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Abstract—The large availability of multi–gigabit network cards
for commodity PCs requires network applications to potentially
cope with high volumes of traffic. However, computation intensive
operations may not catch up with high traffic rates and need to
be run in parallel over multiple processing cores. As of today,
the vast majority of network applications are still based on the
use of the pcap library interface which, unfortunately, does not
provide a native multi–core support, even though the underlying
capture technologies do.

This paper introduces a novel version of the pcap library for
the Linux operating–system that allows application level paral-
lelism. The new library natively supports fanout operations for
both multi–threaded and multi–process applications, by means of
extended API as well as by a declarative grammar configuration
suitable for legacy applications. In addition, the library can
transparently run on top of the standard Linux socket and other
accelerated capture engines. Performance evaluation has been
carried out on a multi–core architecture in pure capture tests
and in more realistic use cases involving monitoring applications
such as Tstat and Bro, with standard Linux socket and the PFQ
accelerated engine.

I. INTRODUCTION AND MOTIVATION

The technological maturity reached in the last years by
general purpose hardware is pushing commodity PCs as viable
platforms for running a whole bunch of network applications
devoted to traffic monitoring and processing. Indeed, the
availability of 10+ multi–gigabit network cards allows to easily
connect a standard PC to high–speed communication links and
potentially retrieve huge volumes [1] of heterogeneous traffic
streams.

In the last few years, the computational power provided by
the always increasing number of cores available on affordable
CPUs combined with the hardware multi–queue support of
modern network cards has favoured a large interest in the
research community towards software accelerated solutions
for efficient traffic handling on traditional PCs running Unix
Operating Systems.

As a result, to date, capturing packets at full rate over multi–
gigabit links is no longer an issue and it is made possible
by several alternative packet I/O frameworks, each of them
with its own set of features. However, the higher packet
rate attained by the accelerated capture engines may not,
by itself, guarantee better application performance. Indeed,
computation intensive operations such as those performed by
classical network monitoring applications, Intrusion Detection

and Prevention Systems, routers, firewall and so on, do not
often catch up even with the non–accelerated traffic rates
provided by the standard sockets. In all such cases, the use of
accelerated capture engines does not give any benefit as the
application would get overwhelmed by an excessive amount
of packets that cannot be handled. In fact, in many cases, the
overall performance may even further degrade as the extra
CPU power consumed to accelerate capture operations is no
longer available for the application processing.

When the performance bottleneck is represented by the
application itself, the straightforward way of scaling up perfor-
mance is leveraging on computational parallelism by spread-
ing out the total workload over multiple workers running
on top of different cores. This, in turn, requires on one
hand network applications to be designed according to multi–
thread/multi–process paradigm and, on the other hand, the
underlying capture technology to support packet fan–out to
split and distribute the total workload among multiple workers.
Currently, albeit with different features and programmable
options, both standard and accelerated sockets support packet
fan–out. Unfortunately, most of today’s network applications
are still single–threaded and access live traffic data through the
pcap library (libpcap) [2] rather than using the underlying
sockets. In the years, the libpcap library has emerged as
the, somewhat, de–facto standard interface for handling traffic
data and, as it will be shown in the following, its use has
many practical advantages. However, the current pcap library
does not support packet fan–out, thus preventing transparent
applications parallelism.

The objective of this paper is to present the implementation
of a new pcap library for the Linux operating system that
supports packet fan–out while still retaining full backward
compatibility with the current version. The new library is
freely available for download1 and provides an extended
interface for network applications consuming live traffic data
(e.g., intrusion detection systems, monitoring and security
tools, traffic analysis platforms and so on). Therefore, the
paper largely revolves around the concept of packet fan–out,
in both its standard and accelerated declinations. At first, the
standard scheme for accessing live network data on Linux
is presented in section II. This includes a description of the

1https://github.com/awgn/libpcap-fanout
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standard Linux socket and its packet fan–out features as well
as a brief introduction to the use of the pcap library.

