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Abstract—To improve the resiliency of communication be-
tween bots and C&C servers, bot masters began utilizing Domain
Generation Algorithms (DGA) in recent years. Many systems have
been introduced to detect DGA-based botnets. However, they
suffer from several limitations, such as requiring DNS traffic
collected across many networks, the presence of multiple bots
from the same botnet, and so forth. These limitations make it very
hard to detect individual bots when using traffic collected from a
single network. In this paper, we introduce BotDigger, a system
that detects DGA-based bots using DNS traffic without a priori
knowledge of the domain generation algorithm. BotDigger utilizes
a chain of evidence, including quantity, temporal and linguistic
evidence to detect an individual bot by only monitoring traffic
at the DNS servers of a single network. We evaluate BotDigger’s
performance using traces from two DGA-based botnets: Kraken
and Conflicker. Our results show that BotDigger detects all the
Kraken bots and 99.8% of Conficker bots. A one-week DNS trace
captured from our university and three traces collected from our
research lab are used to evaluate false positives. The results show
that the false positive rates are 0.05% and 0.39% for these two
groups of background traces, respectively.

I. INTRODUCTION

Cyber security constitutes one of the most serious threats
to the current society, costing billions of dollars each year.
Botnets is a very important way to perform many attacks. In
botnets, the botmaster and bots exchange information through
C&C channels, which can be implemented using many pro-
tocols, such as IRC, HTTP, OVERNET. Although using P2P
protocols as C&C channels is getting popular, HTTP-based
botnets are still very common as they are easy to implement
and maintain. In a HTTP-based botnet, the botmaster publishes
the commands under a domain, then the bots query the domain
to fetch the contents periodically. In the early years, the
domain was hard-coded in binary, introducing a single point
of failure. To become more robust, botnets began to generate
C&C domains dynamically on the fly using DGA. In particular,
hundreds or thousands of domains can be algorithmically
generated every day, but the botmaster only registers one or
a few of them as C&C domains and publishes the commands
there. DGA technique evades static blacklists, avoids single
point of failure, and also prevents security specialists from
registering the C&C domain before the botmaster.

There are four reasons to detect DGA botnets using DNS
traffic. First, the DGA bots have to send DNS queries to look
up the IP addresses of C&C domains. Second, the amount
of DNS traffic is much less than the overall traffic. Focusing
on a relatively small amount of traffic helps to improve
performance, making it possible to detect bots in real time.
Third, the DNS traffic of DGA bots has different patterns

compared to legitimate hosts. For example, DGA bots send
more DNS queries than legitimate hosts. Last, if we can detect
bots only using DNS traffic when they look for C&C domains,
we can stop the attacks even before they happen.

Many previous works have been introduced to detect DGA-
based botnets and malicious domains (e.g., C&C domains,
phishing domains) using DNS traffic [8], [20], [9], [6], [22],
[23], [17]. They share some common assumptions, such as
DGA domains generated by the same algorithm have similar
linguistic attributes, DGA domains’ attributes are different
from legitimate ones, and so forth. Based on these assump-
tions, classification and/or clustering algorithms are applied for
detection. However, many of these past works require multiple
hosts infected by the same type of botnet existing in the
collected traces. Consequently, they have to collect DNS traffic
at an upper level (e.g., TLD servers, authoritative servers,
etc), or from multiple RDNS servers among networks. The
advantage of these works is that evidences from multiple bots
can be collected and analyzed. However, they also introduce
several challenges. First, the DNS traffic at an upper level is
hard to access for most of enterprise and/or university network
operators. Second, sharing DNS traffic among networks may
introduce privacy issues. Third, it is computationally expen-
sive to run clustering/classification algorithms on large traces
collected from multiple networks. Finally, the most significant
challenge is that an enterprise network may not have multiple
bots, especially bots infected by the same botnet. For example,
Pleiades [8] detects less than 100 bots of the same botnet in a
large North American ISP that includes over 2 million clients
hosts per day. As a comparison, our university network has
around 20,000 clients, which is only 1% of the ISP, meaning
that on average only 1 host infected by the same botnet exists
in the network.

