
Large-Scale Classification of IPv6-IPv4 Siblings
with Variable Clock Skew

Quirin Scheitle, Oliver Gasser, Minoo Rouhi, Georg Carle
Chair of Network Architectures and Services

Technical University of Munich (TUM)
Email: {scheitle,gasser,rouhi,carle}@net.in.tum.de

Abstract—Linking the growing IPv6 deployment to existing
IPv4 addresses is an interesting field of research, be it for
network forensics, structural analysis, or reconnaissance. In this
work, we focus on classifying pairs of server IPv6 and IPv4
addresses as siblings, i.e., running on the same machine. Our
methodology leverages active measurements of TCP timestamps
and other network characteristics, which we measure against
a diverse ground truth of 682 hosts. We define and extract
a set of features, including estimation of variable (opposed to
constant) remote clock skew. On these features, we train a
manually crafted algorithm as well as a machine-learned decision
tree. By conducting several measurement runs and training in
cross-validation rounds, we aim to create models that generalize
well and do not overfit our training data. We find both models
to exceed 99% precision in train and test performance. We
validate scalability by classifying 149k siblings in a large-scale
measurement of 371k sibling candidates. We argue that this
methodology, thoroughly cross-validated and likely to generalize
well, can aid comparative studies of IPv6 and IPv4 behavior
in the Internet. Striving for applicability and replicability, we
release ready-to-use source code and raw data from our study.

I. INTRODUCTION

The emergence of IPv6 in the Internet offers interesting
possibilities for studies to compare IPv6 and IPv4 structures
and attributes in the Internet. Interesting questions are, e.g.,
whether and to what extent IPv6 addresses are co-deployed on
existing IPv4 hardware, whether correlated IPv6 and IPv4 at-
tacks originate from the same hosts, what levels of redundancy
can be achieved by co-deploying IPv6, or to conduct IPv6-
IPv4 geolocation comparisons. An important prerequisite for
such studies is the identification and classification of related
IPv6 and IPv4 addresses. One such association can be gained
from DNS queries, which yields IPv6-IPv4 address pairs that
deliver the same service, but may be hosted on different
machines. We address the problem of determining whether
a set of IPv6 and IPv4 addresses are located on the same
machine in a dual-stack setup. As in prior work [10], we
use the term sibling for such a relation. This level of relation
may help to draw deeper conclusions from service-level IPv6-
IPv4 comparative studies, e.g., on latency [7] or security com-
parisons [12]. We base our classification approach on active
measurements of TCP timestamps, based on prior work by
Kohno [19], Zander [32], and Beverly and Berger [10]. Our
approach leverages novel features, such as the identification
of unique nonlinear patterns caused by variable skew. Based
on these features, we train and test various classifier models,

using thorough train/test splits and cross-validation to avoid
overfitting. Our contributions are:

• We identify 682 ground truth hosts, of which a large
fraction exhibits variable clock skew

• We define novel features for sibling classification, capable
of, e.g., identifying and comparing variable clock skew

• We utilize thorough train/test methodology and machine-
learning to build and evaluate classifier models

• We achieve excellent train and test performance even for
hosts with variable clock skew

• We establish scalability through large-scale measure-
ments and find 149k server siblings

• We publicly share our ground truth, code, and data
We structure this work as follows. In Section II, we discuss
background and related work. We present our methodology
in Section III, and define features in Section IV. Section V
presents and evaluates our models, followed by their large-
scale application in Section VI. We discuss outliers and influ-
encing factors in Section VII, concluded by Section VIII.

II. RELATED WORK

We introduce background and related work in four categories:
remote clock skew estimation, remote identification, IPv6-IPv4
comparative studies, and IPv6-IPv4 sibling detection.

Remote Clock Skew Estimation: Accurate time-keeping
on computing machinery is a notoriously difficult problem:
precisely oscillating hardware is prohibitively expensive for
most machines. The dominant protocol to synchronize low-
precision machines, NTP, exhibits many difficulties even after
decades of development [21], [31]. Hence, clocks in most
devices in the Internet do not run in sync with true time, but
deviate from it to an extent that is measurable over the Internet.
This deviation is called skew, and can either be consistent
over time (constant skew), or vary over time (variable skew).
Protocols or protocol extensions that include timestamps from
a remote machine allow for measuring clock skew with good
accuracy by comparing local and remote timestamps over time.
This skew can be used to remotely identify network devices.
Foundations in this field were laid by Paxson [25] in 1998
and Moon et al. [22] in 1999. Kohno et al. [19] in 2005 first
apply these techniques to TCP timestamps. They conduct a
variety of case studies on the influence of external factors
on timestamp behavior, e.g., power-saving or virtualization
settings. Murdoch [23], and Zander and Murdoch [32] actively

induce variable skew on remote devices to identify Tor hidden
services. However, their method of decision taking is tailored
for few hosts and human inspection.

Other Remote Identification Techniques: Determining
whether a set of IP addresses belong to the same router is an
important and well-understood problem in Internet research.
Scientific tools such as Ally [29], Radar Gun [8] and MIDAR
[18] use IP Identification (IP ID) header values to answer
this question, exploiting the fact that the IP ID counter is
commonly shared between interfaces. Unlike IPv4, IPv6 only
offers IP ID values in an extension header for fragmented
packets (cf. RFC 2460). In 2013, Luckie et al. [20] publish
speedtrap, which uses forced packet fragmentation for alias
resolution in IPv6. In 2015, Beverly et al. [11] use IPv6
identification values to measure router uptime.

IPv6-IPv4 Comparative Studies: In 2015, Bajbai and
Schönwälder [7] compare connection setup latency of do-
mains for IPv6 and IPv4 addresses. They cite content being
served from different machines as one of the potential reasons
for latency differences. In 2016, Czyz et al. [12] compare
security characteristics at service level, i.e., AAAA and A
records of a domain. They find IPv6 addresses to frequently
have worse security characteristics.