Section III presents a short overview of the available
accelerated sockets, with specific focus on PFQ as it will
be used as an accelerated engine to further improve the
capture performance of the newly developed library. Section
IV represents the core of the paper and includes the description
of the library for parallelizing native and legacy applications
in both standard and PFQ–accelerated scenarios. Section V
reports the results of pure speed tests carried out to numerically
assess the benefit brought by the added fan–out support to the
pcap library, while section VI elaborates upon the perfor-
mance improvements observed by the well known applications
Tstat and Bro when running in parallel on top of the new
library. Finally, section VII concludes the paper.

II. PACKET DISPATCHING IN LINUX

The typical scheme of a network application handling live
traffic in the Linux operating system is shown in Figure
1. Upon their arrival at the physical interface, packets are
managed by the device drivers and made available to the
application through packet sockets. The low level handling
of the socket operations can either be performed by the
application through the native socket API or be left to the
pcap library interface. This section aims at describing the
main internals of the default Linux socket with specific focus
on the less known packet dispatching features. The use of the
pcap library is also briefly introduced to point out its current
limitations that motivate this work in order to achieve a full
integration with the standard socket features.

A. Linux Default Capture Socket

The default Linux socket for packet capture is the
AF_PACKET socket and its more efficient memory mapped
variant TPACKET (currently at version 3).

At the lower level, both TPACKET and AF_PACKET sup-
port multi–core packet capturing, that is they take advantage
of Received Side Scaling technology (RSS) [3] to retrieve
packets in parallel from multiple hardware queues of network
interfaces as shown in Figure 2.
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Since kernel version 3.1, to scale processing across up–
layer computing workers, the standard Linux socket supports
configurable packet fan–out to multiple sockets through the
abstraction of fanout group. Each thread/process in charge of
processing traffic from a network device opens a packet socket
and joins a common fan–out group: as a result, each matching
packet is queued onto only one socket in the group and the
total workload is spread upon the total number of instantiated
threads/processes.

Groups are implicitly created by the first packet socket join-
ing a group and the maximum number of groups per network
device is 65536. Sockets join a fan–out group by means of
the setsockopt system call with the PACKET_FANOUT
option. Conversely, packet sockets can leave a group only by
closing the socket. When the last socket registered to group is
closed, the group is deleted as well. Finally, to join an existing
group, the next packet sockets must obey the set of common
settings already specified for the group, including the fan–out
mode.

B. Socket Fan–out Modes

Packet fan–out is the straightforward solution to scale
processing performance by distributing traffic workload across
multiple threads/processes. The criteria in which packets are
actually spread out among the workers have a significant
impact in both functional and performance points of view.

The standard Linux socket supports a limited number of
algorithms (modes) for traffic distribution. The available fan–
out modes are presented in the following list.

• The default mode, namely PACKET_FANOUT_HASH,
preserves flow consistency by sending packets from the
same flow to the same packet socket. Practically, a hash



function is computed over the network layer address and
(optionally) transport layer port fields. The result (modulo
the number of sockets participating the group) is used to
select the packet socket to send the packet to.

• The PACKET_FANOUT_LB mode simply implements a
round–robin load–balancing scheme to choose the des-
tination socket. This mode is suited for purely stateless
processing as no flow consistency is preserved.

• The PACKET_FANOUT_RND mode selects the destina-
tion socket by using a pseudo–random number generator.
Again, this mode only allows stateless processing.

• The PACKET_FANOUT_CPU mode selects the packet
socket based on the CPU that received the packet.

• The PACKET_FANOUT_ROLLOVER mode keeps send-
ing all data to a single socket until it becomes backlogged.
Then, it moves forward to the next socket in the group
until its exhaustion, and so on.

• The PACKET_FANOUT_QM mode selects the packet
socket whose number matches the hardware queue where
the packet has been received.

C. Standard pcap interface

Most of the more popular network monitoring applications
(such as tcpdump, wireshark, etc.) are written on top of the
pcap library [2]. As depicted in Figure 1, the libpcap
layer hides low level traffic capture details to the upper layer
application by providing a standard and unified API for generic
packet retrieval and handling. As such, the use of libpcap
eases application portability and adds useful features such as
read/write access to trace files and packet filtering by means
of Berkeley Packet Filters (BPF).