In this paper, we introduce BotDigger, a system that detects
an individual bot by only using DNS traffic collected from
a single network. This single network can be a company
network, a university network, or a local area network (LAN).
Notice that “detecting individual bot in a network” does not
mean BotDigger cannot detect all the bots in a network. If
there are multiple bots in the same network, BotDigger can
still detect them, but individually. BotDigger uses a chain
of evidences, including quantity evidence, linguistic evidence,
and temporal evidence to detect bots. In particular, quantity
evidence means that the number of suspicious second level
domains (2LDs) queried by bots are much more than the legit-
imate hosts. Two temporal evidences are used: 1) the number
of suspicious 2LDs queried by a bot suddenly increases when
it starts to look for the registered C&C domain, 2) once the



bot hits the registered C&C domain, the number of queried
suspicious 2LDs will decrease. The basis of linguistic evidence
is that the DGA NXDomains and C&C domains queried by
a bot are generated by the same algorithm, thus they share
similar linguistic attributes. We apply the above evidences
sequentially to detect bots and the queried DGA NXDomains.
After that, we extract signatures from the DGA NXDomains
and apply them on the successfully resolved domains to extract
the corresponding C&C domain candidates. The contributions
of this paper are listed as follows:

1) We introduce a chain of evidences, including quantity
evidence, temporal evidence and linguistic evidence,
to detect DGA-based botnets.

2) We introduce and implement BotDigger, a system
that detects an individual DGA-based bot using DNS
traffic collected in a single network.

3) We evaluate BotDigger with two datasets from our
university and lab, as well as two DGA-based botnets.
The results show that BotDigger detects more than
99.8% of the bots with less than 0.5% false positives.

II. DATASETS

A. Botnet Dataset

We use two datasets of DGA botnets in this paper. The
first dataset includes 140 Kraken botnet traces obtained from
Georgia Tech [12], [19], which we call 140Samples. Each
trace in 140Samples is collected by running captured bot
binaries in an isolated environment. Each traces include DNS
queries and responses of DGA domains, binary download,
C&C communications and other traffic.

The second dataset includes domains generated by a well
known DGA botnet - Conficker. Variant C of Conficker gen-
erates 50,000 domains every day [16]. We collected a list of
all the 1,500,000 domains generated in April 2009 from [15].

B. Background Dataset

Two groups of background traces are used in our exper-
iments. The first group includes three traces captured at our
university lab, which is connected to the outside world via
a 10Gb/s link. The lab has a dedicated /24 subnet and runs
standard services, such as mail, web, ssh, etc., and also carries
traffic for several research projects including two PlanetLab
nodes and a GENI rack. All traces are in tcpdump format
and include payload. They are named Lab1, Lab2 and Lab3.
The first two traces are 24-hour traces captured on Feb-22th-
2011 and Dec-11th-2012, respectively. Lab3 is a 72 hour trace
captured on Dec-13th to Dec-16th-2012. Table I provides some
statistics for these datasets.

The second background trace includes only DNS traffic
captured at our university. For all the users connected to the
university network, their DNS queries are sent to four recursive
DNS servers. We collect all the DNS traffic by mirroring the
ports of the four servers for a total of seven days, starting from
April 2nd to 8th in 2015. We call this dataset CSUDNSTrace.
CSUDNSTrace includes 1.15E9 domains queried by 20682
university hosts. 5.5E6 of the queried domains are unique.
Some statistics for this dataset are listed in Table II.

TABLE I: Lab Traces

Lab1 Lab2 Lab3
TCP 93.55% 51.87% 72.25%
UDP 1.03% 2.83% 0.258%
ICMP 5.41% 45.14% 27.27%
Others 0.001% 0.149% 0.215%
Bandwidth 14.08 Mb/s 26.16 Mb/s 18.4Mb/s
Peak BW 29.3 Mb/s 133.9 Mb/s 81.9 Mb/s
Duration 24 hours 24 hours 72 hours

TABLE II: CSU DNS Trace

Date Total
Queried
Domains

Unique
Queried
Domains

Hosts in
Trace

April 2nd 1.83E8 1.50E6 17942
April 3rd 1.68E8 1.29E6 17599
April 4th 1.48E8 8.51E5 13885
April 5th 1.41E8 9.33E5 13794
April 6th 1.67E8 1.52E6 18083
April 7th 1.75E8 1.55E6 18321
April 8th 1.76E8 1.53E6 18246

III. METHODOLOGY

A. Notations

Domain names are organized in a tree-like hierarchical
name space. A domain name is a string composed of a set
of labels separated by the dot symbol. The rightmost label is
called top-level domain (TLD). Two commonly used TLDs
are generic TLD (gTLD, e.g., .com) and country code TLD
(ccTLD, e.g., .cn). A domain can contain both gTLD and
ccTLD, for example, www.foo.example.com.cn. In this paper,
we consider the consecutive gTLD and ccTLD as a single TLD
for simplicity. We define the domain that is directly to the left
of the TLDs as Second Level Domain (2LD), and define the
domain to the left of the 2LD as Third Level Domain (3LD).
The 2LD and 3LD in the above example domain is “example”
and “foo”, respectively. Note that in this work we denote a
2LD of a NXDomain as 2LDNX.