IPv6-IPv4 Sibling Detection: The problem of classifying
sibling relationships at a machine level has first been tackled
by Berger et al. [9]. Using customized DNS replies, they
associate DNS client resolvers through opportunistic passive
probing and open DNS resolvers through active probing. This
technique only works on DNS clients or open resolvers,
and requires a DNS server backend infrastructure. In 2015,
Beverly and Berger [10] refine prior work on remote clock
skew estimation through TCP timestamps and apply it to
actively probe IPv6-IPv4 servers for sibling classification.
Their algorithm is as follows: First, they filter non-siblings
based on different TCP option signatures. Second, they classify
the kind of TCP timestamp behavior (e.g., random, monotonic,
non-monotonic). Third, they compare the angle of two constant
clock skews to determine a sibling/non-sibling relationship.
They achieve very good metrics (99.6% precision) on their
training data, but acknowledge their comparably small ground
truth data set of 61 hosts might be prone to overfitting.

They highlight the existence of hosts with variable clock
skew, for which we provide precise classification features and
models in this work.

III. METHODOLOGY

We put great care into avoiding overfitting and providing
a sibling classifier that generalizes well. First, we collect
a sufficiently large and diverse ground truth, significantly
exceeding that of prior work. We then conduct a series of
traffic measurements against this ground truth and a large-scale
data set. Next, we define features potentially suited to discern
siblings and non-siblings. Subsequently, we develop sibling
decision algorithms based on these features, leveraging both
manual analysis and machine learning algorithms. We train

Table I: Our ground truth data set covers diverse Autonomous
Systems (ASes), Countries (CC), and clock skew characteris-
tics. Subsets can have hardware and/or software diversity.

Data Set Hosts #AS #CC Skew Div.

2016-03 (“03”) 458 373 40 variable sw+hw

2016-12 (“12”) 682 536 80 variable sw+hw
servers 31 9 5 variable sw+hw
ring 430 383 56 variable hw
RAv1 12 12 11 variable -
RAv2 209 192 64 constant -

Beverly [10] 61 34 19 constant unkn.

and evaluate those algorithms based on a train/test split in
10-fold cross-validation.

Acquiring a Ground Truth Data Set: A critical success
factor of this work is to obtain a ground truth data set with
numerous and diverse hosts. As prior work does not publish
their ground truth data set, we set out to construct our own
by (i) collecting ground truth servers from personally known
operators and (ii) leveraging public frameworks which enforce
an IPv6 and IPv4 address to reside on the same machine. For
the latter, we include RIPE Atlas anchors [26] and NLNOG
RING probes [3]. Table I lists our ground truth data and
compares it to related work.

Ripe Atlas anchors exist in two different hardware versions
[6], which we split out as RAv1 and RAv2. Within the groups
of RAv1 and RAv2, there is no hardware or software diversity.
NLNOG Ring (“ring”) nodes are formed by installing a pro-
vided image onto a virtual or physical machine. The ring group
hence offers hardware diversity, but no software diversity. Our
servers group offers soft- and hardware diversity. The RAv1,
RAv2 and ring groups offer good geographical diversity, while
the servers group centers on Germany.

Please note that this data set allows for testing both sibling
and non-sibling relationships, as non-siblings can be created
by mixing addresses from different servers.

Measurement Methodology: To obtain a sufficient amount
of fingerprints, we repeatedly connect to every sibling candi-
date IP address in parallel for a duration of ten hours, with
the goal of acquiring at least one TCP Timestamp per minute.
We open a HTTP connection and issue a GET research scan
query. As this resource-heavy approach repeatedly requires
a full TCP and HTTP connection for every IP address, we
process batches of 10k IP address pairs for our large-scale
measurements. Our ground-truth measurements fit into one
batch. As our methodology aims to identify similarities in
clock skew, measurements to all IP address of a sibling candi-
date need to be conducted in the same batch. We leverage the
TCP keepalive option to avoid establishing a new connection
every minute, but found many servers to quickly close our
connections after few keepalive packets.

Our measurement stack consists of a Python3 master that
dispatches work to several processes, which in turn start one

urllib3 thread per target IP address. Moving to a C library
or high-speed packet-processing frameworks such as DPDK
[1] or libmoon [15] might significantly reduce the kernel
packet processing overhead and allow for larger batches.
We acknowledge that our measurements might be considered
intrusive, which we discuss later in this Section.

Measurement Runs: In March 2016, we conduct one run
against our 2016-03 ground truth, referred to as gt1. In De-
cember 2016 and January 2017, we conduct six measurements
against the 2016-12 ground truth, referred to as gt2 through
gt6. Notable are the runs gt4 through gt6, which cover the
time before, during and after the leap second on December 31,
2016. We also conduct a large-scale measurement campaign in
August 2016, which we further discuss in Section VI. As the
measured offset is relative to the offset of our own clock, we
usually disable ntpd to avoid creating non-linear offsets from
clock adjustments on our machine. We enable ntpd during the
gt2 measurement to test this hypothesis.

Training and Evaluation Methodology: Training an al-
gorithm on a few hundred ground truth hosts that will later
be applied on millions of hosts comes with two challenges:
First, the ground truth obtained might not be a representative
sample of the full population of hosts in the Internet. Second,
classifier training may overfit the training data, achieving very
good train/test metrics on the ground truth, but failing on large-
scale application. We aim to mitigate the risk of training on a
non-representative sample by establishing software, hardware,
geographical, and administrative diversity in our ground truth.
We find our ground truth to exhibit diverse TCP timestamping
characteristics even when compared to our large-scale data set.
To avoid overfitting our ground truth for both machine-learned
and manually assembled decision algorithms, we deploy a
strategy of train/test splits and cross-validation. We also aim to
minimize model complexity to provide better generalization.