However, as a major drawback, the pcap library lacks
the native support for multi–thread programming. This forces
developers that need to implement schemes such as the one
shown in Figure 3 to provide an additional layer of packet
distribution built into the applications. By default, both threads
of the Application 1 would receive an exact replica of the same
traffic, and so would the two instances of the Application
2. This design looks even more paradoxical as the default
socket used by libpcap in the Linux version (TPACKET)
supports indeed packet fan–out. As will be elaborated upon in
the following, the main objective of this work is to remove this
limitation by providing the fan–out support to the libpcap
interface.

III. SOFTWARE ACCELERATION

In the previous sections, packet fan–out has been introduced
as the straightforward way of scaling performance by splitting
traffic workload among multiple workers, tipically running on
different cores or CPUs. However, when links speed raises
to multi–gigabit rates, the default sockets may not be able
to catch up with the actual packet arrival rate, causing a
significant drop rate at the physical interfaces. In all such
cases, the use of accelerated capture sockets is mandatory
to increase the number of packets captured on the wire and
dispatched to the application workers. Notice, however, that
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packet capture and packet distribution to up–layer software
are independedent operations and very efficient capture sockets
may not necessarily support fan–out algorithms.

In the last few years, a significant number of accelerated
sockets have been proposed for efficient traffic capture at
10G+ links speed (see references [4], [5], [6] for a thorough
overview). One of the first software accelerated engines was
PF RING [7] which proved to be quite successful in case of 1
Gbps links. PF RING uses a memory mapped ring to export
packets to user space processes and supports both vanilla
and modified drivers. More recently, PF RING ZC (Zero
Copy) [8], and Netmap [9], allow a single CPU to retrieve
short sized packets up to full 10 Gbps line rate by memory
mapping the ring descriptors of NICs at the user space.
DPDK [10] is another successful solution that bypasses the
operating system to accelerate packet capture. DPDK provides
a Linux user–space framework for efficient packet processing
on multi–core architectures based on pipeline schemes. Fi-
nally, PFQ [11] is a software acceleration engine built upon
standard network device drivers that primarily focuses on
programmable packet fan–out. For these reasons, PFQ will
be used in this paper to show how to run the new libpcap
library on top of an accelerated socket that provides a richer
set of fan–out options.

The architecture of PFQ as a whole is shown in Figure 4.
In short, PFQ is a Linux kernel module that retrieves packets
from one or more traffic sources, make some computations by
means of functional engines (the λi blocks in the picture) and
finally deliver them to one or more endpoints.

Traffic sources are either represented by Network Interface
Cards (NICs) or – in case of multi–queue cards – by single
hardware queues of network devices.

Similarly to Linux sockets, PFQ uses the abstraction of
groups as the set of sockets that share the same computation
and the same set of data sources. User–space threads/processes
open a socket and register the socket to a group. The group
is then bound to a set of data sources and is associated
with a functional computation instantiated by a PFQ–Lang
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program [12] that processes and steers packets among the
subscribed endpoints.

Table I lists the main fan–out modes implemented in PFQ
and reports (if any) the analogous fan–out mode of the
standard Linux socket.

IV. PACKET FANOUT SUPPORT IN THE PCAP INTERFACE

As previously mentioned, the current implementation of
the libpcap library does not provide a dedicated API to
facilitate multi–core parallel processing. Therefore the whole
traffic stream captured over a physical interface is not split
across multiple threads/processes. In fact, multiple workers
bound to the same network interface would all receive an exact
replica of the whole amount of traffic captured at the physical
device. This section reports on the extension of the existing
pcap library in order to enable packet fan–out and to provide
a flexible support for multi–core processing.

The starting point was to comply with the basic operation
of the underlying Linux socket TPACKET by integrating the
notions of group of sockets and fan–out modes into the pcap
library. This implied a significant reworking throughout the
whole library code. However, all of the changes are buried
into the library implementation, and packet fan–out can be
enabled through the following single API:

int pcap_fanout(pcap_t *p,
int group,
const char *fanout);

Along with the obvious pcap descriptor p, the function
requires to specify the (integer) group identifier and a string
representing the fan–out mode. The function returns 0 in case
of success and -1 in case the operation cannot be completed2.

2The specific error string can still be accessed through the function
pcap_geterr(p)

The use of this function enables multiple threads of an
application to register to a specific group and obtain a quota
of the overall traffic according to the selected fan–out mode.