B. System Overview

An overview of the methodology is shown in Figure 1.
First, several filters (Section III-D) are applied to remove un-
suspicious NXDomains (e.g., the domains with invalid TLDs).
The remaining suspicious NXDomains are then grouped by
host who sends the queries. Notice that in the following steps,
we focus on the queried domains from each individual host,
and that is the reason why our method can detect individual
bot. Now the quantity evidence (Section III-E) is applied to
extract outliers in terms of the number of queried suspicious
2LDNXs. For each outlier, we use the temporal evidence
(Section III-F) to extract the period of time when a bot
begins to query DGA domains until it hits the registered C&C
domain, denoted as (tbegin, tend). If such period cannot be
extracted, then the host is considered as legitimate, otherwise
the host is considered suspicious and the following analysis



is performed. The next step focuses on the suspicious NXDo-
mains being queried between tbegin and tend. The linguistic
attributes of these NXDomains are extracted and then the
linguistic evidence (Section III-G) is applied on the extracted
attributes. The assumption of linguistic evidence is that a
bot queries many suspicious NXDomains that have similar
linguistic attributes thus they will likely be clustered together.
In particular, a hierarchical clustering algorithm is applied on
the attributes. The output is one or more clusters of linguistic
attributes and the corresponding suspicious NXDomains. We
consider the clusters whose sizes are greater than a threshold
(named BotClusterThreshold as defined in Section III-G3) as
bot NXDomain cluster candidates. If all the clusters of a host
are smaller than the threshold, then the host is considered
legitimate. Finally, to identify the C&C domains, the DGA
domain signatures are extracted from the bot NXDomain
cluster candidates and matched against all the successfully
resolved domains queried between tbegin and tend. The do-
mains that match the signatures are considered as C&C domain
candidates, and the host is labeled as a bot. The host is not
labeled if no C&C domain candidate can be extracted. Note
that we do not precisely label C&C domain. Instead, we label
multiple C&C domain candidates. It is possible, however,
unlikely, that a successful request is done by the infected
host right after a series of failed requests, and the legitimate
domain in the request is close in lexicographic distance. For
this reason we can never be absolutely certain that a successful
DNS request is a C&C server. Precisely labeling single C&C
domain is future work.

Fig. 1: System Overview

C. Ethical Considerations

BotDigger does not require the IP address of the host
making DNS requests, but only the domain request itself. This
decouples the address of the host from the actual request; if
there are many hosts in the network then it is hard to associate
the request with the host. BotDigger still needs to report bots
when detected, but this can be done using an opaque identifier

for the host IP address, not the IP address itself. The identifier
may be a mapping known only to the network operator and
never revealed to BotDigger.

We acknowledge that in networks with a few hosts or in
cases where the domain request itself contains host-specific
information, privacy may still be compromised. However, we
envision that BotDigger will be used the same way network
operators use IDSs such as Snort and Suricata. Such IDS’
require full access to packet headers and payload, and their use
is justified as long as operators use them for network operations
and security.

D. Filters

Previous work shows that many of the failed domains are
non-malicious [13], [14]. Jiang et al. categorize failed DNS
queries into seven groups in [13]. In [14], the authors classify
NXDomains into nine groups. Based on their classifications,
we build five filters to remove non-suspicious NXDomains.

1) Overloaded DNS: Besides fetching the IP address of a
domain, DNS queries are also “overloaded” to enable
anti-spam and anti-virus techniques [18]. We collect
64 websites that provide blacklist services to filter
overloaded DNS.

2) Invalid TLD: We obtain the list of all the registered
TLD from IANA [3]. A domain is considered as
unsuspicious if its TLD is not registered.

3) Typo of popular domains: We consider the top 1,000
domains in Alexa [1] and websites of world’s biggest
500 companies from Forbes [2] as popular legitimate
domains. If the Levenshtein distance between a given
domain and any of these popular domains is less than
a threshold, then the domain is considered as a typo.