Ethical Considerations: We follow an internal multi-party
approval process, among others based on Partridge and All-
man [24], before any measurement activities are carried out.
We conclude that our measurements and the resulting data
can not harm individuals, but may result in investigative effort
for system administrators. We aim to minimize this effort by
deploying scanning best-practice efforts of (i) using dedicated
scan machines with explanatory websites, (ii) maintaining a
blacklist, (iii) reply to every abuse e-mail (seven received, one
asking for blacklisting, six curious), and (iv) request URLs
preceded by /research scan to allow quick identification of
our connections. Furthermore, based on user discussions, we
will respect robots.txt and set a descriptive HTTP user agent
in future work. To conclude, we argue that no individual was
harmed by our active measurements. We also conclude that the
gathered data bears little privacy intrusion, and hence release
all data that was based on publicly available sources.

IV. FEATURES

In this section, we present the set of features investigated
and later leveraged by our algorithms for sibling detection. We

present the features in the order they are calculated, as some
features depend on the existence of others.

It is important to note that there is a distinction in the nature
of these features. Namely, a feature can be either falsifying
or verifying. Falsifying features may only help to determine
a non-sibling relationship, whereas verifying features can
actually determine a sibling relationship with confidence.

For every group of features, we explain their calculation
and list their specific outputs, where output6 indicates an IPv6
feature, and output4 an IPv4 feature.

Network Level Features: We test various network level
features, such as network latency, initial Time-to-Live values,
OS predictions, or open ports. We find those features to
have very low discriminative power and exclude them from
further analysis. Our technical report gives details on these
measurements and the obtained results [27].

TCP Options Fingerprint: Similar to Beverly and Berger
[10], we leverage TCP options as a first falsifying feature.
We compare the presence and order of options and the no
operation (NOP) padding bytes. Additionally, if the window
scale option is present, we consider its value for the process
of falsifying non-siblings, as it has demonstrated high dis-
criminative capability in our test data set. We find values of
some options such as MSS to frequently differ by non-static
offsets even for ground truth siblings. Thus, we do not include
those in this filtering step. As an example, we frequently
find the option fingerprint MSS-SACK-TS-NOP-WS07 in our
ground truth data set, and the MSS-NOP-WS08-SACK-TS
in our large-scale data set. We highlight that asking for more
exotic options slightly increases diversity in answers, but we
did not find the effect strong enough to justify the addi-
tional measurement overhead. Features: Options4, Options6,
opts diff =!(Options4 == Options6).

Remote TCP Timestamp Clock Frequency: In a next
step, we calculate the remote clock frequency as employed
by Kohno et al. [19]. We first calculate relative remote TCP
timestamps (32-bit unsigned integers) as vi = Ti − T1,
where Ti is the TCP timestamp contained in the i-th received
packet. Then, the relative received timestamps are calculated
as xi = ti − t1, where ti is the time the i-th packet was
observed by the prober and xi is in seconds. We check the
resulting array [x, v] for monotonicity and fix wrap-arounds.
We then solve a linear regression against [x, v], where the
resulting slope is the remote clock frequency Hz. We find
typical values of 10, 100, 250 and 1000 Hz, all within the
range of 1 to 1000 Hz as in RFC 7323. We also save the
R2 value of the linear regression, R2

Hz. Low or different R2
Hz

values may indicate erratic time-stamping behavior such as
randomized timestamps. We expect a sibling’s clock to tick
with the same frequency for IPv6 and IPv4. Hence, for each
sibling candidate, we calculate the difference between Hz4 and
Hz6 as a falsifying metric. This produces one false negative
occurrence in the ground truth data set, which we discuss in
Section VII. Features: Hz4, Hz6, hz diff, R2

Hz4, R2
Hz6.

Raw TCP Timestamp Value: As a next step, we compare
the raw TCP timestamp values T 4

1 and T 6
1 of a sibling can-

didate pair. As the TCP timestamp clock is, except for wrap-
arounds, typically monotonically increasing, the raw value of
the 32-bit timestamp offers a certain level of entropy across
hosts. We expect the values for a sibling to be very close for
IPv6 and IPv4 as they are generated from the same clock.
Using the Hz values calculated in the previous paragraph,
we can calculate the absolute difference between two remote
clocks using Equation 1:

∆tcp = T 4
1 /Hz4 − T 6

1 /Hz6 [s]

∆rec = t4i − t6i [s] (1)
∆tcpraw = |∆tcp −∆rec| [s]

First, we convert the raw TCP timestamps to seconds by divid-
ing through Hz, Second, we calculate the difference between
the local received timestamps. The final metric ∆tcpraw is
obtained by computing the absolute difference between the
two values mentioned above. This metric can be interpreted
as the time difference between the last TCP timestamp counter
reset for IPv6 and IPv4. Feature: ∆tcpraw.

Clock Offset and Skew Calculation: In a next step,
we can estimate the remote clock offset, i.e., the deviation
of a remote clock from its expected values. To do so, we
calculate the expected relative remote time wi = vi/Hz and
the offset to the observed time yi = wi − xi, both measured
for the i-th observed packet. The resulting array [xi, yi] is
then used for more fine-grained investigations such as clock
skew estimation, which will be explained in the following
paragraphs. This array is also used for plots in this work.

As noted by Kohno et al [19], the derivative of this array
would theoretically be the skew of the remote clock. However,
due to delay variances and various other effects, it is not sound
to form the derivative of this array, but we rather use a more
stable method to obtain the skew.

