 5.30 || 0.04 6.75

In summary, the experiments have shown that 2-SPP forms provide a very
good compromise between compact representation, complexity of the mini-
mization process and testability. Beside being more efficient than SOP regard-
ing number of literals, they are so far the only three-level form that ensures full
testability of the resulting circuit by construction.

5. Conclusion

Several approaches for three-level synthesis have recently been proposed.
The resulting circuits have small delay but are more compact than two-level
forms. The algorithmic complexity of the minimization algorithms are moder-
ate. This makes them a promising candidate for synthesis.

In this paper we studied for the first time the testability of the resulting net-
works. For specific classes, i.e. 2-SPPs and SPPs minimal w.r.t. the number of
literals in any variable ordering, full testability has been proved for the SAFM,
while for other classes counter-examples were provided. Experimental results
demonstrated the efficiency of the approach.

It is focus of current work to study more complex fault models, that allow
to model dynamic behavior, like e.g. path-delay faults.
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Table 3. Number of redundancies

name original || 2-SPP || SOP | SPP
9sym 0 0 0 0
addm4 24 0 0 *
adr4 24 0 0 0
clip 0 0 0 *
dist 0 0 0 0
f51m 56 0 0 0
life 0 0 0 0
m4 22 0 0 3
max512 4 0 0 *
mlp4 24 0 0 2
newcond 0 0 0 *
radd 0 0 0 0
rd53 0 0 0 0
rd73 0 0 0 0
root 0 0 0 1
squar5 12 0 0 1
xor5 0 0 0 0
z4 12 0 0 0
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