4) Excluded words: These domains contain the words
that should not be included in queried domains,
including “.local”, “wpad.”, “http://”, and so forth.

5) Repeated TLD: These domains could be
introduced by misconfiguration of a web
browser or other applications. An example is
“www.example.com.example.com”.

We use dataset CSUDNSTrace to study the effectiveness
of each filter. Before applying the filters, we remove all the
queried NXDomains (e.g., test.colostate.edu) under our uni-
versity domain “colostate.edu”. We list the number of filtered
domains and their ratio to the total number of NXDomains in
Table III. From the table we can see that the filters can remove
87.3% of NXDomains, saving lots of computation resources
and improving the performance.

TABLE III: Filters Statistics

Filters Filtered Domains Percentage
Overloaded DNS 1232214 7.1%
Unregistered TLD 2488055 14.4%
Typo Domains 174515 1.01%
Misconfiguration words 7172856 41.4%
Repeated TLD 4046912 23.4%
All Filters 15114552 87.3%



E. Quantity Evidence

Quantity evidence is based on the assumption that most
hosts in a network are legitimate, and they do not query many
suspicious 2LDNXs. On the other hand, a bot queries a lot of
suspicious 2LDNXs. As a result, a bot can be considered as
outlier in terms of the number of queried suspicious 2LDNXs.
To define an outlier, we first calculate the average and standard
deviation of the numbers of suspicious 2LDNXs for all the
hosts, denoted as avg and stddev, respectively. Then we set
the threshold as avg + 3 ∗ stddev. If the number of suspicious
2LDNXs queried by a host is greater than the threshold, then
the host is labeled as an outlier.

We demonstrate quantity evidence using a real bot. First
we pick one hour DNS trace from CSUDNSTrace and one
bot trace from 140Samples. Then, we blend them together by
adding the bot’s DNS traffic on a randomly selected host in
the background trace. Finally we have a one hour mixed DNS
trace including 11,720 background hosts and a known bot. The
CDF for the number of suspicious 2LDNXs queried by a host
is shown in Figure 2. From the figure we can see that more
than 95% hosts do not query any suspicious 2LDNX. On the
contrary, the bot queries more than 20 suspicious 2LDNXs
thus it is labeled as an outlier.
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F. Temporal Evidence

Most of the time, a bot behaves like legitimate host and
it does not query many suspicious 2LDNXs. However, when
the bot wants to look for the C&C domain, it will query many
suspicious 2LDNXs. Consequently, the number of suspicious
2LDNXs suddenly increases. Then, once a bot hits the regis-
tered C&C domain, it will stop querying more DGA domains,
thus the number of suspicious 2LDNXs will decrease. In other
words, we are detecting a period of time when the number of
suspicious 2LDNXs suddenly increases and decrease. This can
be considered as a Change Point Detection (CPD) problem. In
this paper, we use Cumulative Sum (CUSUM) as the CPD
algorithm because it has been proved to be effective and has
been used in many other works, e.g., [21].

Let Xn, n = 0, 1, 2, ... be the number of suspicious 2LD-
NXs queried by a given host every minute during a time
window.

Let {
yn = yn−1 + (Xn − α)+,
y0 = 0,

(1)

where x+ equals to x if x > 0 and 0 otherwise. α is the
upper bound of suspicious 2LDNXs queried by legitimate host
every minute. The basic idea of this algorithm is that Xn − α
is negative when a host behaves normally, but it will suddenly
increase to a relatively large positive number when a bot begins
to query C&C domain.

Let bN be the decision of whether a host has sudden
increased suspicious 2LDNXs at time n. A host is considered
to have a sudden increase in suspicious 2LDNXs when bN
equals to 1. N is a threshold that indicates the number of
suspicious 2LDNXs a host must reach before considered as
bot candidate. N is specified by the user, as discussed in
Section IV-A.

bN (yn) =

{
0, if yn ≤ N
1, if yn > N

(2)

The method to detect a decrease in the number of suspi-
cious 2LDs is similar to equation 1, and is defined in equa-
tion 3. The function to detect sudden decrease of suspicious
2LDNXs is the same as equation 2.