In this work, we use Robust Linear Regression [30] to
obtain a robust and outlier-resistant regression, whose slope α
we use as an estimation of remote clock skew. The rationale
behind using this method is that offset points are in nature
heavily impacted by various network dynamics [25] and hence
prone to outliers. Additionally, we store R2

skew which is the
linear regression’s coefficient of determination and is used
to estimate the quality of the line fitted by the regression.
Features: α4, α6, αdiff, R2

skew4, R2
skew6, R2

skewdiff.
Calculation of Dynamic Range: Another feature we con-

sider is the dynamic range of the offset array: While some
hosts exhibit an offset of several seconds over the course of
10 hours, other hosts exhibit an offset of few milliseconds (cf.
Figure 1). As this dynamic might be valuable information,
we aim to extract it as a feature. To calculate this dynamic
range in a manner that is stable against latency-caused outliers,
we first prune the top and bottom 2.5% of offset arrays, and
then store the difference between maximum and minimum
as rng4 and rng6. Features: rng4, rng6, rng diff=|rng4-rng6|,
rng avg=(rng4 + rng6)/2, rng diff rel=rng diff/rng avg.

Variable Skew Calculation: While α and R2
skew fuel

sibling/non-sibling classification for hosts with constant skew,

0 1 2 3 4 5 6 7 8 9 10

−
5

0
5

1
0

Measurement time [h]

O
bs

er
ve

d
of

fs
et

[m
s]

IPv4
IPv6

0 1 2 3 4 5 6 7 8 9 10

−
6
0

−
4
0

−
2
0

0

Measurement time [h]

O
bs

er
ve

d
of

fs
et

[m
s]

spline v4
spline v6

Figure 1: Siblings with constant skew and small dynamics
(left), and variable skew and large dynamics (right).

additional steps are necessary to gain insight into the behavior
of sibling candidates with variable skew.

To approach variable skew, we fit a polynomial spline
against the [xi, yi] arrays of a sibling candidate. Among
various options to fit polynomial splines, we find it well-
suited to pick 13 equidistant offset points and fit cubic splines
between these candidate points in an approximative manner.
Figure 2 shows the curve fitting approach for both siblings and
non-siblings. In the next step, we minimize the area between
the two splines by shifting the y-offset of one slope. This
minimal area between the v4-spline and the v6-spline, spl diff,
is an output of our variable skew calculation. As the area
between the two splines is also proportional to the dynamics
of offsets, we also provide scaled version spl diff scaled =
spl diff/rng diff. Features: spl diff, spl diff scaled.

0 1 2 3 4 5 6 7 8 9 10−
8
−
6
−
4
−
2

0
2

4

Measurement time [h]

O
bs

er
ve

d
of

fs
et

[m
s]

spline v4
spline v6

0 1 2 3 4 5 6 7 8 9 10−
8
−
6
−
4
−
2

0
2

Measurement time [h]

O
bs

er
ve

d
of

fs
et

[m
s]

spline v4
spline v6

Figure 2: Splines for sibling (left) and non-sibling (right).

V. CLASSIFIER MODEL TRAINING AND EVALUATION

Based on the discussed features, it is possible to train
classifier models, that can be used to predict whether a pair of
IP addresses is a sibling or not. In this section, we explain our
approach to train and evaluate various such models, preceded
by an explanation of our evaluation methodology.

A. Model Evaluation

To evaluate classifier models, a wide range of metrics exists,
of which we focus on two: First, we prioritize high precision,
defined as tp/(tp+ fp), i.e., a low number of false positives.
With higher precision, fewer non-siblings will be among pre-
dicted siblings. Second, we also want metrics for other aspects
of performance to be stable to avoid overprioritizing precision.

For this, we use the Matthews Correlation Coefficient (MCC)
[2] as defined in Equation 2. This coefficient nicely and
robustly factors in all kinds of aspects of classifier performance
for binary problems, where 1 would be a perfect score and 0
the worst, i.e., a coin flip.

MCC =
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
(2)

For training and evaluation purposes, we generate around
400k1 non-siblings from our data set by mixing the IPv6
address of one sibling with the IPv4 addresses of other
siblings. We generate the maximum possible number of non-
siblings for each evaluation, and then equally weight both
output classes for the classifier training. We generate non-
siblings only for siblings actually used, e.g., we first split
siblings into train and test, and then form the non-siblings
based on these splits.

Table II shows the evaluation results for our different
models. Table III investigates whether a model’s results are
dependent on the evaluated subgroup.

Having established our evaluation approach, we now discuss
filtering steps applied during feature calculation, followed by
the individual models.

B. First-Order Filtering for All Models

Certain sanity checks on first-order filters apply to all mod-
els, e.g., if the calculation of Hz fails, many dependent features
can not be calculated.

Different TCP Options: If sibling candidates offer different
TCP options, our algorithm stops with a non-sibling decision
before continuing with feature calculation.

Hz Calculation: When calculating the remote clock fre-
quency, the linear regression applied to do so may fail for
reasons such as randomized timestamps. To only incorporate
sound remote Hz frequencies, we require the R2 parameter to
be above 0.9. We classify sibling candidates with failed Hz
calculations as non-siblings.

Different Hz Values: When a sibling candidate offers
different Hz values for IPv6 and IPv4, calculation of dependent
features becomes meaningless. We hence decide candidates
with different Hz values as non-siblings.

Too Small Hz Values: When a Hz value below 1 Hz is
calculated, we also stop further calculation and decide for a
non-sibling relationship.

In all these cases, we decide for a non-sibling relationship
and stop calculating other features. This works with a very
low false negative rate (4 in 682) for our ground truth data
set. We discuss those outliers in Section VII-A.

C. Beverly/Berger Algorithm

For comparison, we implement the sibling detection algo-
rithm as proposed by Beverly and Berger [10]. The algorithm
is designed for constant skew and works primarily by com-
paring the constant skew of sibling candidates.