When the extended library is used over the standard Linux
socket, the fan–out mode should be selected among the ones
listed in section II-B and provided by the socket itself. When
using an alternative socket, fan–out modes must comply with
the ones supported by the underlying engine (see Table I for
the main fan–out modes available with PFQ and the equivalent
supported by AF_PACKET/TPACKET).

A. Legacy application: pcap configuration file

The use of the extended API is well suited when writing a
new application in a multi–threaded fashion. However, most
widely popular network applications are single threaded and
their rewriting according to a multi–threading paradigm is not
feasible in most practical cases.

In all such cases, the extended pcap library still allows to
attain parallelism by running multiple instances of the same
application. All processes that join the same group will then
receive a fraction of the total traffic workload, according to
a declarative grammar specified in a configuration file and
without requiring modifications to the application itself.

The grammar of the pcap configuration file has the follow-
ing syntax:

key[@group] = value[,value, value]

where the most commonly used keys are:
• def_group: default group associated with the configu-

ration file
• fanout: string that specifies the fan–out mode (example:
fanout = hash)

• caplen: integer values that specifies the capture snaplen
(if not specified by the application itself)

• group_eth<N> = i: force all sockets bound to the
eth<N> interface to join group i (example):
group_eth0 = 2
group_eth3 = 3

Different fan–out modes can also be selected for different
groups. As an example, the configuration file may contain the
following two lines:

fanout@2 = hash
fanout@3 = rnd

The use of the configuration file is enabled by the en-
vironment variable PCAP_CONFIG that contains the full
path to the file. The first time it is invoked, the function
pcap_activate search for the presence of the environment
variable PCAP_CONFIG. If the variable is specified, the
configuration file is open an parsed to retrieve the values of
the keys.

Notice that several keys of the configuration file can also
be specified in the command line by means of additional
environment variables, with the consequence of overriding the



TABLE I
PACKET FAN–OUT MODES IN PFQ AND THEIR LINUX SOCKET COUNTERPARTS

PFQ steering function Description Standard Linux Socket
steer_rrobin Sends packets to sockets according to round robin algorithm PACKET_FANOUT_LB
steer_rss Sends packets to sockets according to the RSS hash value computed by the

device driver
steer_rx_queue Sends packets to the sockets with index matching the hardware queue index PACKET_FANOUT_QM
steer_link Send packets to the sockets preserving coherency at link–layer
steer_local_link Like above but with support of double–steering
steer_vlan Sends packets according to vlan tag value
steer_p2p Sends packets according to the symmetric hash value computed on the pair of

source/destination IP addresses
steer_local_ip Like above but with support of double–steering for local traffic
steer_flow Sends packets according to the hash value computed on the packet flow headers PACKET_FANOUT_HASH
steer_to Sends packets deterministically to a specific socket
steer_field Sends packets according to the hash value computed on the specified field
steer_field_symmetric Sends packets according to the symmetric hash value computed on a pair of

specified fields
double_steer_mac Sends packets according to the symmetric hash value computed on the pair

sourc/destination mac addresses
double_steer_ip Network internal packet (local IP to local IP) are doubly dispatched on the basis

of the pair source/destination Ip addresses
double_steer_field Packet are doubly dispatched on the basis of the specified pair of fields

correspondent settings in the configuration file. As an example,
a generic instance of the application foo launched as:

PCAP_FANOUT="rnd" PCAP_GROUP = 3 foo

will receive traffic according to the ”rnd” fan–out mode on the
group 3 regardless of the values specified in the configuration
file.

B. Accelerated configuration

The combined use of environment variables and the con-
figuration file makes applications running on top of the new
pcap library totally agnostic to the underlying capture engine
and to the way it implements the packet fan–out.

As an example, this section reports on the specific con-
figuration needed to use of the pcap library on top of the
PFQ socket. It is worth pointing out that analogous arguments
may be applied to other accelerated capture engines such
as certain versions of PF RING equipped with libzero, if
properly integrated.

By default, PFQ socket is enabled whenever the network
device name is prefixed by the string ”pfq”. However, for
applications that do not allow arbitrary names for physical
devices, it can still be enabled by specifying an environment
variable with the name of the device prefixed by PFQ_ (e.g.
PFQ_eth0=1). This permits selectively choosing the devices
that will be using PFQ sockets and the devices that will
not. The environment variable PFQ_FORCE_ALL set to one,
instead, forces the use of PFQ sockets for all devices.