{
yn = yn−1 + (Xn −Xn−1)

+,

y0 = 0,
(3)

Now we investigate the temporal evidences using the same
one hour DNS traffic blended in the last section. As it is hard
to plot all the 11,720 hosts and due to the fact that most
of them do not query many suspicious 2LDNXs, we only
plot the suspicious 2LDNXs for 15 hosts including the bot in
Figure 3. From the figure we can clearly see there is a spike
appearing between minute 29 and 32, standing for the bot.
However, we also notice that besides the bot, some legitimate
hosts (e.g., host 10) also have spikes, thus they might also
be labeled as suspicious. Spikes by legitimate hosts can result
from user typos. Another explanation may be that each time
Google Chrome starts it generates a number of failed DNS
requests to determine if NXDomain rewriting is enabled [24].
We manually checked the NXDomains queried by the hosts
that generated the spikes. While we found some of them not
suspicious, we could not precisely pinpoint the reason for the
spikes.

It is true that a single evidence is not strong enough to
label a host as a bot. This is the reason why we use a chain
of multiple evidences that helps to reduce false positives.

G. Linguistic Evidence

Linguistic evidence is built on two assumptions. The first
is that the NXDomains queried by a bot are generated by the
same algorithm, thus they share similar linguistic attributes
(e.g., entropy, length of domains, etc.). On the contrary,
legitimate domains are not generated algorithmically but they
are selected such that people can remember them easily.
Consequently, the linguistic attributes of the NXDomains
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queried by a legitimate host are not similar to each other.
The second assumption is that both DGA registered C&C
domains and NXDomains are generated by the same algorithm.
The only difference between them is whether the domain is
registered or not. Consequently, C&C domains have similar
linguistic attributes with DGA NXDomains. Based on these
two assumptions, we first extract linguistic attributes from
suspicious NXDomains and cluster the domains that have
similar attributes together. After that, bot NXDomain cluster
candidates are decided. Next, signatures are extracted from
the cluster candidates and applied on successfully resolved
domains looking for registered C&C domains.

1) Linguistic Attributes: We extend the attributes used in
prior work [8], [20], [9], [6], [22] to 23 and list them in
Table IV. From the table we can see that some attributes
are dependent (e.g., length of dictionary words and percent
of dictionary words). Currently we use all of these attributes,
and we leave the study of attributes selection as a future work.

TABLE IV: Domain Linguistic Attributes

Index Linguistic Attributes
1, 2 length of dictionary words in 2LD and 3LD
3, 4 percent of dictionary words in 2LD and 3LD
5, 6 length of the longest meaningful substring (LMS) in

2LD and 3LD
7, 8 percent of the length of the LMS in 2LD and 3LD

9, 10 entropy in 2LD and 3LD
11, 12 normalized entropy in 2LD and 3LD
13, 14 number of distinct digital characters in 2LD and 3LD
15, 16 percent of distinct digital characters in 2LD and 3LD
17, 18 number of distinct characters in 2LD and 3LD
19, 20 percent of distinct characters in 2LD and 3LD
21, 22 length of 2LD and 3LD

23 number of domain levels

2) Dissimilarity Calculation: Now we describe how to cal-
culate dissimilarity of a single linguistic attribute between two
domains. We denote two domains as D1 and D2, and denote
their attributes as aij , i = 1, 2 and 1 ≤ j ≤ 23. Dissimilarity

of attribute j between D1 and D2 is denoted as Sj(D1, D2)
and calculated as follows.

Sj(D1, D2) =

{
0 if a1j = 0 and a2j = 0
|a1j−a2j |

max(a1j , a2j)
else

(4)

We use a modified version of Euclidean distance to calcu-
late the overall dissimilarity of all the 23 attributes between two
domains. Euclidean distance [11] has been used by others [6],
[9]. The overall dissimilarity between D1 and D2 is denoted
as SAll(D1, D2) and calculated as equation 5. The smaller the
dissimilarity, the more similar D1 and D2 are.

SAll(D1, D2) =

√∑23
j=1 Sj(D1, D2)2

23
(5)

3) Clustering NXDomains: After extracting attributes from
NXDomains and calculating dissimilarities, we run the sin-
gle linkage hierarchical clustering algorithm to group the
NXDomains that have similar attributes together. Process of
the clustering algorithm is shown in Figure 4. Initially, each
NXDomain denoted as orange dot is in a cluster of its own.
Then, the clusters are combined into larger ones, until all
NXDomains belong to the same cluster. At each step, the
two clusters having the smallest dissimilarity are combined.
The result of the clustering process can be depicted as a
dendrogram, where a cut is used to separate the clusters, giving
us a set of NXDomain clusters. For example, the dendrogram
cut in Figure 4 gives two clusters. As we normalize the
dissimilarities between domains, the dendrogram height is
between 0 and 1. Currently the dendrogram cut height is
determined experimentally, as shown in Section IV-A. As a
future work, we plan to use statistical methods to cut the
dendrogram dynamically. Finally, we compare the size of
every cluster with a BotClusterThreshold. If a cluster has
more NXDomains than the threshold, it is considered as a
bot NXDomain cluster candidate, and the host is considered
as a bot candidate.