1(n · (n− 1)), n = 682, we use both the v6-v4 and v4-v6 combination

Table II: Hand-Tuned and Machine-Learned Classifiers train
and test very well, speaking to good generalization. Beverly
algorithm is not generalizing well to the more diverse data set.

Algo. Train DS Test DS Prec. MCC Type

Bev. Bev. Bev. 99.6% n/a Train
Bev. Bev. 03∪12 .9% .17 Test
HT1 03 03 100% .99 Train
HT1 03 12\03 99.49% .98 Test
ML1 03∪12 03∪12 99.36% 1.0 Train
ML1 03∪12 03∪12 99.88% 1.0 Test
Legend: HT1 denotes our hand-tuned algorithm. 03 denotes the 2016-03 data
set, 12 the 2016-12 data set. ML1 values are the arithmetic mean of 10-
fold cross-validation. All tests against 2016-12 are arithmetic means over the
results from measurement runs 2 through 7. Calculation of MCC for Bev. data
set not possible from metrics given by Beverly and Berger [10].

Table III: Performance of Beverly algorithm slightly dependent
on group, our hand-tuned and machine-learned (not shown)
algorithm independent from group.

Algo. Train DS Test DS Prec. MCC Type

Bev. Bev. 03∪12-server 8.33% .17 Test
Bev. Bev. 03∪12-ring 1.09% .09 Test
Bev. Bev. 03∪12-rav1 8.35% .00 Test
Bev. Bev. 03∪12-rav2 .79% .05 Test

HT1 03 12\03-server 100% .99 Test
HT1 03 12\03-rav2 99.16% .98 Test
HT1 03 12\03-ring 100% .98 Test
HT1 03 12\03-rav1 100% 1.0 Test

The algorithm does not find siblings with high precision
(< 1%, see Table II) in our combined data set, which includes
many hosts with variable clock drift. We find the algorithm’s
performance to vary slightly for different groups of our test
set (see Table III). As this variation is not systematic (i.e., due
to overwhelming group characteristics), we argue that this is
based on circumstantial existence of hosts that are well-fit to
Beverly and Berger’s algorithm.

D. Hand-Tuned Decision Algorithm

One of our classifiers is a hand-tuned decision algorithm
similar to Beverly and Berger’s [10]. We hand-tune our
algorithm against our 2016-03 ground truth and test it against
the newly added hosts of the 2016-12 ground truth. This results
in a 40% train and 60% test set, with all subgroups achieving
>40% test size.

The formalized algorithm is displayed in Algorithm 1. The
following provides a terse description of its high-level decision
taking steps. The algorithm offers many subtleties, and we
recommend our source code and tech report [27] as a detailed
reference. Similar to Beverly and Berger, we first eliminate
candidates with different TCP options. Then, our algorithm
performs first-order filtering a described in Section V-B. Third,
we eliminate candidates with raw TCP timestamps too far

Algorithm 1 Hand-Tuned Sibling Classification Algorithm
(trained and tested on disjunct data sets).

1: if opts diff =⇒ non-sibling.
2: if Hz calculation failed or invalid =⇒ non-sibling.
3: if ∆tcpraw > z1 =⇒ non-sibling
4: ### Linear Testing (using Robust Linear Regression [30])
5: if R2

skew4 ≥ z2 ∧R2
skew6 ≥ z2:

6: if sign(α4) 6= sign(α6) =⇒ non-sibling.
7: if |αdiff| ≤ z4 =⇒ sibling.
8: else if R2

skew4 ≥ z2 ⊕R2
skew6 ≥ z2:

9: if |R2
skewdiff| ≥ z3 =⇒ non-sibling.

10: ### Non-Linear Testing:
11: if rng4 ≤ z5 ∧ rng6 ≤ z5 =⇒ unknown.
12: if rng4 ≥ z5 ⊕ rng6 ≥ z5:
13: if rng diff ≥ z6 =⇒ non-sibling.
14: if rng4 ≥ z7 ∧ rng6 ≥ z7:
15: if spl diff ≤ y1 =⇒ sibling.
16: else =⇒ non-sibling.
17: if spl diff ≤ y2 =⇒ sibling.
18: if spl diff > y3 =⇒ non-sibling.
19: else =⇒ unknown.

Values used: z1 = 1, z2 = .81, z3 = .2, z4 = .00005,
z5 = 1.5, z6 = .47, z7 = 14, y1 = 2.3, y2 = .6, y3 = 4.0

apart. In line 5, we test whether to apply linear logic by
evaluating the R2

skew values of robust linear regression. Skews
with differing slope signs are classified as non-siblings (line 6),
whereas small slope differences are classified as siblings (line
7). In line 8 and 9 we classify those cases as non-siblings if
only one skew is clearly constant and there is a large difference
in R2

skew values.
If linear testing was not conducted or not decisive, we

apply nonlinear testing. For this, we first test the dynamics
of both signals to exclude cases with negligible (line 11) or
very different dynamics (lines 12 and 13).

We take further decision based on the minimal area between
non-linear splines in lines 14 to 18. Based on whether the over-
all dynamics are large (line 14-16) or small (line 17-19), we
apply different thresholds. We found this simplistic distinction
between large and normal dynamics to provide good results on
our data set, but acknowledge that this step could potentially be
improved by means of finer tuning, for example by scaling the
threshold by the dynamics. Our algorithm, similar to Beverly’s
and Berger’s, features some guard intervals. In those, we can
not take a meaningful sibling/non-sibling decision and decide
for unknown.

As visible in Tables II and III, our algorithm achieves very
good (>99% precision, ≥.98 MCC) metrics in training and
testing and is insensitive to subgroups. We argue that this
algorithm likely generalizes well to new data sets.

E. Decision Tree

Using scikit-learn [4], we train a CART Decision Tree
on our features described in Section IV. For each of the
seven measurement runs gt1 through gt7, we do a 10-fold

Table IV: Statistics of Large-Scale Domain Scans.