The general syntax of the device name is the following:

pfq:[device[ˆdevice..]]

where the character ˆ is used to separate the names of multiple
devices.

Since PFQ allows a higher configuration granularity, the
number of environment variables is larger than that available

TABLE II
PFQ ENVIRONMENT VARIABLES

Environment Variable Description
PFQ_CONFIG Specify the PFQ/pcap config file
PFQ_FORCE_ALL Force PFQ sockets for all devices
PFQ_DEF_GROUP Specify the PFQ group for the process
PFQ_GROUP Specify the PFQ group for the process
PFQ_CAPLEN Override the snaplen value for capture
PFQ_RX_SLOTS Define the RX queue length of the socket
PFQ_TX_SLOTS Define the TX queue length of the socket
PFQ_TX_SYNC Hint used to flush the transmission queue
PFQ_TX_HW_QUEUE Set the TX HW queue passed to the driver
PFQ_TX_IDX_THREAD Set the index of the PFQ TX kernel threads

(optional)
PFQ_LANG_SRC Load the PFQ–Lang computation from source

file
PFQ_LANG_LIT Set the PFQ–Lang computation from the env.

variable
PFQ_VLAN Set the PFQ vlan id filter list for the group

for the standard TPACKET socket. For the sake of complete-
ness, the full list of them is reported in Table II along with a
short description for practical usage.

As previously introduced in section III, the major benefit
of using PFQ resides in its programmable fan–out described
through the PFQ–Lang functional language. As such, the
packet fan–out mode may indeed be specified by a PFQ–Lang
program and placed in the configuration file as in the following
example3:

# Pcap configuration file (PFQ flavor)

def_group = 11
caplen = 64
rx_slots = 131072

3Notice the use of the character > to prefix each line according to the
Haskell bird style as alternative to the fanout keyword



> main = do
> tcp
> steer_flow

In some cases, a given group must be associated with a
network device rather than a process. This let a process handle
multiple devices at a time, each under a different group of
sockets. A typical scenario is that of an OpenFlow Software
Switch (e.g., OFSoftSwitch [13]), in which multiple instances
of the switch can run in parallel by means of the new pcap
library, each of them processing a portion of the traffic over a
set of network devices.

The PCAP_GROUP_devname environment variable (and
its group_devname counterpart keyword in the config file)
can be used to override the default group for the process when
opening a specific device, as in the following example:

PCAP_DEF_GROUP=42 PCAP_GROUP_eth0=11 \
tcpdump -n -i pfq:eth0ˆeth1

in which the application tcpdump sniffs traffic with the
group 11 from device eth0 and with the default group 42
from the device eth1.

Finally, there are cases in which an application needs to
open the same device multiple times under different config-
uration parameters (e.g., with a different criterion for packet
steering). In all such cases, the proposed pcap–fanout library
provides the concept of virtual device, namely a device name
postfixed with ’:’ and a number. This is very similar to the
alias device name, but it does not require the user to create
network aliases at system level. As an example, the next two
lines allow to collect traffic from the network device eth0
under two different group (11 and 13) by virtually renaming
the network interface itself.

group_eth0 = 11
group_eth0:1 = 23

V. PERFORMANCE EVALUATION

This section aims at assessing the performance of a sim-
ple multi–threaded application using the new pcap library
through the extended API when running on top of the standard
Linux socket and on top of PFQ.

The experimental test bed consists of a pairs of identical
PCs with a 8-core Intel Xeon E5–1660V3 on board running
at 3.0GHz and equipped with Intel 82599 10G NICs and used
for traffic capturing and generation, respectively. Both systems
run a Linux Debian distribution with kernel version 4.9.

A. Speed–Tests

The first set of tests aims at assessing the impact of fan–
out in the performance of the light–weight multi–threaded
pcap application captop4 that simply counts the received
packets when running on top of both the standard Linux

4Avaialble at https://github.com/awgn/captop
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Fig. 5. 10 Gbps packet capture with libpcap over standard Linux socket

socket and PFQ, under different packet sizes and number of
underlying capturing cores (different RSS values). Packets are
synthetically generated at 10 Gbps full line rate by pfq-gen,
an open–source tool included in the PFQ distributon.