Fig. 4: Hierarchical Clustering Dendrogram

4) C&C Domain Detection: After detecting bot NXDo-
main cluster candidates, we extract signatures from them, and
then apply the signatures on successfully resolved domains to
detect C&C domain.



For a given bot candidate c, all its bot NXDomain cluster
candidates are denoted as C1, C2, ...Cn. We first combine these
clusters as a C =

⋃n
i=1 Ci. The NXDomains included in C are

denoted as dj . Each domain dj contains 23 linguistic attributes
ajk, 1 ≤ k ≤ 23. Signatures are composed of an upper signa-
ture and a lower signature, each of them includes 23 values.
The upper signature is denoted as Sigupper = (s1, s2, ...s23).
Each value in the upper signature is defined as the maximum
value of the corresponding linguistic attribute of all the do-
mains in C, sk = max(ajk), 1 ≤ k ≤ 23, dj ∈ C. Similarly,
the lower signature, Siglower is defined as the minimum
values.

Once we obtain the signatures, we apply them on
the successfully resolved domains that are queried dur-
ing (tbegin, tend) to extract C&C domains. Recall that
(tbegin, tend) is decided by temporal evidence in Section III-F.
For a given successfully resolved domain, we first extract its
23 attributes. Then, for each attribute we check whether it falls
within the corresponding attribute upper and lower bounds in
the signature. Finally we compare the total number of matched
attributes with a SignatureThreshold. If the former is greater,
then we label the domain as C&C domain, and label the host
as a bot.

IV. EVALUATION

A. True Positives

First, we evaluate the performance of BotDigger on detect-
ing DGA-based bots. We use two botnets, Kraken and Con-
ficker in our experiments. Recall that the dataset 140Samples
includes 140 real Kraken traces that contain DNS queries/re-
sponses, C&C communication and other traffic. On the other
hand, for the evaluation with the Conficker dataset we only
have Conficker’s DGA domains. We use these DGA domains
to simulate 1000 bots. Each simulated bot randomly queries
20 domains from the Conficker domain pool every 10 seconds
during the time window. We use 5 minutes as the time window
in all of our experiments. At the end of every time window
BotDigger analyzes the collected information and looks for
bots. Users can decrease the time window if they want to
detect bots more quickly, but decreasing the time window risks
missing bots with slow activity.

Before running BotDigger on the two evaluation datasets
we experimentally determine the parameters and thresholds
introduced in Section III. First, we use a one-day DNS trace
from the CSUTrace to decide α in equation 1. We find that
more than 98% of the hosts query less than two suspicious
2LDNXs per minute, so we pick 2 as the α. N in equation
2 is set to the value of BotClusterThreshold. We then set
SignatureThreshold experimentally by trying different values
of the threshold and run BotDigger on the 1000 Conficker
bots simulated above. In this specific experiment, we use
0.05 as the dendrogram cut. We will discuss how to pick the
proper dendrogram cut in the next paragraph. The results are
plotted in Figure 5. The x-axis and y-axis are bot detection
rate and SignatureThreshold respectively and the different
lines stand for different BotClusterThreshold. From the figure
we can see that the bot detection rate is stable when the
SignatureThreshold is less than 16, after that the rate drops
quickly. As a result we set 16 as the SignatureThreshold.
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We run BotDigger on Kraken and Conficker bots using
combinations of two parameters, BotClusterThreshold and
dendrogram cut in the hierarchical clustering algorithm. The
results are shown in Figure 6 and Figure 7. The x-axis is the
dendrogram cut, y-axis is the percentage of detected bots, and
different lines stand for different BotClusterThreshold. From
the figures we can see that by using 0.10 as the dendrogram
cut, we are able to detect all the Kraken bots and 99.8% of
Conficker bots.
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B. False Positives

Besides DGA-based bots, some legitimate hosts could also
query similar NXDomains that are clustered together and the
host could falsely be labeled as a bot. We now evaluate such
false positives by using the dataset CSUTrace. As most of
the users connected to CSU network are required to install
anti-virus software, we assume CSUTrace does not contain
many bots. We use 0.10 as the dendrogram cut and 4 as
BotClusterThreshold.