Source #Domains #IPv4 RRs #IPv6 RRs #Candidates

Alexa 1M 1.2M 108k 191k
biz 2.2M 2.0M 82k 104k
com 127M 134M 4.4M 6.7M
info 5.5M 5.0M 270k 299k
mobi 682k 560k 12k 15k
net 15.7M 14.3M 630k 898k
org 10.8M 10.6M 464k 700k
xxx 101k 178k 611 892

Total 162.4M 167.8M 5.9M 8.9M

cross-validation with proportional selection from all subgroups
(servers, ring, rav1, rav2). We find all models to consistently
perform well with low variance, and report the arithmetic mean
across validation folds and measurement runs for Table II. We
also find all models’ performance to be independent of groups.

For model selection, we export all generated decision trees
and find very little variance: All trees contain just one branch,
where they use a single threshold against the ∆tcpraw feature
to decide for sibling or non-sibling, i.e., as a verifying metric.
Our hand-tuned algorithm used a threshold of >1s as a
falsifying metric. We find the majority of models to pick a
threshold of >0.2557s for non-siblings and pick that value for
our final model. Please note that the ML1 model is preceded
by the first-order filters described in Section V-B.

We argue that this model, due to its simplicity, will likely
generalize best and recommend it for further use.

VI. LARGE-SCALE APPLICATION & RESULTS

We apply our measurement methodology and classifier
models to a large-scale data set to evaluate their scalability and
suitability for finding sibling pairs for large-scale structural
Internet studies. We first identify sibling candidates by resolv-
ing A and AAAA records for 162M domains, obtained from
both registrars and “drop list” resellers. We filter blacklisted IP
addresses, and form sibling candidates from all possible A and
AAAA combinations per domain. Table IV details the statistics
of this process by top-level domain. We find the number of
sibling candidates to be bound by the relatively few AAAA
records: We obtain only 6M AAAA records, compared to 168M
A records. The number of sibling candidates, as the cross-
product of A and AAAA records, will multiply with increased
IPv6 deployment. Processing of the resulting 8.9M candidates
is quantified in Table V.
After processing our sibling candidates to unique IPv6 and
IPv4 addresses, we scan those addresses with zmap [14] on
port TCP/80. We leverage our previously developed IPv6-
capable version of zmap for this [16]. We find the majority
of IP addresses to be responsive on port TCP/80. Discovery
on more ports, such as TCP/443, might yield more responsive
hosts. We next eliminate machines that do not offer the TCP
Timestamp option, which is a prerequisite to applying our

Table V: Statistics of Large-Scale Domain Scans.

Processing Step IPv4 IPv6

Sibling candidates 8,893,132
Unique candidates 241,085 372,607
tcp80 responsive 226,419 315,782
Timestamp-capable 128,420 216,350
Consistent TCP options 128,146 216,073
Remaining candidates 6,619,100
Unique candidate pairs 371,071
Unique addresses in pairs 95,469 212,700
Pairs with measurement results 351,994

Table VI: Large-Scale Domain Scan (n = 351, 994)

Decision HT Bev. ML1

Siblings 57k 203k 149k
Non-Siblings 126k 4k 57k
Unknown/Error 169k 145k 143k

technique. We find 57% (IPv4) and 69% (IPv6) of responsive
IP addresses to offer the TCP Timestamp option. The higher
percentage for IPv6 could be caused by IPv6 being offered by
newer machines with more modern TCP configurations.

As we use the TCP option fingerprint of a remote host
to filter for non-siblings, we extend zmap with TCP options
capabilities. We chose to form a complex TCP options payload
as this offers more possibilities for different TCP stacks to
offer different replies. We ask for the set of options of:
<SACK permitted, Timestamps, Window Scale,
TCP Fast Open, Unknown, MPTCP>. We include an
unknown TCP option (by using a reserved option identifier)
as this may also trigger a range of different responses, from
simple mirroring to correctly dropping the unknown option.
However, this step removes only few hundred non-siblings in
this large-scale data set.

We reassemble sibling candidates with both usable IPv6
and IPv4 addresses, resulting in 6.6M sibling candidates.
Those 6.6M sibling candidates represent 371k unique IPv6-
IPv4 address combinations.

In the next step, we measure the 371k unique candidate pairs
by dividing them into batches of 10k addresses. Through these
measurements, we obtain a sufficient count of timestamps
for 351k of 371k address pairs. We then apply all discussed
algorithms on this data set and display the results in Table
VI. Several conclusions stem from its analysis: First, our
HT algorithm was possibly tuned too conservatively and
only identifies about a third of the siblings identified by our
ML1 algorithm. Second, our reproduction of Beverly’s and
Berger’s algorithm produces the most siblings, but its very low
precision numbers as evaluated before likely cause these to be
mainly false positives. Third, the amount of unknown/error
decisions is surprisingly high. In the ground truth evaluation,
we mapped those decisions to a non-sibling decision to allow

for binary evaluation. As we can not evaluate the large-
scale measurement against a ground truth, we display the
unknown/error category. Future work might dig into these
unknown/error cases, try to find a ground truth, and perform
further optimization. We investigate the contrast of siblings
for HT and ML1, and find 57k siblings to intersect. Only few
hundred of the HT siblings do not intersect, caused by the
more aggressive ∆tcpraw threshold in ML1.

Coming back to our initial goal, finding a confident set
of siblings to study Internet-wide structural behavior, we
conclude that both the ML1 and the HT can find a significant
number of siblings in Internet-wide scans. For model selection,
we repeat our argument that the simplicity of the ML1 makes
it likely to generalize best, and the HT model likely suffers
from a high false negative rate on our large-scale data set.

VII. OUTLIERS & DISCUSSION

In this section, we analyze outliers in our ground truth and
discuss influence of several factors onto our measurements.