Figure 5 shows the result of the speed–test when two
working threads of captop retrieve the packet streams on top
of the TPACKET Linux socket according to three different fan–
out modes. The whole set of measurements is replicated by
progressively increasing the number of underlying capturing
cores, from 1 to 4 (RSS = 1,. . .,4). Moreover, as a reference
value, the theoretical line rate limit as well as the capturing
rate of a single–threaded instance of captop (“no fanout”)
are also reported for each packet size.

The performance figures are in line with the expected
capabilities of the TPACKET socket and show that full capture
rate is reached at around 256 Bytes long packets. However,
further interesting insights come out from the figure. Indeed,
especially for short packets, the introduction of fan–out turns
out to accelerate the overall application capture rate. This ef-
fect was somewhat unexpected, as fan–out is used to distribute
traffic among up–layers working threads and should not impact
the pure underlying capture rate. In fact, this beneficial effect
is likely due to the internal implementation of the Linux socket
that proves to be inefficient in handling contentions when
multiple cores concurrently inject packets to a single socket.
With fan–out enabled, when the number of application sockets
increases, the contention of the sockets queues among multiple
producer contexts (napi–threads) is reduced accordingly, and
this determines a beneficial impact on the performance.

In addition, the observed performance acceleration varies
with the fan–out mode. This is due to the different computa-
tional burden of each individual fan–out algorithm. As a result,
the lightest ”qm” fan–out mode (that simply matches an inte-
ger number), proves to outperform both the ”rnd” and ”hash”
modes which, instead, need to either generate random numbers
or compute hashes functions before dispatching packets to the
target sockets.
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Fig. 6. 10 Gbps packet capture with libpcap over PFQ accelerated socket

Figure 6 shows the results of the same test when the default
Linux socket is replaced by PFQ with analogous fan–out
modes (steering algorithms). Again, the performance of the
pcap application is consistent with the typical PFQ capture
figures which prove to reach line rate speed even with the
shortest packet size. In this case, however, fan–out does not
accelerate the application performance. This, in fact, is the
expected effect of fan–out and it is consistently observed as
the internal lock–free implementation of the PFQ socket queue
manages multi–core access contention efficiently.

VI. USE–CASES

In this section the performance of the new pcap library
in practical use–cases is presented. To this aim, the two well
known network applications Tstat and Bro have been selected
as they are both single–threaded and support live traffic access
through the libpcap library.

In the following experiments, Tstat and Bro are flooded
with different traffic streams at 10 Gbps speed. As will be
elaborated upon, in some cases the fan–out alone allows to
scale–up the processing power up to full rate capacity while,
in other case, socket acceleration must be enabled to attain
top performance figures. In all tests, the following metrics are
observed:

• Link received, is the number of packets captured and man-
aged by the socket. In the following, it will be represented
as a fraction of the packets that are transmitted by the
traffic generator;

• IF dropped, is the number of packets that cannot be
handled by the socket and are dropped at the interface
level. Notice that the sum of IF dropped and Link received
is the total number of packets sent;

• App. received, the number of packets processed by the
application, and will be represented as a fraction of the
packet received at the socket level (Link received);

• App. dropped, is the number of packets dropped because
the application is backlogged. Again, notice that App.
received + App. dropped = Link received.
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Fig. 7. Tstat and Linux socket: 10 Gbps traffic analysis with 300 Bytes
average packet size

The first two metrics reflect the socket capture efficiency,
and can only be improved by means of socket acceleration.
Conversely, the remaining metrics are associated with the
application processing speed and can be improved by enabling
packet fan–out.

In all experiments, both Tstat and Bro were run with their
default configurations as the main purpose was to show how
performance scale up with multiple cores rather than focusing
on any specific application setup.

A. Tstat

Tstat [14] is a widely popular tool for generic traffic analy-
sis. It includes a large number of deterministic and statistical
algorithms and can be used for post–processing of trace files
as well as for stream analysis of live data using the pcap
library.