33 hosts (0.16% of all the hosts) are labeled as bots
during the entire period of one week. We use two resources
to check whether these domains and corresponding IPs are
suspicious. The first resource is VirusTotal [5], a website that
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Fig. 7: Conficker Bots Detection

provides virus, malware and a URL online scanning service
based on 66 URL scanners, including ZeusTracker, Google
Safebrowsing and Kaspersky among others. Another resource
is TrustedSource by McAfee labs [4], a real-time reputation
system that computes trustworthy scores for different Internet
entities including IP addresses, domains and URLs. The scores
are computed based on analyzing real-time global threat intel-
ligence collected from McAfee’s research centers’ centralized
scanning systems and honeypots and from customers and end
point software solutions around the world. We check the
labeled C&C domains and the corresponding IPs for each
host using the above resources. If any of them is labeled as
malicious or high risk, we consider the host as malicious.
The results show that 22 hosts are labeled as malicious. In
summary, we falsely label 11 hosts as bots, resulting in the
false positive rate as 0.05%.

Within the 22 malicious hosts, we find that 5 hosts are
highly suspicious. Most of the NXDomains queried by these
hosts are random looking. In Figure 8, we list the NXDo-
mains queried by such a host. After extracting signature and
applying it on the successfully resolved domains, “sfaljyxfsp-
bjftnv5.com” is labeled as C&C domain. The IP address of
this C&C domain is 85.25.213.80. Upon further investigation
on VirusTotal, we find that this IP is related to malicious
activity and mapped to various random looking domains.
Consequently, we believe this host is a bot.

obhgiunuht7f.com, hlxgrygdmcpu8.com
ompxskwvcii3.com, nnnwyujozrtnulqc5p.com
nwpofpjgzm6c.com, dgpvsgsyeamuzfg2.com
kgapzmzekiowylxc5k.com, nellwjfbdcfjl3g.com
rfsbkszgogjqlbm.com, rcfwptxhgoiq27.com
unzxnzupscqxu.com, okihwecmaftfxwz.com

Fig. 8: NXDomains Queried by Suspicious Host A

Within the 11 false positives, we manually checked their
queried NXDomains and found some interesting results. We
include one example in Figure 9. From the figure we can find
that some words appear frequently in the domains, such as
“coach”, “louis”, “outlet”, etc. In addition, we can also see that
the domains contain typos. For example, “coach” and “louis”

are misspelled as “coachh” and “llouis”. One explanation
of these typos is that the host tries to avoid conflicts with
registered domains. In addition, we extract signature from
NXDomains and apply it on the successfully resolved domains.
By doing this, domain “www.golvlouisvuittonbags.com” is
extracted. This domain is still in use, trying to sell replica
Louis Vuitton. The above example shows that BotDigger is
not only able to detect bots and suspicious hosts that query
random looking domains, but is also capable of detecting hosts
whose queried domains are generated from a set of dictionary
words.

www.llouisvuittonoutlet.org, www.iulouisvuittonoutlet.org
www.coachoutletsstoree.com, www.illouisvuittonoutlet.com
www.coachfactorysoutlets.net, www.louisvuittonof.com
www.coachfactoryonlines.net, www.colvlouisvuittonoutlet.net
www.coachfactorystoreoutlete.org, www.coachhoutlet.com

Fig. 9: Domains Queried by Suspicious Host B

In addition to the CSUTrace we also ran BotDigger on
the traces captured in our research lab, Lab1, Lab2, and
Lab3. Note that we do not regard these traces as ground
truth. Although our network is well protected we cannot be
certain it is bot-free. BotDigger detects four hosts as potential
bots, denoted as Hi, 1 ≤ i ≤ 4. Then we try to confirm by
running a bot detection system - BotHunter, on the three
lab traces for independent verification. BotHunter labels H1

as bot. Upon further investigation, we find that H1 queries
many domains and these domains are very similar as the ones
queried by H2. Moreover, some of the labeled C&C domains
of H1 are resolved to 80.69.67.46, which is the same IP as
the labeled C&C domains for H2. As a result, H2 is very
likely to be a bot. Besides, H3 is highly suspicious because
it queries many NXDomains, all of them beginning with
“zzzzzzzzzzzgarbageisgreathere” (e.g., zzzzzzzzzzzgarbageis-
greathere.funatic.cz, .penguin.se, inspirit.cz, etc). In summary,
BotDigger introduces 1 false positive (0.39%) in three traces.