A. Analysis of Ground Truth Outliers

We discuss the few outliers in our ground truth measure-
ments and evaluation. First, the Ripe Atlas node #6220 across
measurements (i) returns different Hz values for IPv6 and IPv4
(100 and 1000), and (ii) has a significant (∼228) raw TCP
timestamps difference, equaling ∼3 days difference at 1000
Hz). We have contacted the operators of this node to possibly
obtain an explanation for this behavior.

Second, we find the hosts ovh0X.ring.nlnog.net to re-
turn varying TCP options for IPv4 addresses through a
measurement, typically varying between only MSS and
MSS-SACK-TS-NOP-WS07. Using tracebox [13], we typ-
ically receive responses that strip all but the MSS option at
the last or penultimate hop. We conduct traceroutes path mea-
surements from these machines and find the default IPv4 route
traversing several RFC 1918 IP addresses, possibly indicating
a NAT or tunnel techniques interfering with our measurements.
It is unclear why the hosts sometimes proceeds with a full set
of TCP options.

We consider both hosts legitimate cases for our classifiers
to take a non-sibling decision. While Ripe Atlas and NLNOG
Ring ensure that the associated IP addresses reside on the host,
deployed middleboxes or proxies seem to distort this sibling
relationship. Hence, we consider it positive that our models
did not classify these cases as siblings.

B. Influence of Measurement Machine’s Clock Skew

Irregularities in the measurement machine’s clock may
influence our measurements. We aim to minimize those ir-
regularities by maintaining thermal conditions for the period
of a measurement and by disabling the ntpd daemon during
our measurements. We conduct one measurement run (gt2)
with ntpd enabled and find ntpd interventions to be visible
in manual analysis (through non-linear dynamics replicated
across all hosts). However, all classifier models returned
equally good results for this measurement run.

0 1 2 3 4 5 6 7 8 9 10
−30

−20

−10

0

10

20

Measurement time [h]

O
bs

er
ve

d
of

fs
et

[m
se

c]

bit01 (ring)

IPv4
IPv6

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

Measurement time [h]

netrouting02 (ring)

IPv4
IPv6

0 1 2 3 4 5 6 7 8 9 10
−1,200

−1,000

−800

−600

−400

−200

0

200

Measurement time [h]

nynex01 (ring)

IPv4
IPv6

0 1 2 3 4 5 6 7 8 9 10
−50

0

50

100

150

200

Measurement time [h]

world4you01 (ring)

IPv4
IPv6

Figure 3: Leap second observations of four NLNOG ring siblings.

C. Influence of Leap Seconds

We conduct measurement runs before, during, and after the
leap second on Dec 31, 2016. We find the metrics of our
classifiers to be invariant to this circumstance, but interesting
effects appear from visual inspection. Figure 3 shows clock
offsets for the measurement during the leap second, which
happens 5 hours into the measurement and is marked by a
vertical line. We show four hosts with interesting behavior,
most (>99%) servers show no effect from the leap second
at all. This is expected behavior, as the TCP timestamping
clock is supposed to monotonically tick without regard to
leap seconds. Host bit01 shows a typical reaction unaware
of leap seconds, with ntpd adjusting clock speed after the
leap second. Host netrouting02 seems to smooth out the leap
second by starting to slow its clock about an hour before the
leap second, a technique similar to the leap smear deployed by
Google [17]. Host nynex01 reacts to the leap second with some
delay, probably caused by periodic ntpd polling. Remarkably,
it rapidly adjusts its clock by a full second with some minor
corrections following. Host world4you periodically adjusts its
clock by a hard change instead of changing the tick speed. For
some time after the leap second, no clock change is conducted,
likely until local time has surpassed its remote equivalent.

D. Influence of Ripe Atlas Hardware Version

Ripe Atlas anchors exist in two hardware versions which
offer different characteristics [6]. Interestingly, remotely mea-
suring the TCP timestamps of Ripe Atlas anchors reveals their
hardware version, as all v1 anchors exhibit variable skew,
while all v2 anchors offer constant skew (cf. Figure 4).

VIII. CONCLUSION AND FUTURE WORK

We systematically approach the classification of IPv6-IPv4
servers siblings through active measurements, mainly reliant
on TCP timestamping to estimate remote clock skew. We
extract a variety of features from our active measurements
and feed these into (i) a reproduction of existing work’s
algorithm, (ii) a hand-tuned algorithm developed by us, and
(iii) machine-learning approaches. We find our algorithm,
which significantly extends existing work by various features,
to perform very well. Our machine-learning trained decision
tree surprises with a very simple, but highly precise model. We

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Measurement time [h]
O

bs
er

ve
d

of
fs

et
[m

se
c]

RA 6016

IPv4
IPv6

0 1 2 3 4 5 6 7 8 9 10
0

1k

2k

3k

4k

5k

Measurement time [h]

RA 6019

IPv4
IPv6

Figure 4: Ripe Atlas nodes with variable skew for v1 (left)
and constant skew for v2 (right).

apply our classifier models against a large-scale measurement
and find different, but always significant, counts of siblings
based on domain lists. We discuss outliers, likely caused by
proxies or middleboxes, and the influence of leap seconds
onto the TCP timestamping clock. We release our ground
truth, code and data to the scientific community to allow for
reproducibility and further research in this area.

Future Work: One direction of future work is the curation
of larger sibling ground truth data sets. We hope to start
this process with the release of our ground truth data set on
GitHub. Another direction is the reduction of measurement
effort in terms of duration, frequency, or both. Especially,
the very discriminative raw TCP timestamp feature should
work well with few data points, and hence only require few
packets instead of hour-long measurements. Furthermore, the
application of our technique on passive traffic captures to
distinguish siblings sounds like a promising research goal.