In the first experiment, Tstat runs on top of the standard
Linux socket (configured with RSS=3) and is injected with
synthetic UDP traffic with average packet size of 300 Bytes
containing up to 4096 different flows. The input traffic rate
saturates the full 10 Gbps line speed, with an average packet
rate of 3.8 Mpps. The results are shown in Figure 7 and prove
that while the Linux socket catches up with the input traffic
speed, a single instance of the application does not, on our
hardware. However, by simply enabling packet fan–out, two
working instances of Tstat are sufficient to process all of the
received packets.

Figure 8 reports the results of the same experiment when the
average packet size is set to 128 Bytes (and the corresponding
average packet rate grows up to 8.2 Mpps). In this case,
the use of fan–out allows two working instances of Tstat to
effectively processes all of the packets received on the physical
device. However, nearly 40% of the input packets turns out
to be dropped at the network interface as the input traffic
rate exceeds the potential capture rate of TPACKET socket.
To further improve the performance of the application, packet
fan–out can conveniently be combined with underlying socket
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Fig. 8. Tstat and Linux socket: 10 Gbps traffic analysis with 128 Bytes
average packet size
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Fig. 9. Tstat and PFQ: 10 Gbps traffic analysis with 128 Bytes average packet
size

acceleration. Indeed, as shown in Figure 9, the use of PFQ
allows to avoid packet drop at the lower level and packet
fan–out allows three instances of Tstat to successfully process
nearly all of the input traffic.

B. Bro

Analogous tests have been carried out to assess the perfor-
mance of the Bro network security monitor [15] running on
top of the new pcap library.

Bro is a single–threaded computation intensive application
that can be run in both standalone and cluster configuration.
In the second case, the total workload is spread out to
multiple instances (nodes) across many cores by a frontend.
Messages and logs generated by all nodes are then collected
and syncronized by the broctl manager to provide a unified
output.

So far, the classic pcap library could only be used in the
single node configuration. Indeed, to enable parallelism in the
cluster deployment, additional on–host load balancing plug–
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Fig. 10. Bro: real traffic analysis with standard Linux socket
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Fig. 11. Bro: real traffic analysis with PFQ

ins are required (currently, available plug–ins are available for
PF RING and Netmap sockets). The introduction of packet
fan–out, instead, enables the use of the libpcap interfaces
even in the cluster configuration by only setting a few envi-
ronment variables without the need for extra plugins.

In the next experiments, a cluster of Bro nodes using the
new pcap library is fed with a real packet trace played at 2.4
Mpps, corresponding to full 10 Gbps line speed.

Due to the high computation demand requested by each
node, CPU hyper–threading technology was enabled when the
number of Bro instances exceeded the number of physical
cores.

Figure 10 shows the cluster performance when the standard
Linux socket was used with two underlying capturing cores
(RSS=2). The beneficial effect of fan–out is clearly visible as
the fraction of packets received by the application scales up to
the whole amount of packets received by the socket. However,
the fraction of packet dropped at the interface is quite relevant
(up to 40%) and raises the need for socket acceleration.

Indeed, Figure 11 shows the results obtained when the



standard socket is replaced by PFQ under the same number
(two) of capturing cores. The use of the accelerated socket
dramatically reduces the packet drop rate at the interface up
to negligible values. This significantly increases the number
of packets available to the working nodes whose performance,
indeed, scales linearly up to seven Bro instances. With more
than seven sockets the fraction of packets received by the
application still increases linearly, but the slope is reduced as
the additional cores available through hyper–threading does
not have the computational power of physical CPUs. Finally,
notice that the number of physical cores of the PCs used in the
experimental setup limited the maximum cluster cardinality
to 14 nodes, as two of the overall 16 available cores were
dedicated to underlying capturing/steering operations.

VII. CONCLUSION

In spite of its widely common use in network applications,
the current implementation of the pcap library lacks of work-
load splitting capabilities, thus preventing multi–core traffic
processing schemes in legacy applications. This paper presents
an extension of the libpcap interface for the Linux operating
system that integrates packet fan–out support. The new library
enables both native application multi–threading through the
extended API as well as transparent multi–core acceleration
for legacy applications by means of suitable environment
variables and configuration files. The experimental validation
has been extensively carried out in several scenarios by using
standard and accelerated capture sockets.
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