V. LIMITATIONS

A bot can bypass BotDigger by querying C&C very slowly,
for example, query a domain every 5 minutes. In this case,
BotDigger may not detect it if a small time window is used.
However, at least we make the bots less effective, meaning
that it may take hours to contact to the C&C domains if the
bots have to query tens of domains slowly. Notice that we can
increase the time window to detect the bots that query domains
slowly, but we expect more false positives will be introduced.

The quantity evidence in the evidence chain of BotDigger
requires that the number of NXDomains queried by a bot is
comparable more than legitimate hosts. As a results, BotDigger
will fail to work if the bot is “lucky”, meaning that it only
queries a very small number of domains and hits the C&C
domain. However, when the current C&C domain expires, the
bot needs to look for the new C&C domain. It is very unlikely
that the bot is “lucky” every time it looks for the C&C domain.
Consequently, once the number of NXDomains queried by this
bot matches the quantity evidence, BotDigger will analyze its
DNS traffic for detection. In summary, a bot may evade the
system for one time, but not all the time.



VI. RELATED WORK

Researchers introduced a lot of works to detect malicious
domains (e.g., C&C domains, phishing pages, etc.) and DGA-
based botnets. In [9], Bilge et al. introduce EXPOSURE to
detect malicious domains. In particular, they first extract 15
features from a domain and all the IPs that the domain is
mapped to. Then they build a decision tree from a train-
ing set. After that, any given domain can be classified as
malicious or legitimate using the tree. In [6], Antonakakis
et al. introduce Notos to build models of known legitimate
and malicious domains using 18 network-based features, 17
zone-based features, and 6 evidence-based features. These
models are then used to compute a reputation score for a new
domain. Schiavoni et al. introduce Phoenix to distinguish DGA
domains from non-DGA domains by using both linguistic and
IP features [20]. However, Phoenix only works for randomly
generated domains, but not the domains generated based on
pronounceable words. On the contrary, our work can detect
the suspicious domains generated using a set of pronounceable
works, as shown in Figure 9 in Section IV-B. Antonakakis et
al. introduce Pleiades [8] to detect DGA-based bots by looking
for large clusters of NXDomains that have similar linguistic
features, and are queried by multiple possible infected hosts.
In [22], Yadav et al. measure K-L with unigrams, K-L with
bigrams, jaccard index, and edit distance from training data set,
and then use them to detect DGA-based botnets. Later on, they
introduce another method that utilizes entropy of NXDomains
and C&C domains for detection in [23]. In [7], Antonakakis et
al. introduce a system named Kopis to detect malware-related
domains, including C&C domains. Kopis is deployed in upper
level DNS servers to provide global visibility of DNS queries
and responses for detection.

A big difference between the above work and ours is
that many of them use IP/domain blacklists and reputation
systems. BotDigger does not require any of these. Moreover,
the above works either require DNS traffic collected at upper
level (e.g., TLD servers) or among multiple networks, and
require multiple bots belonging to the same botnet appearing in
the collected data set. As we discussed in Section I, the above
requirements introduce many challenges. On the contrary, our
method is capable of detecting individual DGA-based bot
using DNS traffic collected in a single network.

Another work similar as ours is [10]. In this work, the
authors also use NXDomains to detect bots, and use NoError
domains to track C&C domains. However, the introduced
method ignore all the domains queried by a single host and
only focus on detecting a group of bots. Consequently, this
method cannot detect individual bot.

VII. CONCLUSIONS

In recent years, botnets began to use DGA techniques
to improve the resiliency of C&C servers. In this paper,
we introduce BotDigger, a system that detects DGA-based
bots without a priori knowledge of the domain generation
algorithm. A big advantage of BotDigger is that it can detect an
individual bot by only analyzing DNS traffic collected from a
single network. Any network administrator can run BotDigger
without requiring additional information from other networks.
A novel method - a chain of evidences, including quantity

evidence, temporal evidence and linguistic evidence, is used in
BotDigger for detection. We first use synthetic traffic to inves-
tigate each individual evidence and find many false positives.
A chain of evidences helps reduce false positives because most
of the legitimate hosts match one or two evidences but not all
three. Two DGA-based botnets and two groups of background
traces are used to evaluate BotDigger. The results show that
BotDigger detects more than 99.8% of the bots with less than
0.5% false positives.
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