Data Release: We publish our curated ground truth data set,
acquired raw data, and developed source code for both repro-
ducibility (cf. [5], [28]) and use by other researchers under:

https://github.com/tumi8/siblings
This website includes directions on how to obtain the large
raw data set from an archival storage server.

Acknowledgments: We gratefully thank the various con-
tributors of ground-truth server data. This work has been
supported by the German Federal Ministry of Education and
Research, project X-CHECK, grant 16KIS0530, and project
AutoMon, grant 16KIS0411.

https://github.com/tumi8/siblings

REFERENCES

[1] Data Plane Development Kit. http://dpdk.org/. Accessed 13 January,
2017.

[2] Matthews Correlation Coefficient. http://scikit-learn.org/stable/
modules/model evaluation.html#matthews-corrcoef. Accessed 13
January, 2017.

[3] NLNOG RING. https://ring.nlnog.net. Accessed 14 July, 2016.
[4] scikit-learn. http://scikit-learn.org/. Accessed 13 January 2017.
[5] ACM. Result and Artifact Review and Badging.

https://www.acm.org/publications/policies/artifact-review-badging, Acc.
Jan 18 2017.

[6] V. Bajpai, S. J. Eravuchira, and J. Schönwälder. Lessons Learned from
Using the Ripe Atlas Platform for Measurement Research. ACM
SIGCOMM Computer Communication Review, 2015.

[7] V. Bajpai and J. Schönwälder. IPv4 versus IPv6-Who connects faster?
In IFIP Networking, 2015.

[8] A. Bender, R. Sherwood, and N. Spring. Fixing Ally’s Growing Pains
with Velocity Modeling. In ACM SIGCOMM IMC, 2008.

[9] A. Berger, N. Weaver, R. Beverly, and L. Campbell. Internet
Nameserver IPv4 and IPv6 Address Relationships. In ACM
SIGCOMM IMC, 2013.

[10] R. Beverly and A. Berger. Server Siblings: Identifying Shared
IPv4/IPv6 Infrastructure Via Active Fingerprinting. In Passive and
Active Measurement, 2015.

[11] R. Beverly, M. Luckie, L. Mosley, and K. Claffy. Measuring and
Characterizing IPv6 Router Availability. In Passive and Active
Measurement, 2015.

[12] J. Czyz, M. Luckie, M. Allman, and M. Bailey. Don’t Forget to Lock
the Back Door! A Characterization of IPv6 Network Security Policy.
In NDSS, 2016.

[13] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet.
Revealing Middlebox Interference with Tracebox. In ACM SIGCOMM
IMC, 2013.

[14] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast
Internet-wide Scanning and Its Security Applications. In USENIX
Security, 2013.

[15] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
MoonGen: A Scriptable High-Speed Packet Generator. In ACM
SIGCOMM IMC, 2015.

[16] O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle. Scanning the IPv6
Internet: Towards a Comprehensive Hitlist. In Traffic Monitoring and
Analysis, 2016.

[17] Google. Leap Smear. https://developers.google.com/time/smear,
Accessed Jan 27, 2017.

[18] K. Keys, Y. Hyun, M. Luckie, and K. Claffy. Internet-Scale IPv4 Alias
Resolution with MIDAR. IEEE/ACM Trans. Netw., 2013.

[19] T. Kohno, A. Broido, and K. C. Claffy. Remote Physical Device
Fingerprinting. Dependable and Secure Computing, IEEE Transactions
on, 2005.

[20] M. Luckie, R. Beverly, W. Brinkmeyer, et al. Speedtrap: Internet-Scale
IPv6 Alias Resolution. In ACM SIGCOMM IMC, 2013.

[21] D. Malone. The Leap Second Behaviour of NTP Servers. In Traffic
Monitoring and Analysis, 2016.

[22] S. B. Moon, P. Skelly, and D. Towsley. Estimation and Removal of
Clock Skew from Network Delay Measurements. In INFOCOM, 1999.

[23] S. J. Murdoch. Hot or Not: Revealing Hidden Services by their Clock
Skew. In ACM Conference on Computer and Communications
Security, 2006.

[24] C. Partridge and M. Allman. Ethical Considerations in Network
Measurement Papers. Communications of the ACM, 2016.

[25] V. Paxson. On Calibrating Measurements of Packet Transit Times.
ACM SIGMETRICS Perform. Eval. Rev., 1998.

[26] RIPE NCC. RIPE Atlas. https://atlas.ripe.net/, Accessed September
29, 2016.

[27] M. Rouhi. Path Tracing and Validation of IPv4 and IPv6 Siblings.
Master’s thesis, Technische Universität München, 2016.

[28] Q. Scheitle, M. Wählisch, O. Gasser, T. C. Schmidt, and G. Carle.
Towards an Ecosystem for Reproducible Research in Computer
Networking. In ACM SIGCOMM 2017 Reproducibility Workshop.

[29] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies
with Rocketfuel. In ACM SIGCOMM Computer Communication
Review, 2002.

[30] H. Theil. A Rank-Invariant Method of Linear and Polynomial
Regression Analysis. In Henri Theil’s Contributions to Economics and
Econometrics. Springer, 1992.

[31] D. Veitch and K. Vijayalayan. Network Timing and the 2015 Leap
Second. In Passive and Active Network Measurement, 2016.

[32] S. Zander and S. J. Murdoch. An Improved Clock-skew Measurement
Technique for Revealing Hidden Services. In USENIX Security, 2008.

http://dpdk.org/
http://scikit-learn.org/stable/modules/model_evaluation.html#matthews-corrcoef
http://scikit-learn.org/stable/modules/model_evaluation.html#matthews-corrcoef
https://ring.nlnog.net
http://scikit-learn.org/
https://www.acm.org/publications/policies/artifact-review-badging
https://developers.google.com/time/smear
https://atlas.ripe.net/

